文档库 最新最全的文档下载
当前位置:文档库 › 双馈感应风力发电系统

双馈感应风力发电系统

双馈感应风力发电系统
双馈感应风力发电系统

双馈感应风力发电机系统

摘要:随着风力发电中电力电子技术的发展,大容量的变速恒频风力发电系统逐渐成为了风力发电技术的发展方向之一,且技术也逐渐趋于成熟,而采用双馈异步发电机的双馈型的变速恒频风力发电机组是该系统中的主流机型,所以掌握其原理和运行特性具有很重要的意义。对双馈感应风力发电系统的运行原理和特点进行了介绍,并使用MATLAB对系统进行仿真,进而直观地反映并验证其运行特性。

通过MATLAB仿真分析可知,在风速低于额定风速时,通过整流器及逆变器来控制发电机的电磁转矩,实现对风力机的转速控制,通过调节发电机转子转速,尽可能保持最佳叶尖速比以捕获最大风能,同时稳定发电机输出电能的频率,而在此过程中,随着风速的增加,发出的有功功率也在增加;在风速高于额定风速时,通过变浆距系统改变浆叶节距来调节机组的转速,使其保持恒定或在一个允许的范围内变化,从而调节功率使输出功率维持在额定功率。

关键词:风力发电;发电机系统;双馈感应发电机;运行特性仿真分析

DOUBLE-FED INDUCTION GENERA TOR SYSTEM

Abstract: With the development of the wind power in power electronic technology, the wind power generation systems with the large capacity has gradually become the development direction of wind power technology, and the technology of ripe, but also the doubly-fed induction generator has become the mainstream model of this generator system, so the understand of principle and operation characteristics has important implications. This paper introduced the operating principle and characteristics of doubly-fed induction wind power systems, after that we use of MA TLAB simulation system, and then reflected its operating characteristics intuitively.

Through MA TLAB simulation analysis shows that in the rated wind speed below, the electromagnetic torque to generator is controlled by rectifier and inverter, so that we can realize the control of generator rotor speed, and maintain the best possible maximum wind to capture tip speed, stable the frequency of output power generator, and in the process, with the increase of the wind, the active power are also on the increase; In the rated wind speed and higher slurry system change by variable pitch slurry to adjust the speed of the unit, and keep them in a constant or allow the scope changes, which regulates power output power in power rating.

Keywords: wind turbines, power system, Double-fed induction generator, simulation analysis of operating characteristics

0引言

随着风力发电中电力电子技术的发展,大容量的变速恒频风力发电系统逐渐成为了风力发电技术的发展方向之一,且技术也逐渐趋于成熟,而采用双馈异步发电机的双馈型的变速恒频风力发电机组是该系统中的主流机型,所以掌握其原理和运行特性具有很重要的意义。双馈感应风力发电系统的运行原理和特点进行了介绍,并使用MA TLAB 对系统进行仿真,进而直观地反映并验证其运行特性。

1风力机对发电机及发电系统的一般要求风力发电包含了由风能到机械能和由机械能到电能两个能量转换过程,发电机及其控制系统承担了后一种能量转换任务。它不仅直接影响这个转换过程的性能、效率和供电质量,而且也影响到前一个转换过程的运行方式、效率和装置结构。因此,研制和选用适合于风电转换用的运行可靠、效率高、控制及供电性能良好的发电机系统,是风力发电工作的一个重要组成部分。在考虑发电机系统的方案时,应结合它们的运行方式重点解决以下问题:

①高质量地将不断变化的风能转换为频率、电压恒定的交流电或电压恒定的直流电;

②高效率地实现上述两种能量转换,以降低每度电的成本;

③稳定可靠地同电网、柴油发电机及其他发

电装置或储能系统联合运行,为用户提供稳定的电能。

2 变速/恒频发电系统

这是20 世纪70 年代中期以后逐渐发展起来的一种新型风力发电系统,其主要优点在于风轮以变速运行,可以在很宽的风速范围内保持近乎恒定的最佳叶尖速比,从而提高了风力机的运行效率,从风中获取的能量可以比恒速风力机高得多。此外,这种风力机在结构上和实用中还有很多的优越性。利用电力电子学是实现变速运行最佳化的最好方法之一,虽然与恒速恒频系统相比可能使风电转换装置的电气部分变得较为复杂和昂贵,但电气部分的成本在中、大型风力发电机组中所占比例不大,因而发展中、大型变速恒频风电机组受到很多国家的重视。变转速运行的风力发电机有不连续变速和连续变速两大类,下面分别作一概要介绍。

(1)不连续变速系统一般说来,利用不连续变速发电机可以获得连续变速运行的某些好处,但不是全部好处。主要效果是比以单一转速运行的风电机组有较高的年发电量,因为它能在一定的风速范围内运行于最佳叶尖速比附近。但它面对风速的快速变化) 湍流$ 实际上只是一台单速风力机,因此不能期望它像连续变速系统那样有效地获取变化的风能。更重要的是,它不能利用转子的惯性来吸收峰值转矩,所以这种方法不能改善风力机的疲劳寿命。

(2)连续变速系统连续变速系统可以通过多种方法来得到,包括机械方法、电/ 机械方法、电气方法及电力电子学方法等。机械方法如采用变速比液压传动或可变传动比机械传动,电/机械方法如采用定子可旋转的感应发电机,电气式变速系统如采用高滑差感应发电机或双定子感应发电机等。这些方法虽然可以得到连续的变速运行,但都存在这样或那样的缺点和问题,在实际应用中难以推广。

目前看来最有前景的当属电力电子学方法,这种变速发电系统主要由两部分组成,即发电机和电力电子变换装置。发电机可以是市场上已有的通常电机如同步发电机、鼠笼型感应发电机、绕线型感应发电机等,也有近来研制的新型发电机如磁场调制发电机、无刷双馈发电机等;电子电子变换装置有交流/ 直流/交流变换器和交流/ 交流变换器等。下面结合发电机和电力电子变换装置介绍三种连续变速的发电系统。

①同步发电机交流/直流/ 交流系统其中同步发电机可随风轮变速旋转,产生频率变化的电功率,电压可通过调节电机的励磁电流来进行控制。发电机发出的频率变化的交流电首先通过三相桥式整流器整流成直流电再通过线路换向的逆变器变换为频率恒定的交流电输入电网。

变换器中所用的电力电子器件可以是二极管、晶闸管(SCR)、可关断晶闸管(GTO)、功率晶体管(GTR)和绝缘栅双极型晶体管(IGBT)等。除二极管只能用于整流电路外,其他器件都能用于双向变换,即由交流变换成直流时,它们起整流器作用,而由直流变换成交流时,它们起逆变器作用。

在设计变换器时,最重要的考虑是换向,换向是一组功率半导体器件从导通状态关断,而另一组器件从关断状态导通。在变速系统中,可以有两种换向,即自然换向(又称线路换向) 和强迫换向。当变换器与交流电网相联,在换向时刻,利用电网电压反向加在导通的半导体器件两端使其关断,这种换向称为自然换向或线路换向。而强迫换向则需要附加换向器件(如电容器等),利用电容器上的充电电荷按极性反向加在半导体器件上强迫其关断。这种强迫换向逆变器常用于独立运行系统,而线路换向逆变器则用于与电网或其他发电设备并联运行的系统。一般说来,采用线路换向的逆变器比较简单、便宜。

开关这些变换器中的半导体器件,通常有两种方式:矩形波方式和脉宽调制(PWM)方式。在矩形波变换器中,开关器件的导通时间为所需频率的半个周期或不到半个周期,由此产生的交流电压波形呈阶梯形而不是正弦形,含有较大的谐波分量,必须滤掉。脉宽调制法是利用高频三角波和基准正弦波的交点来控制半导体器件的开关时刻,如图3-1所示。这种开关方法的优点是得到的输出波形中谐波含量小且处于较高的频率,比较容易滤掉,因而能使谐波的影响降到很小。已成为越来越常见的半导体器件开关控制方法。

图3-1脉宽调制原理

这种由同步发电机和交流/ 直流/ 交流变换器组成的变速恒频发电系统的缺点是电力电子变换器处于系统的主回路,因此容量较大,价格也较贵。

② 磁场调制发电机系统 这种变速恒频发电系统由一台专门设计的高频交流发电机和一套电力电子变换电路组成,图3-2示出磁场调制发电机单相输出系统的原理方框图及各部分的输出电压波形。

发电机本身具有较高的旋转频率r f ,与普通同步电机不同的是,它不用直流电励磁,而是用频率为m f 的低频交流电励磁(m f 即为所要求的输出频率,一般为50 Hz ),当频率m f 远低于频率r f 时,发电机三个相绕组的输出电压波形将是由频率为(r f +m f )和(r f -m f )的两个分量组成的调幅波(图中波形b ),这个调幅波的包络线的频率是m f ,包络线所包含的高频波的频率是r f 。将三个相绕组接到一组并联桥式整流器,得到如图中波形c 所示的、基本频率为m f (带有频率为6r f 的若干纹波)的全波整流正弦脉动波。再通过晶闸管开关电路使这个正弦脉动波的一半反向,得到图中的波形d 。最后经滤波器滤去纹波,即可得到与发电机转速无关、频率为m f 的恒频正弦波输出(波形e )

(a ) (b ) (c ) (d ) (e ) 图3-2 磁场调制发电机单相输出系统方框图及各部分

输出电压波形

与前面的交流/直流/交流系统相比,磁场调制发电机系统的优点是:

第一,由于经桥式整流器后得到的是正弦脉动波,输入晶闸管开关电路后基本上是在波形过零点时开关换向,因而换向简单容易,换向损耗小,系统效率较高。

第二,晶闸管开关电路输出波形中谐波分量很小,且谐波频率很高,很易滤去,可以得到相当好的正弦输出波形。

第三,磁场调制发电机系统的输出频率在原理上与励磁电流频率相同,因而这种变速恒频风力发电机组与电网或柴油发电机组并联运行十分简单可靠。

这种发电机系统的主要缺点与交/直/交系统类似,即电力电子变换装置处在主电路中,因而容量较大。比较适合用于容量从数十千瓦到数百千瓦的中小型风电系统。

③ 双馈发电机系统 此系统在3、4节中会具体介绍。

3双馈感应发电机系统

3.1 感应发电机

感应发电机也称为异步发电机,有鼠笼型和绕线型两种。在恒速恒频系统中,一般采用鼠笼型异步电机。它的定子铁芯和定子绕组的结构与同步发电机相同。转子采用鼠笼型结构,转子铁芯由硅钢片叠成,呈圆筒形,槽中嵌入金属( 铝或铜) 导条,在铁心两端用铝或铜端环将导条短接。转子不

需要外加励磁,没有滑环和电刷,因而其结构简单、坚固,基本上无需维护。

感应电机既可作为电动机运行,也可作为发电机运行。当作电动机运行时,其转速n 总是低于同步转速s n (n s n ),则电磁转矩的方向与旋转方向相反,电机作为发电机运行,其作用是把机械功率转变为电功率。我们把s 称为转差率,则作电动机运行时s >0,而作发电机运行时s <0。

感应发电机的功率输出特性曲线如图3-3 所

示。

图3-3 感应发电机的输出功率特性

由图3-3可以看出,感应发电机的输出功率与转速有关,通常在高于同步转速3%~5% 的转速时达到最大值。超过这个转速,感应发电机将进入不稳定运行区。

感应发电机也可以有两种运行方式,即并网运行和单独运行。在并网运行时,感应发电机一方面向电网输出有功功率,另一方面又必须从电网吸收落后的无功功率。在单独运行时,感应发电机电压的建立需要有一个自励过程。自励的条件,一个是电机本身存在一定的剩磁;另一个是在发电机的定子输出端与负载并联一组适当容量的电容器,使发电机的磁化曲线与电容特性曲线交于正常的运行点,产生所需的额定电压,如图3-4所

示。

图3-4 感应发电机单独运行时的自励磁电路及电压建

立过程

a ) 自励磁电路

b )电压建立过程

图中与磁化曲线不饱和段相切的直线就是临界电容线,它与横座标轴的夹角k β 为

k

k wc I U tg 10

1=

=

β (3-1)

式中k c 为空载时的临界电容。在空载时,要建立正常电压,必使βk c 。也即外接电容必须大于某一临界值。增加电容量, 可使β角减小,使建立的端电压增高。

在负载运行时,一方面由于转差值s 增大,感应发电机的优点维持频率f 不变,必须相应提高转子的速度。另一方面还需要补偿负载所需的感性电流(一般的负载大多是电感性的)以及补偿定子和转子产生漏磁通所需的感性电流。因此,由外接电容器所产生的电容性电流必须比空载时大大增加,也即需要相应地增加其电容值。上述两个要求如果不能满足,则电压、频率将难以稳定,严重时会导致电压的消失,所以必须有自动调节装置,否则负载变化时,很难避免端电压及频率的变化。 3.2 双馈感应发电机

双馈感应发电机是指转子通过双向变频器与电网连接,可实现功率的双向流动。根据风速的变化和发电机转速的变化,调整转子电流频率的变化,实现恒频控制。流过转子电路的功率仅为额定功率的10%~25%,只需要较小容量的变频器,并且可实现有功、无功的灵活控制。

双馈型异步发电机(Doubly-Fed Induction Generator ,简称DFIG) 在结构上类似绕线式异步电机,具有定、转子两套绕组。在控制中,DFIG

子一般由接到电网上的变换器进行交流励磁。由于实际上发电机的定、转子都参与了励磁,“双馈”的含义因此而得。

双馈发电机的结构类似绕线型感应电机,其定子绕组直接接入电网,转子绕组由一台频率、电压可调的低频电源(一般采用交—交循环变流器)供给三相低频励磁电流,图3-5给出这种系统的原理

方框图。

图3-5双馈发电机系统原理框图

当转子绕组通过三相低频电流时,在转子中形成一个低速旋转磁场,这个磁场的旋转速度2n 与转子的机械转速r n 相叠加,使其等于定子的同步转速

1n ,

即12n n n r =±,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速r n 随之而变化。在r n 变化的同时,相应改变转子电流的频率和旋转磁场的速度,以补偿电机转速的变化,保持输出频率恒定不变。

系统中所采用的循环变流器是将一种频率变换成另一种较低频率的电力变换装置,半导体开关器件采用线路换向,为了获得较好的输出电压和电流波形,输出频率一般不超过输入频率的三分之一。由于电力变换装置处在发电机的转子回路(励磁回路),其容量一般不超过发电机额定功率的30%。

这种系统中的发电机可以超同步运行(转子旋转磁场方向与机械旋转方向相反,2n 为负),也可以次同步速运行(转子旋转磁场方向与机械旋转方向相同,2n 为正)。在前一种情况下,除定子向电网馈送电力外,转子也向电网馈送一部分电力;在

后一种情况下,则在定子向电网馈送电力的同时,需要向转子馈入部分电力。

上述系统由于发电机与传统的绕线式感应电机类似,一般具有电刷和滑环,需要一定的维护和检修。目前正在研究一种新型的无刷双馈发电机,它采用双极定子和嵌套耦合的笼型转子。这种电机转子类似鼠笼型转子,定子类似单绕组双速感应电机的定子,有6个出线端,其中3个直接与三相电网相联,其余3个则通过电力变换装置与电网相连。前3个端子输出的电力,其频率与电网频率一样,后3个端子输入或输出的电力其频率相当于转差频率,必须通过电力变换装置(交/ 交循环变流器)变换成与电网相同的频率和电压后再联入电网。这种发电机系统除具有普通双馈发电机系统的优点外,还有一个很大的优点就是电机结构简单可靠,由于没有电刷和滑环,基本上不需要维护。 DFIG 兼有异步发电机和同步发电机的特性,如果从发电机转速是否与同步转速一致来定义,则DFIG 应当被称为异步发电机;但DFIG 在性能上又不象异步发电机,相反具有很多同步发电机的特点。例如,异步发电机是通过定子由电网提供励磁,本身无励磁绕组,而DFIG 与同步发电机一样,具有独立的励磁绕组;异步发电机无法改变功率因数,DFIG 与同步发电机一样可调节功率因数。所以DFIG 可称为交流励磁同步发电机,或称为同步感应发电机,又可称为异步化发电机。实际上,它是具有同步发电机特性的交流励磁异步发电机,相对于同步发电机,DFIG 具有很多的优越性。

同步发电机励磁电流的可调量只有幅值,所以一般只能调节无功功率。而DFIG 实行交流励磁,可调量有三个:一是励磁电流幅值:二是励磁电流频率;三是励磁电流相位。由于DFIG 励磁电流的可调量比同步发电机多了两个,控制上更加灵活:改变转子励磁电流频率,DFIG 可以实现变速恒频运行;改变转子励磁电流的相位,使转子电流产生的转子磁场在气隙空间上有一个位移,改变了发电机电势相量与电网电压相量的相对位置,调节了发电机的功率角,所以交流励磁不仅可调节无功功率,也可调节有功功率。当发电机吸收无功功率时,往往由于功率角变大使运行稳定度降低。通过调节交流励磁的相位,可减小发电机的功率角,使机组的运行稳定性提高,可更多地吸收无功功率,改善目前由于晚间负荷下降、电网电压过高的不利局面。由于

DFIG可以调节励磁电流的相位,达到改变功率角使

发电机稳定运行的目的,所以可通过交流励磁使发电机吸收更多无功功率,参与电网的无功功率调节,解决电网电压升高的弊病,从而提高电网运行效率、电能质量与稳定性。

双馈发电机系统由于电力电子变换装置容量较小,很适合用于大型变速恒频风电系统。

4 3MW双馈风力发电系统的仿真分析

4.1 3MW双馈感应发电机系统仿真模型

采用了Simulink/SimPowerSystems中的Doubly- Fed Induction Generator模块对3MW双馈感应发电机系统进行仿真分析。此模块中所用的双馈发电机组模块如图4-1所示,而该模块的参数设置对话框见图4-2和图4-3,通过这两个对话框可对机组的风轮机、发电机、变流装置和控制装置进行设定。

图4-1 双馈发电机组模块

图中wind输入端要求接到风速模型的输出端,A、B、C端是风力发电机组的电压电流输出端,用于和电网连接。通过m端可以测量发电机组内部的诸多参数,如机械转矩和电磁转矩,发电机转速,发电机电压和电流(定子和转子)以及输出的有功和无功功率等,具体可参阅帮助文件。Trip端用来控制发电机组的控制系统是否投入,输入1则不投入,输入0控制系统投入。

MATLAB仿真模型是经过对Simulink/SimPowerSystems中已有模型的数据进行重新选定和修改之后得到的,其仿真模型如图4-4所示,并且模型中选用的一些数据如下所示。

图4-2 双馈风力发电机组模块的风轮机参数设置对话

图4-3 风力发电机组的发电机参数设置对话框本论文采用了国电联合动力1.5MW双馈风力发电机组的参数。

1、发电机参数如下:

额定容量 1.5MW

额定电压 690V

额定功率因数 0.9

极对数 2对

发电机额定转速 1750r/min

2、风轮机参数为:

额定功率1500kW

叶轮直径 77.36m 切入风速 4m/s 额定风速 14m/s 切出风速 25m/s

叶轮转速 9.7—19.5 r/min 额定转速 17.4 r/min 最优叶尖速比 8.5 扫风面积 4700.3 m 2

传动比 100.75

变流器直流母线电压 1200V

图4-4仿真模型(一)

其示波器接线如下:

图4-5示波器接线

4.2 3MW 双馈感应发电机系统仿真分析(一)

如图4-4所示,仿真模型(一)中的风速采用的是渐变风模型,运行之后通过风力发电机的m 输出端监测到各个电气和机械量的变化如图4-6所示,且其分析如下。

风力发电机并入电网并运行在额定风速14m/S 以下的区域时,风力发电机获得能量并转换成电能输送到电网。根据机组转速,这一阶段又可分为两个区域:变速运行区和恒速运行区。当机组转速小于最大允许转速时,风力发电机组运行在变速运行区。为了最大限度地获取能量,在这个区域里实行最大风能追踪控制,机组转速随风速变化相应的进行调节,确保风力机的风能利用系数Cp 始终保持为最大值Cpmax 。当机组转速超过最大允许转速时进入恒转速区。在这个区域内,为了保护机组不受损坏,不再进行最大风能追踪,而是将机组转速限制到最大允许转速上。恒转速区的转速控制任务一

般是由风力机控制子系统通过变浆距控制来实现。

图4-6 仿真模型(一)中m 输出端监测到各个电气和

机械量的变化

风力发电机并入电网并运行在额定风速14m/S 以下的区域时,风力发电机获得能量并转换成电能输送到电网。根据机组转速,这一阶段又可分为两个区域:变速运行区和恒速运行区。当机组转速小于最大允许转速时,风力发电机组运行在变速运行

区。为了最大限度地获取能量,在这个区域里实行最大风能追踪控制,机组转速随风速变化相应的进行调节,确保风力机的风能利用系数Cp始终保持为最大值Cpmax。当机组转速超过最大允许转速时进入恒转速区。在这个区域内,为了保护机组不受损坏,不再进行最大风能追踪,而是将机组转速限制到最大允许转速上。恒转速区的转速控制任务一般是由风力机控制子系统通过变浆距控制来实现。

如图4-6可知,当t<19s时,风力发电机组运行在变速运行区,机组转速随风速的增大而增大,同时其发出的有功功率随之增大;当t>19s时,机组进入恒转速区,此时,风力机控制子系统改变了其桨距角,使机组转速保持在最大允许转速1.21pu, 这时发电机发出的有功功率为最大,并且恒定在3Mw这一值。此外,图中所示,当风速上升到额定风速时,功率没有同步达到最大值,而在稍后达到了最大,这是由于风轮机具有巨大的惯性会产生滞后的效果。

4.3 双馈感应发电机系统仿真分析(二)

仿真模型(二)与仿真模型(一)的不同之处在于仿真模型(二)的风速采用的是阵风模型,其模型如图4-7

所示。

图4-7仿真模型(二)

图中所示模型运行之后通过风力发电机的m输出端监测到各个电气和机械量的变化如图4-8所示,并且相关分析如下。

如图所示,机组发出的有功功率的变化过程为:在t<5s时,风速稳定为8m/s,此时,机组输出的有功、无功均保持不变;当t=5s时,风速突变为14m/s,从此时一直到17s,机组输出的有功功率开始随风速的变化而进行调节,即不断增大,一直到17s,发电机转速达到了1.21pu,这时发电机发出最大功率,接下来风速继续维持在高于额定风速的情况下,控制系统会改变桨距角来调节功率使输出功率维持在最大值,所以,如图中所示,桨距角也在17秒时开始改变,观察图中的有功功率曲线,在此之后的时间内,功率始终维持为最大值不变。

图4-8仿真模型(二)m输出端监测到各个电气和机械

量的变化

如图所示,机组发出的有功功率的变化过程为:在t<5s时,风速稳定为8m/s,此时,机组输出的有功、无功均保持不变;当t=5s时,风速突变为14m/s,从此时一直到17s,机组输出的有功功率开始随风速的变化而进行调节,即不断增大,一直到17s,发电机转速达到了1.21pu,这时发电机发出最大功率,接下来风速继续维持在高于额定风速的情况下,控制系统会改变桨距角来调节功率使输出功率维持在最大值,所以,如图中所示,桨距角也在17秒时开始改变,观察图中的有功功率曲线,在此

之后的时间内,功率始终维持为最大值不变。 4.4 双馈感应发电机系统仿真分析(三)

与以上两个分析不同,此模型中采用的风速模型如图4-9所示,而仿真分析(三)的模型如图4-10

所示。

图4-9

仿真分析(三)的风速模型

图4-10仿真模型(三)

图中所示模型运行之后通过风力发电机的m 输出端监测到各个电气和机械量的变化如图4-11所

示,并且相关分析如下。

图4-11仿真模型(三)m 输出端监测到各个电气和机

械量的变化

由图4-11可以看出,有功功率的输出波峰以

及发电机转速与风速变化趋势相同,但明显滞后于风速的变化,桨距角也没有变化,这是由于风轮机及传动机构具有很大的惯性所致。当风速虽然在短时内升到很高时,从图Speed 曲线可知,发电机转速增加,但没有达到同步额定转速,这时桨距角没有达到变桨条件而没有变化,如图中pitch angle 曲线可知。

观察图会发现,在风速迅速下降后,转速是以较缓的速率下降的,由于双馈发电机的运行范围宽,允许在较高的转差下运行,短时多余的能量会以动能的形式储存起来,待到风速下降后,由控制系统慢慢调节电磁转矩,将存储的动能释放出来转化为有功输出,这也是当风速下降后图中有功功率下降速率低于上升速率的原因。这就是变速恒频风力发电系统的优越性之一,我们所说的增加了风轮

机与传动系统之间的柔性,就是因为具有这样的特性,可以有效的减小因短时风速剧变给机械传动机构带来的硬性冲击,把多余的能量储存起来缓冲机械应力。

5 结论

本次论文介绍了双馈感应发电机的基本知识,在MATLAB/SIMLINK平台下建立了3MW双馈感应发电机系统,基于已有的理论知识,借助所建立的仿真模型对该发电系统中双馈感应发电机进行运行特性分析,得出以下结论:在风速低于额定风速时,通过整流器及逆变器来控制发电机的电磁转矩,实现对风力机的转速控制,通过调节发电机转子转速,尽可能保持最佳叶尖速比以捕获最大风能,同时稳定发电机输出电能的频率,而在此过程中,随着风速的增加,发出的有功功率也在增加;在风速高于额定风速时,通过变浆距系统改变浆叶节距来调节机组的转速,使其保持恒定或在一个允许的范围内变化,从而调节功率使输出功率维持在额定功率。

风力发电领域仍有许多值得研究的问题,风电机最优控制方案、风电机控制器可靠性研究、人性化中文界面监控系统、风机并网静态稳定和动态稳定的研究和仿真计算、大功率IGBT逆变器、风电设备防雷保护系统、与风电场并网有关的电压及无功控制、有功调度及稳定性的研究等问题,都是需要我们今后进一步加以重点研究的内容。

参考文献

[1] 刘万琨,张志英,李银凤,赵萍. 风能与风力发电技

术. 北京:化学工业出版社. 2006年9

月.28-52,166-175

[2] 张叶明.基于双馈感应电机的风力发电系统研究.青岛

大学硕士学位论文.2009年9月.1-5,21-26

[3] 李晶.变速恒频双馈风电机组动态模型及并网控制策略

的研究.华北电力大学博士学位论文.2004年.1-2,15-20

[4] 电力系统的MATLAB/SIMLINK仿真与应用.王晶,翁国

庆,张有兵.西安电子科技大学出版社.2008年.16-90 [5] 倪受元.风力发电讲座第三讲:风力发

电.https://www.wendangku.net/doc/872402535.html,/view/fbd22dd3240c844769ea

eeb2.html

[6] 倪受元.风力发电讲座第六讲:风力发电用的现状和展

望.https://www.wendangku.net/doc/872402535.html,/view/fbd22dd3240c844769e

aeeb2.html

[7]Analysis and Comparison of Dynamic Models for the

Double Fed Induction Generator Wind Turbine . YIN Ming,LI Geng yin,ZHOU Ming,ZHAO Cheng yong.

[8] Doubly-fed electric machine. From Wikipedia, the free

encyclopedia .

[9] Wind Turbines with Doubly-Fed Induction Generator

Systems with Improved Performance due to Grid Requirements. D. Ehlert and H. Wrede, Member, IEEE .

[10]CHINA WIND POWER INFORMATION.2010年.34-44

收稿日期:修回日期:

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力的最方便最有价值的量; /m ρ——空气密度(3 kg); /m

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

风力发电并网方式的

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第7期0引言 当今石化能源的日益匮乏,社会的发展对能源的需求不断增加。 风能作为一种清洁可再生能源越来越受到世界各国的重视。近年来风 力发电在国内外都得到了突飞猛进的发展。但由于风能的随机性和不 稳定性,在其发展的过程中也出现很多问题,其中风力发电并网难最 为突出。风电并网技术成为风力发电领域研究的重难点问题。如何将 并网瞬时冲击电流降低到最小规范值,进一步保证并网后系统电压稳 定是当今研究的重点方向。本文对并网技术问题进行相关研究,提出 并网运行方式并进行分析比较。1风力发电并网运行的分析随着风力发电的快速发展,风电场的并网已成为必然的途径。从风电问世以来,风力发电经历了独立运行方式、恒速恒频运行方式、变速恒频运行方式。当今变速恒频发电系统已成为主流,但风力发电并 网仍是热点的研究话题。 不管是哪一种发电类型,并网总是以保证电力系统稳定性为基本 原则。风力发电相比于火力发电和水力发电,由于其不稳定性需要更 精确的并网控制技术。并网运行时,需满足:(1)电压幅值与电网侧电 压幅值相等;(2)频率与电网侧频率相同;(3)电压相角差为零;(4)电压 波形及相位与电网侧的电压波形及相位保持一致。这样保证了并网时 冲击电流理想值为零。否则,若并网产生很大的瞬时冲击电流,不仅损 坏电力设备,更严重的是使电力系统发生震荡,威胁到电力系统稳定 性。 从大的方向看,风力发电系统并网分为恒速恒频风力发电机并网 和变速恒频风力发电机并网。恒速恒频并网运行方式为风力发电机的 转子转速不受风速的影响,始终保持与电网频率相同的转速运行。虽 然其结构简单、运行可靠,但是对风能的利用率不高,机械硬度高,而 且发电机输出的频率完全取决与转速,如控制不好,并网时会发生震 荡、失步,产生很大的冲击电流。所以恒速恒频系统已逐渐退出人们的 视线。随着电力电子技术的日益成熟,以变速恒频并网运行方式取而 代之。变速恒频风力发电并网系统是发电机转速随着风速的变化而变 化,系统通过电力电子变化装置,使机组输出的电能频率控制在与电 网频率一致。变速恒频并网方式减少了机组的机械应力,充分的利用 风能源,使发电效率大大提高;并网时通过精确合理地控制电力电子 变换器,使得并网更加稳定,降低系统因冲击电流过大使电网电压降 低从而破坏电力系统稳定性。2变速恒频双馈发电机并网 目前,并网型的变速恒频风力发电机组主要采用双馈发电机和永 磁同步发电机。 变速恒频双馈发电机的并网原理图如图1所示。 双馈发电机并网的工作原理为当风速变化时,发电机的转子励磁回路由双PWM 变频器控制转子励磁电流的频率,转子转速与励磁电流频率合成定子电流频率。调节励磁电流频率,使定子电流频率始终与电网频率保持一致。电机转动频率、定、转子绕组电流频率的关系式为:f 1=pn 60±f 2式中:f 1为定子电流频率,f 2为转子电流频率,n 为转子转速。双馈发电机既可以同步运行也可以异步运行,通过精确地控制双PWM 变频器,可以实行“柔性并网”,大大提高并网的成功率。一般双馈发电机 并网的结构相对复杂,大多采用多级齿轮箱双馈异步风力发电机组。 当自然风速使得风力发电机转子转速频率与电网频率相同时,风力发 电机同步运行;当风力发电机的转速小于或者大于电网频率时,风力 发电机异步运行,通过双向变频器实现发电机组转子与电网的功率交 换,保证输出频率与电网侧保持一致。在异步运行程中,不仅有励磁损 耗,而且还要从电网吸收无功功率,所以需在并网侧安装无功补偿器。图1变速恒频双馈发电机的并网原理图3直驱式永磁同步发电机并网变速恒频永磁同步发电机并网原理图如图2所示。图2变速恒频永磁同步发电机并网原理图 直驱式永磁同步发电机并网的原理为当风速改变时,发电机输出不同频率的交流电,经过不可控整流电路将交流电变成直流电,再经过DC/DC 直流斩波让直流电压幅值保持压稳定。以逆变器为核心,采用IGBT 作为开关器件构成全桥逆变电路,将整流器输出的直流电逆变成与电网侧电压相角、幅值、相位、频率相同的交流电。逆变有时会产生一定的电压谐波污染和冲击电流,这时必须有效(下转第92页)风力发电并网方式的研究 张伟亮潘敏君韦大耸陈富玲 (贺州学院机械与电子工程学院,广西贺州542800) 【摘要】通过分析风力发电系统并网方式的原理,针对风力发电并网难的问题,提出利用直驱式永磁同步发电机实现风力发电并网。直驱式永磁同步发电机并网比传统的恒速恒频并网方式更加稳定。 【关键词】风力发电;并网运行;恒速恒频;变速恒频 Study on wind Power Grid-connected Mode ZHANG Wei-liang PAN Min-jun WEI Da-song CHEN Fu-ling (School of Mechanical and Electronics Engineering,Hezhou Univ.Hezhou Guangxi,542800,China ) 【Abstract 】By analyzing the theory of grid-connected wind farms,the paper presents using direct-driven permannet magnet synchronous generator to achieve grid-connerted wind power according to the problem in wind power grid-connected difficult.Direct drive permanent magnet synchronous generator than traditional way of constant speed constant frequency grid interconnection is more stable. 【Key words 】Wind power generation ;Parallel operation ;Constant speed constant frequency ;Variable speed constant frequency ※项目基金:此文为贺州学院大学生创新项目研究成果,项目编号2013DXSCX08。 作者简介:张伟亮(1982—),男,硕士,讲师,从事电气工程及其自动化的教学及高压设备的生产研发。 潘敏君,男,贺州学院电气工程及其自动化专业在读学生 。 ○本刊重稿○4

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

基于Matlab的双馈异步风力发电机风电场仿真

基于Matlab的双馈异步风力发电机风电场仿真 仿真对象是一个由6台1.5MW双馈异步风力发电机组组成的9MW的风电场。这个风电场连接着一个25kv的分布式发电系统,它的电能通过35km长,电压等级为25kv的馈线(B25)输入到120kv的电网上。 一、仿真过程及结果分析 1、风速变化,风机的反映。 初始风速设定为8m/s,时间到t=4s,风速增长到14m/s。开始仿真。 图1 风速突然变化时输出的曲线(voltage regulation 模式)

有功功率随转速平稳的增长,用了18秒的时间到达额定9MW。这段时间内风机转速从0.8pu增长到1.21pu。桨距角从0度增长到0.76度,用来限制机械功率。通过调控无功功率来维持电压在1pu。额定功率时,风机吸收了0.68Mvar,从而控制电压不变。 图2 风速突然变化时输出曲线(Var regulation 模式)无功控制模式下,保持功率因数不变,从电网吸收一部分无功来并网(达到同步转速),因吸收无功,电压上升。 2、110kv系统电压突然下降的仿真。 风速不变8m/s。设置5s发生一次0.15pu的电压下降(在Time variation of 中选择Amplitude)。确保风机为无功控制。

图3 110kv电压突然下降(Var Regulation 模式) 用电设备的电流降至0,电动机转速逐渐下降。用电设备被分离出电网。 图4 110kv电压突然下降(voltage regulation模式) 采用Voltage regulation控制模式,用电设备没有被分出电网。因为电压下降时,风电场发出无功功率。

双馈风力发电机并网控制

双馈风力发电机并网控制 摘要:风力是重要的清洁能源,风力所具备的可再生性以及无污染性使得其受到广泛关注和应用,风力发电也是目前我国重点要求的电力能源技术。而并网控制是将风力发电机稳定地接入到电网系统中的技术。本文主要研究双馈风力发电机并网控制的方法,以及在实际应用中的难点,以及并网控制过程中存在的其他影响控制,并相应地提出优化建议。 关键词:双馈风力发电机;并网控制;方法;难点 一、双馈风力发电机概述 当前风力发电机大体可以分为同步电机好异步电机两类,实际应用中可以细分为鼠笼异步发电机、双馈发电机、同步发电机以及永磁同步发电机。双馈风力发电机是一种绕线式感应发电机,属于异步发电机。由于双馈异步电动机的定子绕组直接同电网相连接,转子绕组通过变流器和电网连接,并由变频器实现对饶子绕组电源电压、相位以及频率和幅值的自动调控,因而在运行中,机组可以在不同的转速下维持恒频发电。然而,虽然双馈发电机具备机械承受应力小、运行噪音小、变频器容量小以及启动效率高的特点,但双馈发电机的电气损耗较大,还需配备齿轮箱,造价较为昂贵。不过相比同步风力发电机,双馈风力发电机能够更好的实现电能稳定输出,实用性较强。 二、双馈发电机的并网控制方法 双馈发电机的并网控制方法和异步发电机相似,主要原理是通过滑差率来调节负荷,发电机的转速和输出功率近似成线性关系,所以只要保持发电机的转速和同步转速相接近就能实现并网。目前,常用的并网方法主要有四种,直接并网控制法、准同期并网法、降压并网控制法以及电子元件软并网控制法。 2.1 直接并网控制法 直接并网控制法是指将风力发电机的输出交流电直接并入到风力电网中,在电机转速和同步转速接近时,由测速系统给出并网信号,再通过自动空气开关实现并网,主要适用于风力发电机和电网相序相同的情况,即电网电容量足够大的同时,风力发电机的容量保持在百千瓦以下。 优点:直接并网控制方法能够保证风力速率变动情况下风力发电机也可以维持横频输出,同时能够单独地对有功功率和无功功率进行解耦控制,便于对风力电动机运行中负载消耗的无功功率进行补偿,稳定其他机组的无功负荷,确保风力发电系统电压的稳定。 缺点:直接并网控制方法要求双馈发电机的相序和发电电网的相序必须保持一致,这就对风力发电机的规格提出了严格的要求。 2.2 准同期并网控制法 异步发电机下的准同期并网控制方法和同步发电机下的准同步并网控制方法基本相同,都是在发电机转速接近同步转速的时候,利用电容励磁先来确定一个稳定的电压,再根据系统电压、频率、相位等来调节发电机的电压和频率,确保二者同步。当二者同步后,就可以将风力发电机接入电网。 优点:准同期并网控制方法对风力系统的电压没有太大的影响,不会出现电压下降的问题,常用于发电机容量和电网容量相似或相差不多的机组。 缺点:按照传统的整步方式,想要实现从整步到准同步的转变,不但需要高精度的整步设备、同期设备以及调速设备,还需要耗费较长的时间,加大了机组构造成本。而且,准同期并网控制方法也需要对电流进行精准控制,确保合闸瞬

双馈风力发电机并网运行控制及仿真

双馈风力发电机并网运行控制及仿真 结合双馈异步风力发电机的运行特点,将矢量控制技术应用到双馈异步风力发电机并网控制中。构建了风力发电机空载并网与最大追踪控制策略,设计了基于LabVIEW、PXI8840及Compact RIO9035的硬件在环仿真系统。通过PXI能够观测到并网前、后定、转子电流、电压、功率等变化情况,为新型风力发电并网控制策略的研究提供了一个公共平台。 标签:双馈;矢量控制;最大风能追踪;LabVIEW;PXI Abstract:According to the operational characteristics of doubly-fed asynchronous wind turbine,vector control technology is applied to grid-connected control of doubly-fed asynchronous wind turbine. The no-load grid-connected and maximum tracking control strategy of wind turbine is constructed,and the hardware in loop simulation system based on LabVIEW,PXI8840 and Compact RIO9035 is designed. The changes of current,voltage,power and so on before and after the grid connection can be observed by PXI,which provides a common platform for the research on the grid-connected control strategy of new wind power. Keywords:doubly-fed;vector control;maximum wind energy tracking;LabVIEW;PXI 1 概述 風能作为一种可再生能源,具有高效,清洁等特点。风力发电技术在世界范围内也得到迅速发展[1,2]。 双馈异步风力发电机(Doubly-Fed Induction Generator,DFIG)机组,通过控制发电机励磁,实现在发电机转速可调情况下的并网运行。采用矢量控制技术调节励磁,可以有效的调节发电机输出功率,在实现最大风能利用效率的同时,还可以调节电网的功率因数,提高电网的稳定性等[3-6]。 本文分析了DFIG机组运行特性,将定子磁链定向的矢量控制技术运用到机组控制策略中,制定控制策略。建立了基于LabVIEW的仿真系统,验证采用矢量控制技术对DFIG并网控制和最大风能追踪控制的精准性。 2 发电机的运行控制 2.1 发电机空载数学模型 为了准确调节DFIG并网前、后的端电压,本文采用磁场定向的矢量控制。为此,首先建立发电机内磁场定向旋转d-q坐标系的数学模型。

风力发电系统建模与仿真

风力发电系统建模与仿真

风力发电系统建模与仿真 摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,主要完成了以下工作:(1)基于风资源特点,建立了以风频、风速模型为基础的风力发电理论基 础; (2)运用叶素理论,建立了变桨距风力机机理模型; (3)分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,为风力发电软件仿真奠定了基础; (4)搭建了一套基于PSCAD/EMTDC仿真软件的风力发电系统控制模型以及 完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 (1)风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。 风速是指某一高度连续10min所测得各瞬时风速的平均值。一般以草地上空10m高处的10min内风速的平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。 风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 (2)风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风能密度,表示如下: 3 ω= (1-1) 5.0vρ 式中, ω——风能密度(2 W),是描述一个地方风能潜力 /m 的最方便最有价值的量;

双馈异步风力发电机(讲)

1.引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包 括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW 的永磁直驱发电机机舱会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPMF运行,目前流行的是双馈异步发电机,主要有1.25MV Y 1.5MV y 2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能, 发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱

变速,带动电机高速旋转,同时转子接变频器,通过变频器PW M控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也能发出功率出来。有个大致感觉是 1.5MW 发电机的定子发电量大概1200KV,转子大约300KV,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3.双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,风机运行环境非常恶劣,需要气温-30?55度之间正常运行,希望电机尺寸尽量小,风机对发电机重量有严格要求,部分厂家对转子转动惯量也有要求。发电机需要高速运行,但振速要小,通常要小于 2.8mm/s。此外对于水冷的电机入水温度较高,需要考虑维修和维护问题!比如轴承自动加油等!还有就是,整个发电机是倾斜运行的,大概4?5度的倾斜角度,这个在结构设计时候需要考虑??大家看到发电机的轴承就知道了。 电气设计难点:风机需要效率97%以上,由于转子绕组接变频 器,接变频器就会引发谐波电流,会引起铜耗,铁耗等!此外 定子转子承受很大冲击电压,提高绕组温升问题是优先考虑, 转子电流非常大,上千安培,滑环设计也是难点!电机会有轴 电流,需要考虑绝缘问题!同时高空运行需要防雷处理!转子 绕组线规非常大,成型困难!尽量控制转子输出功率尽量小于 30%,以缩小变频器的功率。

750kw风力发电机叶片建模与仿真分析解析

毕业论文题目:750KW风力机叶片建模与模态仿真分析 学院: 专业:机械设计制造及其自动化 班级:学号: 学生姓名: 导师姓名: 完成日期: 2014年6月20日

诚信声明 本人声明: 1、本人所呈交的毕业设计(论文)是在老师指导下进行的研究工作及取得的研究成果; 2、据查证,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经公开发表过的研究成果,也不包含为获得其他教育机构的学位而使用过的材料; 3、我承诺,本人提交的毕业设计(论文)中的所有内容均真实、可信。 作者签名:日期:年月日

毕业设计(论文)任务书 题目: 750KW风力机叶片建模与模态仿真分析 姓名学院专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 1、查阅20篇左右文献资料,撰写开题报告和文献综述。 2、确定叶片主要翼形构成、外形参数及载荷。 3、应用三维建模软件建立叶片三维实体模型。 4、应用仿真软件对复合材料叶片进行模态仿真分析。 5、改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。 6、按照要求撰写毕业论文和打印图纸。 二、进度安排及完成时间: 2014.2.20-3.5:课题调研(含毕业实习及撰写毕业实习报告)、查阅文献资料。2014.3.6-3.28:撰写文献综述和开题报告。 2014.3.29-4.8:确定叶片主要翼形构成、外形参数及载荷。 2014.4.9-4.19:应用三维建模软件建立叶片三维实体模型。 2014.4.20-4.27:应用仿真软件对复合材料叶片进行模态仿真分析。 2014.4.28-5.5:改变叶片转速,讨论复合材料叶片动力刚化效应对振动的影响。2014.5.6-5.26:撰写毕业论文、完成设计。 2014.5.27-6.10:整理毕业设计资料,毕业答辩。

风力发电及风电并网技术现状与展望

风力发电及风电并网技术现状与展望 发表时间:2017-11-24T11:26:50.037Z 来源:《防护工程》2017年第17期作者:刘文华[导读] 如二滩送出安全稳定控制、华中—西北直流背靠背联网安全稳定控制、三峡发输电系统安全稳定控制。 陕西黄河能源有限责任公司陕西 710061 摘要:近年来,越来越多的风电场开始接入更高电压等级电网。风电的大规模接入对电网的运行带来诸多方面的影响,如电网安全稳定、风电送出、调频调峰、电能质量、备用安排、运行单位众多协调困难等问题,不仅影响到电网的安全运行,也影响到电网接纳风电的能力。通过对风电进行有效的控制,可以在现有的网架结构、电源结构、负荷特性、风电预测水平、风机制造技术水平等条件下,提高电网接纳风电的 能力,保证电网的安全稳定运行。 关键词:风电并网;控制技术;现状 1电网风电控制现状 1.1电网安全稳定控制现状安全稳定控制是提高电网输送能力,保证电网安全稳定运行的重要手段,目前在电网中已有大量的应用。如二滩送出安全稳定控制、华中—西北直流背靠背联网安全稳定控制、三峡发输电系统安全稳定控制、江苏苏北安全稳定控制等。但国内电网用于提高风电送出能力的电网安全稳定控制系统还处于探索阶段,如甘肃嘉酒电网区域稳定控制系统、承德地区风电电网安全稳定控制系统等。其实现方法都是在电网故障情况下,通过采取紧急控制措施来提高正常情况下的风电送出能力。风电场往往远离负荷中心,而这些地区的网架结构一般比较薄弱,电网送出能力有限。如甘肃酒泉千万千瓦级风电基地目前已实现风电并网5600MW左右,到2015年风电装机容量将大于12000MW,但刚投产的750kV送出通道,以及原有的330kV送出通道,由于电网安全稳定问题,送出能力不能满足需求。因此,考虑风电特性的电网安全稳定控制系统还有待进一步研究和探索。 1.2风电有功控制现状 风电发展初期,从电网角度,一般将其作为负的负荷考虑,通过采取一些手段,提高电网接纳风电能力,不考虑控制风电。随着风电的快速发展,通过其他手段,如改善负荷特性、优化开机方式、部署安全稳定控制提高风电送出能力等,提高电网接纳能力已经不能满足风电全部并网的需求,需要控制风电。 电网公司在控制风电有功时,初期采取调度员人工控制的模式,经过一段时间的运行,发现人工控制存在如下问题:a)若调度端调节不及时,将威胁电网安全。b)场站端调节速率慢,电网需要留较大的裕度保证安全。c)在电网最大允许及风电出力一定的情况下,由于风电出力的随机性、间歇性,人工控制难以根据各风电场来风情况实时优化控制,易造成分配不公,且难以保证风电出力的最大化。d)风电运行单位众多,调度员压力较大。e)各风电场看不到其他风电场的计划及出力,不利于网源和谐。因此,风电有功控制需考虑电网的约束条件,实时计算电网最大可接纳风电能力,根据接纳能力的变化以及各风电场当前出力和风电场提出的加出力申请、风电功率预测,利用各风电场风资源的时空差异优化计算各风电场的计划,并下发至各风电场,各风电场有功功率控制装置根据该计划值进行控制。 1.3风电无功控制现状 目前国内实际投产应用的无功电压控制技术和装置,主要是通过对常规电厂、变电站的调节来实现无功电压控制的,并未将风电场纳入进来进行调节控制。风电的随机性和间歇性易造成电网电压波动大,无功补偿设备投切频繁,传统电压调节控制方式已不再适用。目前国内电网对风电场接入的技术管理规范均是针对单个风电场并网点的技术指标进行考核的。一般要求首先充分利用风电机组的无功容量及其调节能力,仅靠风电机组的无功容量不能满足系统电压调节需要的,需在风电场集中加装无功补偿装置。实际运行的风电场都是根据自身并网点的考核指标进行无功电压控制来满足电网要求2风电场的控制现状 2.1风电场有功功率控制 由于风机协议的开放性差,目前风电场的有功功率控制功能模块一般部署在风机厂商提供的风电场集控系统上,对于由多种类型风机组成的风电场,其集控系统一般有多个。由于风电场的集控系统厂商众多,技术水平不一,而且风电场集控主站与风机自身的控制单元经常会出现通信异常,另外风电场的集控系统与常规电厂不同,其可靠性一般较低。即使在集控系统出现问题时,风电机组依然能够并网发电,因此单独依靠集控系统来调节风电场的有功功率,其可靠性不高,手段单一,难以满足电网控制需求。特别是紧急控制情况下,需要引入后备控制措施,所以风电场的有功控制一般采取如图1所示的模式。 图1 2.2风电场的无功电压控制 目前,风电场主要由双馈和直驱风电机组组成。从机组能力来看,双馈和直驱风电机组本身具备一定连续可调的无功功率范围。但由于国内风电机组一般采用恒功率因数控制模式,不具备机端电压调节功能,并且机组功率因数只能在停机状态下进行设定,不可在线调节,这对于保持系统的电压稳定性是非常不利的。

风力发电系统建模与仿真

《新能源发电及并网技术》专题报告风力发电系统建模与仿真 学院电气工程学院 专业电气工程 姓名xxxxxxx 学号xxxxxxxxxxxx 2013年6月

目录 1 风资源及风力发电的基本原理 (1) 1.1 风资源概述 (1) 1.2 风力发电的基本原理 (2) 1.3 风力发电特点 (3) 2 风能及风力机系统模型的建立 (3) 2.1风频模型 (3) 2.2 风速模型 (4) 2.3 风力机建模与分析 (5) 3 变桨距风力发电机组控制系统模型 (10) 3.1 变桨距风力发电机组的运行状态 (10) 3.2 变桨距控制系统 (11) 4风力发电控制系统的模拟仿真分析 (13) 4.1 无穷大系统模型的建立 (13) 4.2 风力发电机系统并网模拟仿真分析 (13) 5 结论 (17) 参考文献 (18)

摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,建立了以风频、风速模型为基础的风力发电理论基础,运用叶素理论,建立了变桨距风力机机理模型,然后分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,最后搭建了一套基于PSCAD/EMTDC 仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的。 风力发电起源于20世纪70年代,技术成熟于80年代,自90年代以来风力发电进入了大发展阶段。随着风力发电容量的不断增大,控制方式从基本单一的定桨距失速控制向全桨叶变距控制和变速控制发展。前人在风轮机的空气动力学原理和能量转换原理的基础上,系统分析了定桨距风力发电机组、变桨距风力发电机组、变速风力发电机组的基本控制要求和控制策略,并对并网型风力发电机组的变桨距控制技术进行了一定的研究。变桨距风力发电机组的主要控制是在起动时对风轮转速的控制和并网后对输入功率的控制。通过变距控制可以根据风速来调整桨叶节距角,以满足发电机起动与系统输出功率稳定的双重要求。但由于对运行工况的认识不足,对变桨距控制系统的设计不能满足风力发电机组正常运行的要求,更达不到优化功率曲线和稳定功率输出的要求。 1、风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。

基于pscad的双馈风力发电系统的建模与仿真

风力发电机组监测与控制 课程设计说明书 基于PSCAD 的双馈风力发电 系统的建模与仿真 专业 新能源科学与工程 学生姓名 李坤 班级 能源111 学号 1110604120 指导教师 张兰红 完成日期 2015年 1 月 10 日

摘要 电力是国家的支柱能源和工业经济命脉,经济的飞速发展而导致用电量的急剧增加和国内各大型电厂的建设投产将出现大规模的联合供电系统,这样的供电系统的建立将带来巨大的经济和社会效益,但是,如何保证系统安全、稳定、经济的运行以及保障供电质量是摆在电力科技人员面前的一个重大而迫切的问题。 本论文首先介绍了STATCOM具体的工作原理,对STATCOM的电路结构及其无功补偿的原理进行了分析。然后,通过数学推导建立了STATCOM在abc坐标系以及dq0坐标系下的数学模型,并叙述了本文所采用的常规矢量控制策略的具体控制方法。 分析了双馈型风电场接入输电系统后的暂态特性以及对电力系统暂态稳定性的影响。基于PSCAD仿真平台建立了风力机模型和双馈型发电机组的动态数学模型,在换流器建模方面,转子侧换流器的矢量控制实现了有功功率和无功功率的解耦控制,网络侧换流器的矢量控制实现了直流母线电压保持恒定以及调节输入系统的无功功率。 关键词:风电场;双馈型发电机;暂态稳定;

目录 目录 (1) 1 引言 (2) 2 PSCAD软件简介 (3) 3 PSCAD样例说明 (4) 3.1 STATCOM功能与工作原理分析 (4) 3.2 STATCOM仿真模型的建立过程 (8) 3.3 STATCOM仿真结果分析 (12) 4.1 双馈风力发电机工作原理与控制方法 (14) 4.1.1定子磁链定向矢量控制 (19) 4.1.2 定子磁链观测 (23) 4.2 双馈风力发电机仿真模型的建立 (24) 4.3 双馈风力发电机仿真结果分析 (29) 5 仿真过程中遇到的问题及解决的方法 (33) 6 结论 (35) 7 参考文献 (36) 附录 (37) 附录1:STATCOM原理图 (37) 附录2:STATCOM仿真电路图 (37) 附录3:双馈风力发电机原理图 (38) 附录4:双馈风力发电机仿真电路图 (38)

基于-matlab的风力发电机组的建模和仿真

实验一 :风力发电机组的建模与仿真 : 学号: 一、实验目标: 1.能够对风力发电机组的系统结构有深入的了解。 2.能熟练的利用MATLAB 软件进行模块的搭建以及仿真。 3.对仿真结果进行研究并找出最优控制策略。 二、实验类容: 对风速模型、风力机模型、传动模型和发电机模型建模,并研究各自控制方法及控制策略;如对风力发电基本系统,包括风速、风轮、传动系统、各种发电机的数学模型进行全面分析,探索风力发电系统各个部风最通用的模型、包括了可供电网分析的各系统的简单数学模型,对各个数学模型,应用 MATLAB 软件进行了仿真。 三、实验原理: 风力发电系统的模型主要包括风速模型、传动系统模型、发电机模型和变桨距模型,下文将从以上几方面进行研究。 1、风速的设计 自然风是风力发电系统能量的来源,其在流动过程中,速度和方向是不断变化的,具有很强的随机性和突变性。本文不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速b V 、阵风风速 g V 、渐变风速 r V 和噪声风速 n V 。 即模拟风速的模型为: V=b V +g V +r V +n V (1-1) (1). 基本风b V =8m/s 基本风仿真模块 (2)阵风风速 ? ?? ??=0 cos v g V g g g g g g T t t T t t t t t +>+<<<1111 (1-2) 式中: ??? ?????--=)(2cos 121max cos g g g T t T t G v π (1-3) t 为时间,单位 s ;T 为阵风的周期,单位 s ;cos v ,g V 为阵风风速,单位m /s ;g t 1为阵风开始时间,单位 s ;max G 为阵风的最大值,单位 m/s 。

双馈风力发电机工作原理

双馈异步风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量,通过改变励磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为 p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 n1称为同步转速,它与电网频率 f1 及电机的极对数 p的关系如下:

P f n 1 160= 同样在转子三相对称绕组上通入频率为f 2 的三相对称电流,所 产生的旋转磁场相对于转子本身的旋转速度为: P f n 2260= 由上式可知,改变频率 f 2,即可改变 n 2,而且若改变通入转子三 相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设n 1 为对应于电网频率为50Hz 时双馈发电机的同步转速,而n 为电机转子本身的旋转速度,则只要维持n ±n2=n1=常数,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为f 1 不变。 n ±n2=n1=常数 双馈电机的转差率 11n n n S -= ,则双馈电机转子三相绕组内通入的电流频率应为: 11 11122606060sf n n n Pn n n P Pn f =-=-==)( 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即f 1S )的电流,则在双馈电机 的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态: (1) 亚同步运行状态。在此种状态下n

风电并网技术标准(word版)

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

相关文档
相关文档 最新文档