文档库 最新最全的文档下载
当前位置:文档库 › 岩石三轴强度实验细则

岩石三轴强度实验细则

岩石三轴强度实验细则
岩石三轴强度实验细则

试验五岩石三轴剪切强度试验

(一)目的与意义

测定在有限侧压条件下,岩石根据强度及变形特征,并借助三轴实验,结合抗拉,抗压实验结果,确定岩石的极限应力圆包络线(强度包络线)。

(二)定义是指岩石在三向应力作用下,抵抗破坏的能力。

岩石三轴试验是将岩石样品放在三向应力状态下的压力室内,测其强度和变形,通过试验可确定岩石的强度包络线,并计算出内聚力c 和内摩擦系数。

(三)基本原理

岩石室内三轴实验是在三向应力状态下测定和研究岩石试件强度及变形特征的一种室内实验。本实验是在13δδδ<=条件下进行的,即为常规三轴实验。

(一)设备与材料

1. 实验设备:(1)岩石三轴应力实验机;(2)压力室;(3)油泵;

(4)岩石钻样机;(5)岩石切样机;(6)岩石磨平机

2. 实验材料:(1)液压油;(2)游标卡尺;(3)乳胶膜;(4)三角尺;

(5)量角器;(6)活扳子;(7)螺丝刀;(8)记号笔;

(9)钳子;(10)记录纸;(11)标准岩石样品50×100mm ;

(12)胶布;(13)电笔。

三轴试验:1、真三轴:1σ>2σ>3σ;

2、假三轴(常规三轴):1σ>2σ=3σ,等围压。

岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必需有保持侧压力稳定的稳压装置。

(二)试验步骤

岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必须有保持侧压力稳定的稳压装置。

1.三轴试验样品数量不少于5块,不同围压1块;

加工精度,测量试件尺寸:

1)尺寸:(1)圆柱体试件直径Φ48~54mm ,高100mm ;

(2)试件直径与高度,或边长之比为1:2.00~2.50。

2)精度:(1)、两端面的平行度最大误差不超过0.05mm ;

(2)、在试件整个高度上,直径误差不超过0.3mm ;

(3)、端面应垂直试件轴,最大偏差不超过0.25度。

2 .测量好试件尺寸后,用耐油橡胶或乳胶质保护套,能有效防止油液与样品接触。然后放入压力室内,打开排气阀,盖上压帽,拧紧,向压力室注油,直至油液达到预定位置。排静压力室空气,关闭排气阀。(如在三轴条件下测其变形,同试验二变形试验)。

3.侧压力(围压)的选择,应考虑下列条件:

①最小侧压力的选择,应根据工程实际情况,并考虑测向压力装置的精度; ②选定的侧压力需使求出的莫尔包络线能明显的反映出所需要的应力区间; ③适当照顾包络线的各个阶段。

我们选择侧压力5、10、15、20、25MPa 。

4.试验开始,以每秒0.05MPa 的加荷速率施加侧向压力和轴向压力,待到加至预定压力值时,使其保持稳定,然后再以每秒0.8-1.0MPa 的加荷速率施加轴向荷载,直至试件破坏,记录破坏时的最大轴向荷载及侧向压力值。

5.试验结束后,取出试样进行描述,量出最大主应力作用面和破坏面之间的夹角。

(六)资料整理:

目前国内外对于三轴试验成果整理的方法不太统一,国际岩石力学学会和现场标准化委员会在岩石力学试验建议方法中曾对资料整理作出规定。考虑到和国际标准化的一致性,采用国际岩石力学学会的建议方法,用下列方法整理资料:

1、按下式计算不同侧向压力下的轴向应力:A

P =

1σ×10 (5-1)

式中:1σ——不同侧压力下的应力值 MPa ;

P ——破坏时的最大轴向荷载 N 或kN ;

A ——试件横截面积 cm 2。 2、根据轴向应力1σ和侧向应力3σ求出岩石的φ,c 值,以)(2

131σσ-为纵坐

标,以)(2

131σσ+为横坐标。将各测点绘在直角坐标图上,然后用图解法或最小2乘法,确定绘出最佳关系曲线,在最佳关系曲线上选定若干点,以每一个点的)(2131σσ+为圆心,以)(2

131σσ-为半径,在στ-坐标图上绘制应力圆,作应力圆的包络线。据此,确定它们φ,c 值。

(七)问答思考题:

一)三轴实验:

1.三轴剪切强度实验的定义是什么?

2.为什么叫三轴实验?

3.三轴剪切的原理是什么?

4.施加侧向力的加荷速率是多少?

5.轴向荷载的加荷速率是多少?

6.三轴实验每组需要几块试件?

7.三轴实验是否绘制曲线?如何绘绘制?

8.它叫什么曲线?

参考文献:

1.中华人民共和国国家标准GB/T50266-99工程岩体试验方法标准,P18。

中国计划出版社。

2.中华人民共和国国土资源部,地发[1986]760号岩石物理力学性质试验规

程DY-20P142。地质出版社。

3.高等学校教材《工程岩土学》。地质出版社。

4.大理石资源地质工作暂行要求及参考资料,国家建筑材料工业局地质公司。

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

浅析岩石单轴压缩变形试验的影响因素

浅析岩石单轴压缩变形试验的影响因素 在实际工作中,由于对岩石力学性质评论是公路、铁路等工程地质勘察不可或缺的要素,因此采取岩石单轴压缩试验这种最通用的试验方法,研究岩石变形,成为岩石力学问题的重要内容之一,这也对实际工程施工原料选择起到一定的参考作用。这个问题的研究由于操作起來比较方便,理论基础比较明显,所以被广泛应用于工程实践和各种科研工作中。作者试图按照这个理论的思路,简单分析岩石单轴压缩变形试验的影响因素,进而为相关科研和实际工程施工提供一些有参考价值的东西。 标签:岩石;单轴压缩变形;影响 引言 岩石单轴压缩变形试验是检验岩石抗压承载力的一种试验,属于物理试验的范畴。文章中提出的试验模型主要是用花岗岩、泥岩两种规则形状的岩石作为试样,用单轴荷载来进行压力作用,来测定其纵向和横向的变形量,进而形成相应的应力—应变曲线,得出弹性模量及泊松比。作者以花岗岩和泥岩两种岩石为试验样本,采取弹性模量试验对两种岩石的受力变形等情况进行对比和分析,来具体总结影响岩石压缩变形试验的主要因素有哪些。 1 弹性模量的概念及其取值方法 1.1 弹性模量的概念 弹性理论是以应力、应变的线性关系为基础的一种理论,其中应力与应变之比就是弹性模量,从力学角度来看它表示岩石材料的坚硬程度,更具体地来说是指岩石材料在压缩或拉伸时,材料对弹性变形的抵抗能力,这是在本类试验中应用的重要基础理论和概念。 1.2 岩石弹性模量的取值方法 根据国际岩石力学学会实验室和现场试验标准化委员会的《岩石力学试验建议方法》,岩石弹性模量的取值方法主要是割线弹性模量及泊松比的取值方法,以抗压强度50%时的变形量为基础,在纵向应力—应变曲线上的原点与应力相应于极限抗压强度50%处的应力点的连线,其斜率为割线模量,横向应变与纵向应变的比值就是泊松比。一般来说,在实际工作中,大多数岩石这个应力水平下仍处于弹性范围内,很少出现细微裂缝扩展乃至断裂破碎等现象。 2 影响岩石弹性模量的主要因素 2.1 构成岩石的矿物及岩石物理性质的影响

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

岩石常三轴试验中应变测量技术样本

岩石常规三轴试验中位移和应变测量技术 哑咣嘿

1 岩石常规三轴试验 随着现代化经济进程, 基础设施的完善, 工程建筑的兴盛、新型材料的应用、地质灾害频发、环境保护的倡导。三轴试验已经广泛应用于岩土工程、建筑材料、地质灾害研究与应用等领域。在众多的三轴试验当中, 常规三轴压缩试验是最为基础也是应用最为广泛的试验。特别在岩土工程领域, 岩石三轴试验承担着边坡稳定、巷道(隧道)围岩维护等与岩石品质密切相关的科学研究和工程应用的重任。 1.1 常规三轴压缩试验 三轴压缩试验一般分为常规三轴压缩试验( 又称假三轴压缩试验) 和真三轴压缩试验, 其中前者的试样处于等侧向压力的状态下, 而后者的试样处于三个主应力都不相等的应力组合状态下。一般情况下岩石所处环境中水平方向压力相当, 只有竖直方向上存在较大差异, 本文所讨论的是常规三轴压缩试验。 常规三轴试验用圆柱或棱柱试件进行测试, 试件放在试验舱中轴线处, 一般使用油实现对试件侧向压力的施加, 用橡胶套将试件与油隔开。轴向应力由穿过三轴室顶部衬套的活塞经过淬火钢制端面帽盖施加于试件之上。经过贴在试件表面的电阻应变片能够测量局部的轴向应变和环向应变[1]。 根据《工程岩体试验方法标准》[2]中的三轴压缩试验为强度

试验。由不同侧压条件下的试件轴向破坏荷载计算不同侧压条件下的最大主应力, 并根据最大主应力及相应施加的侧向压力, 在坐标图上绘制莫尔应力圆; 应根据莫尔—库仑强度准则确定岩石在三向应力状态下的抗剪强度参数, 应包括摩擦系数和粘聚力c值。 试验机的发展由早期简单的篮子盛有重物加载到杠杆系统加载再到液压加载, 经历了近5 个世纪。20 世纪30 年代到60 年代, 人们在为增加压力机的刚度而努力, 直到出现了液压伺服技术, 并结合提高试验机的刚度才形成了能够绘制材料全应力-应变曲线较为成熟的技术[3]。 1.2 液压三轴试验机

岩体力学实验

岩体力学实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.J216型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnh< 50 mnh< 100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2.加工精度: a平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5- 1 所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b直径偏差:试样两端的直径偏差不得大于0.2mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持一定的湿度,但试样不得接触水面 四?电阻应变片的粘贴 1. 阻值检查:要求电阻丝平直,间距均匀,无黄斑,电 阻值 一般选用120欧姆,测量片和补偿片的电阻差值不超 过 0.5 ◎ 2. 位置确定:纵向、横向电阻应变片粘贴在试样中部, 纵 向、横向应变片排列采用T ”形,尽可能避开裂隙,节理 等弱面。 3. 粘贴工艺:试样表面清洗处理 -涂胶一贴电阻应变片 -固化 处理一焊接导线一防潮处理。 五?实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风 化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方 向测量直径计算平均值。 缝隙 图5-2试样轴向偏差度检测示意图 图5-3电阻应变片粘贴

岩石三轴强度实验细则

试验五岩石三轴剪切强度试验 (一)目的与意义 测定在有限侧压条件下,岩石根据强度及变形特征,并借助三轴实验,结合抗拉,抗压实验结果,确定岩石的极限应力圆包络线(强度包络线)。 (二)定义是指岩石在三向应力作用下,抵抗破坏的能力。 岩石三轴试验是将岩石样品放在三向应力状态下的压力室内,测其强度和变形,通过试验可确定岩石的强度包络线,并计算出内聚力c 和内摩擦系数。 (三)基本原理 岩石室内三轴实验是在三向应力状态下测定和研究岩石试件强度及变形特征的一种室内实验。本实验是在13δδδ<=条件下进行的,即为常规三轴实验。 (一)设备与材料 1. 实验设备:(1)岩石三轴应力实验机;(2)压力室;(3)油泵; (4)岩石钻样机;(5)岩石切样机;(6)岩石磨平机 2. 实验材料:(1)液压油;(2)游标卡尺;(3)乳胶膜;(4)三角尺; (5)量角器;(6)活扳子;(7)螺丝刀;(8)记号笔; (9)钳子;(10)记录纸;(11)标准岩石样品50×100mm ; (12)胶布;(13)电笔。 三轴试验:1、真三轴:1σ>2σ>3σ; 2、假三轴(常规三轴):1σ>2σ=3σ,等围压。 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必需有保持侧压力稳定的稳压装置。 (二)试验步骤 岩石三轴试验机是在普通压力机上装配成符合技术要求的三轴压力室,压力室必须有保持侧压力稳定的稳压装置。 1.三轴试验样品数量不少于5块,不同围压1块; 加工精度,测量试件尺寸: 1)尺寸:(1)圆柱体试件直径Φ48~54mm ,高100mm ;

(2)试件直径与高度,或边长之比为1:2.00~2.50。 2)精度:(1)、两端面的平行度最大误差不超过0.05mm ; (2)、在试件整个高度上,直径误差不超过0.3mm ; (3)、端面应垂直试件轴,最大偏差不超过0.25度。 2 .测量好试件尺寸后,用耐油橡胶或乳胶质保护套,能有效防止油液与样品接触。然后放入压力室内,打开排气阀,盖上压帽,拧紧,向压力室注油,直至油液达到预定位置。排静压力室空气,关闭排气阀。(如在三轴条件下测其变形,同试验二变形试验)。 3.侧压力(围压)的选择,应考虑下列条件: ①最小侧压力的选择,应根据工程实际情况,并考虑测向压力装置的精度; ②选定的侧压力需使求出的莫尔包络线能明显的反映出所需要的应力区间; ③适当照顾包络线的各个阶段。 我们选择侧压力5、10、15、20、25MPa 。 4.试验开始,以每秒0.05MPa 的加荷速率施加侧向压力和轴向压力,待到加至预定压力值时,使其保持稳定,然后再以每秒0.8-1.0MPa 的加荷速率施加轴向荷载,直至试件破坏,记录破坏时的最大轴向荷载及侧向压力值。 5.试验结束后,取出试样进行描述,量出最大主应力作用面和破坏面之间的夹角。 (六)资料整理: 目前国内外对于三轴试验成果整理的方法不太统一,国际岩石力学学会和现场标准化委员会在岩石力学试验建议方法中曾对资料整理作出规定。考虑到和国际标准化的一致性,采用国际岩石力学学会的建议方法,用下列方法整理资料: 1、按下式计算不同侧向压力下的轴向应力:A P = 1σ×10 (5-1) 式中:1σ——不同侧压力下的应力值 MPa ; P ——破坏时的最大轴向荷载 N 或kN ; A ——试件横截面积 cm 2。 2、根据轴向应力1σ和侧向应力3σ求出岩石的φ,c 值,以)(2 131σσ-为纵坐

测定岩石三轴压力条件下的强度与变形参数

测定岩石三轴压力条件下的强度与变形参数 一、基本原理 岩石三轴压力条件下的强度与变形参数主要有:三轴压缩强度、内摩擦角、内聚力以及弹性模量和泊松比。室内三轴压缩实验是将岩石试样放在一密闭容器内,施加三向应力至试件破 坏,在加压过程中同时测定不同荷载下的应变值。绘制( 13 σ-σ)-ε应变关系曲线以及 强度包络线,求的岩石的三轴压缩强度( 1 σ)、内摩擦角(?)、内聚力(c)、以及弹性模量(E)和泊松比(μ)等参数。 根据应力状态的不同,可将三轴压缩实验分为真三轴压缩实验,应力状态为: 1230 σ≠σ≠σ>,及假三轴压缩实验(或称等测压三轴压缩实验)应力状态为 1230 σ>σ=σ>,本实验采用假三轴压缩试验。 二、仪器设备 1、岩石三轴应力试验机,该试验机由如下几部分组成。 (1)三轴应力室(图3——17):由压力室缸体、进油口、传力压杆等组成。要求穿力杆端面光滑平整,平整度应为0.005mm。 (2)轴向加载系统:由主体、电动高压电泵及控制台等组成,要求该系统有足够的吨位,并能连续加荷,另外上、下承压板需互相平行,其中之一配有球面座,轴向荷载约5000kN。(3)侧向加载系统:由控制台、电动油泵、增压器和高压输油管组成,该机最大侧向压力可达150MPa。 如无专门的三轴应力试验机,也可以用普通的压力机,配上符合要求的简易三轴应力室和手摇油泵(侧向加载装置)代替。 2试样制备设备:钻石机、切石机、磨石机等。 3变形量测设备:百分表及表座或电阻应变仪,电阻应变片等。 4烘箱、干燥箱、煮沸设备或真空抽气设备。 5其他:卡尺、乳胶套等。 三、操作步骤 1、试样制备 (1)试样规格:采用直径为5cm、高为10cm或直径为10cm,高为20cm的圆柱体。(2)试样加工精度:试样周边应光滑,沿整个高度上的直径误差不超过0.3mm;试样端面不平整小雨0.2mm,两端面不平整度最大不超过0.05mm;试样端面应垂直于试样轴线,其最大偏差不应超过0.25. (3)试件数量:视实验目的、受力方向和含水状态等要求而定,每种受力方向和含水状态需制备5~7块。 2、试样描述和尺寸量测 描述内容包括:岩石名称、结构构造、矿物成分等岩性特点及试件形态、结构面情况及与加荷方向的关系等。 3、试样处理 (1)按实验要求的含水状态进行含水状态处理,方法同实验4. (2)实验前试件的防油处理,步骤如下:首先,在试件表面涂一层(如聚乙烯醇缩醛胶或类似的胶液);待胶液干后,在试件侧面套上耐油乳胶套,对于试件较多或坚硬裂隙不发育

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下: ) 1(2ν+= E G () 当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表和分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表 土的弹性特性值(实验室值)(Das,1980) 表 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν () 其中 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = () 不排水的泊松比为: ) G 3K (22G 3K u u u +-= ν () 这些值应该和排水常量k 和ν作比较,来估计压缩的效果。重要的是,在FLAC 3D 中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。 固有的强度特性 在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面: s 13N f φσσ=-+ () 其中 )sin 1/()sin 1(N φφφ-+=

实验五岩石单轴压缩实验DOC

实验五岩石单轴压缩实验 一. 实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600 型液压材料试验机; 5.JN-16 型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三. 试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnrK 50 mnrK 100 mm的立方体,由于岩石松软不能制取标准试样时, 可采用非标准试样,需在实验结果加以说明

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于 0.1mm 检测方法如图5-1所示,将 试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动 试样百分表指针的摆动幅度小于10格。 b 直径偏差: 试样两端的直径偏差不得大于 0.2 mm,用游标卡尺检查。 c 轴向偏差: 试样的两端面应垂直于试样轴线。检测方法如图 5-2所示,将试样放 在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持 一定的湿度,但试样不得接触水面。 纵向、横向应变片排列采用“T”形,尽可能避开裂隙,节 理等弱面。 3. 粘贴工艺:试样表面清洗处理一涂胶一贴电阻应变片一固化处理一焊接导线一防潮 四.电阻应变片 1.阻值 检查- 克电 阻丝平 阻值一般选用 120欧姆, 测量片和补偿片的电阻差值不超过 0.5 Q o 1—百分表2-百分表架3-试样4 1—直角尺2-试样 2.位置确定:纵向、横向电阻应变片粘贴在试样中部, 的粘贴 F 直,间距均匀,无黄斑, 3-水平检测台

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

高温高压岩石三轴压力试验平台技术参数 一、功能要求 主要用于高压

高温高压岩石三轴压力试验平台技术参数 一、功能要求 主要用于高压-温度-应力-岩石三轴试验,可广泛用于岩石力学各个行业中涉及到多场耦合问题。主要达到的功能有: 1、自动测量、控制、数据采集、处理、绘制曲线及打印曲线报告(抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量等)。 2、完成常温及高温岩石(含软岩)单轴压缩全过程曲线试验。 3、完成常温及高温岩石(含软岩)三轴压缩全过程曲线试验。 4、完成常温及高温岩石(含软岩)单轴压缩蠕变试验。 5、完成常温及高温岩石(含软岩)三轴压缩蠕变试验。 6、完成常温及高温岩石(含软岩)渗流试验。 二.技术要求 (1)主机技术参数

进关证明,否则不予验收。 (2)计算机与软件技术要求 1)计算机:i5处理器,8G内存、2G独立显卡、2T硬盘存储、23寸以上液晶显示器及各种设备所需软硬件 2)能实现力(应力)、变形(应变)、位移(伸长)三种全闭环控制方式,并且达到三种控制方式可以在试验过程中无冲击平滑转换,完成各种试验方法所要求的全自动程序控制试验。 3)能够在试验前后都可录入试样参数和修改试样参数,可以以单根或批量录入试样参数。 4)实时动态显示试验状态,自动采集、存储数据、绘制多种试验曲线、计算试验结果,求取特征值抗压强度、围压、轴向变形、径向变形、泊松比、弹性模量)。 5)全程的应力、应变控制完全符合国际、国家、行业标准中要求的控制方式。曲线可局部

放大或缩小,同组试验曲线可叠加对比。 6)试验结果可以任意存取,对曲线进行再分析;包括数据重新计算、曲线重现等。 三.售后服务 (1)合同签订后,180天内完成交货、安装、培训工作,不能按承诺时间交货需按相关规定缴纳违约金。 (2)整机原厂免费质保2年以上,有专职的维修和培训团队并提供培训质保方案. (3)服务响应时间8小时以内,从保修至维修完毕不超过72小时。 (4)超出质保期,提供免费电话咨询服务,维修收取成本费。 四.其他要求及注意事项 (1)投标设置最高限价,超出限价的,视为废标。 (2)设备安装运输过程中,引起拆墙、拆门及还原等费用由投标企业全部承担;实验室改造(1次以内)引起的设备拆装、运输、调试等费用由投标企业全部承担,投标企业可以和设备需求单位联系实地考察。 (3)投标企业中标签订合同后,须向学校财务缴纳合同额5%的质量保证金,一年后无质量问题返还。 (4)投标人对所投设备有详尽的配置清单,对主要、核心部件的选材、供应商等信息有详细说明,且技术参数响应表与招标要求一一对应,描述清晰。

实验五岩石单轴压缩实验

实验五岩石单轴压缩实 验 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3.试样数量:每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d,以保持一定的湿度,但试样不得接触水面。 四. 超过 1—百分表 2-百分表架 3-试样 4 2. 部,纵向、横向应变片排列采用“┫”形,尽可能避开裂 隙,节理等弱面。

关于常用的岩土和岩石物理力学参数

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少, 利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

岩石三轴压缩及变形试验打印

辽宁工程技术大学 岩石三轴压缩及变形试验 岩石三轴压缩及变形试验 一、概述 岩石三轴试验,是在三向应力状态下测定岩石的强度和变形的一种方法。本指导书介绍的是侧向等压的三轴试验。 本规定可用于测定烘干和饱和状态的的试样,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~110 C 下烘24h 。 (2)饱和状态的试样,按7.1规定的进行饱和。 为了便于资料分析,在进行三轴试验的同时,应制样测定岩石的抗拉强度和单轴抗压强度。 二、试样备制 (1)试样可用钻孔岩心或坑槽探中采取的岩块,试样备制中不允许人为裂隙出现。 (2)试样为圆柱体,直径不小于5cm ,高度为直径的2~2.5倍。试样的大小可根据三轴试验机的性能和试验研究要求选择。 (3)试样数量,视所要求的受力方向或含水状态而定,每种情况下必须制备5~7个。 (4)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm 。两端面的不平行度最大不超过0.05mm 。端面应垂直于试样轴线,最大偏差不超过0.25度。 三、试样描述 试样描述见7.3。 四、主要仪器设备 (1)试样加工设备,量测工具与有关检查仪器见7.4.1,7.4.2。 (2)电阻应变片、粘结剂、万用表等。 (3)电阻应变仪(或数据采集器)、压力传感器、引伸仪等。除用电阻应变仪外,也可用精度能达到0.1 %和量程能满足变形测定需要的其它仪表。 (4)三轴应力试验机(见图11)。 五、试验程序 5.1试样的防油处理 首先在准备好的试样表面上涂上薄层胶液(如聚乙烯醇缩醛胶等),待胶液凝固后,再在试样上套上耐油的薄橡皮保护套或塑料套,与试样两端的密封件配合,以防止试样试验中进油及试样破坏后碎屑落入压力室。 5.2安装试样 把密封好的试样放置于保护筒中,将压力室顶部的螺旋压帽组件卸下并吊装在横梁上升起,然后将放置于保护筒中的试样,用卡杆吊放入三轴试验机的压力室内。保护筒的下端有一凸出的球柱,此时要注意使球柱对准压力室底部中心的圆销孔,并放置平稳。试样在压力室中安置好后,即可向压力室内注油,直至油液达到预定的位置为止,然后用螺旋压帽组件封闭压力室。 5.3安装测量变形仪表 (1)用测微表或位移传感器适用于测定试样的纵向变形,测表可按装在压力室

岩土三轴压缩实验

三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

岩石常三轴试验中应变测量技术

岩石常规三轴试验中位移和应变测量技术 哑此嘿

1岩石常规三轴试验 随着现代化经济进程,基础设施的完善,工程建筑的兴盛、新型材料的应用、地质灾害 频发、环境保护的倡导。三轴试验已经广泛应用于岩土工程、建筑材料、地质灾害研究与应 用等领域。在众多的三轴试验当中,常规三轴压缩试验是最为基础也是应用最为广泛的试验。特别在岩土工程领域,岩石三轴试验承担着边坡稳定、巷道(隧道)围岩维护等与岩石品质密切相关的科学研究和工程应用的重任。 1.1常规三轴压缩试验 三轴压缩试验通常分为常规三轴压缩试验(又称假三轴压缩试验)和真三轴压缩试验,其中前者的试样处于等侧向压力的状态下,而后者的试样处于三个主应力都不相等的应力组合状态下。一般情况下岩石所处环境中水平方向压力相当,只有竖直方向上存在较大差异,本文所讨论的是常规三轴压缩试验。 常规三轴试验用圆柱或棱柱试件进行测试,试件放在试验舱中轴线处,通常使用油实现对试件侧向压力的施加,用橡胶套将试件与油隔开。轴向应力由穿过三轴室顶部衬套的 活塞通过淬火钢制端面帽盖施加于试件之上。通过贴在试件表面的电阻应变片可以测量局部 的轴向应变和环向应变[1]。 根据〈〈工程岩体试验方法标准》[2]中的三轴压缩试验为强度试验。由不同侧压条件下 的试件轴向破坏荷载计算不同侧压条件下的最大主应力&直,并根据最大主应力吁及相应施 加的侧向压力 ,在/D_Dd ???D Dd ?e ?? 试验机的发展由早期简单的篮子盛有重物加载到杠杆系统加载再到液压加载,经历了近5个世纪。20世纪30年代到60年代,人们在为增加压力机的刚度而努力,直到出现了液压伺服技术,并结合提高试验机的刚度才形成了可以绘制材料全应力-应变曲线较为成熟的技术[3]。 1.2液压三轴试验机

2014-1岩石单轴抗压强度实验

岩石单轴抗压强度实验 指导书 黄冬梅 适用专业:采矿工程、安全工程等 山东科技大学资矿业与安全工程学院 2014年 11 月

前言 岩石在狭义上说来包括岩块和岩体,岩块一般是指从岩体中取出的、尺寸不大的岩石。它由一种(如石英岩、大理岩等)或几种(如花岗岩、玄武岩等)矿物组成,具有相对的均匀性。由于尺寸较小而在其中不可能有大的地质构造的影响。实验室试验的试件是岩块的一种。岩体是指工程实际中较大范围的岩石。它可由一种或几种岩石组成,并可能为岩脉或裂隙充填物所侵入,包括地质构造作用的明显影响,并为结构面(层面、节理、裂隙等)所切割。实验室内岩块和工程现场岩体均属于岩石,它们是两个既有相互联系又有不同的概念,二者的力学性质有相互关系但不能直接代用。 室内煤岩力学试验采用的是尺寸很小的岩块,采矿工程实际中考虑的对象是煤岩体。一般的,由于现场岩体试验复杂、费用高,人们很少进行,只是在室内进行小块的煤岩进行力学参数测试,将其结果运用到工程中去。因而对煤岩试块和现场煤岩体的力学性质(主要是强度)间关系的研究很有实际意义。 单轴抗压强度实验是采矿相关专业岩石力学实验课程中必不可少的组成部分,学生通过实验验证和推导理论知识,又用理论知识解释和分析实验结果,以达到巩固理论知识和掌握实验方法的目的。指导书从实验目的、原理、仪器设备、方法步骤、注意事项、结果整理等方面对实验进行了介绍,并提出了要求,旨在让学生掌握力学实验的基本知识、技能和方法,培养学生的动手能力和分析、解决问题的能力,增强学生开拓创新的意识。

岩石单轴抗压强度试验 一、实验目的 熟悉与掌握测定岩石单轴抗压强度的实验设备、仪器、实验方法与计算方法。 二、实验内容 测定规则形状岩石试件的单轴压强度。 三、实验条件 (1)实验地点与场地:MTS岩石伺服实验室(资源与环境工程学院121)。 (2)实验设备与耗材:实验加工机械(钻石机或车床、锯石机、磨石机或磨床);检验工具(游标卡尺、直角尺、水平检测台、千分表架及千分表);加载设备(普通材料试验机)。 (3)专用计算机软件:数据采集与处理软件。 (4)实验耗材:标准岩石试件、胶带。 四、实验原理与实验方法 (1)试样制备 1)试件规格:试件应是整齐的园柱体,直径约为50mm,高径比为2.0~3.0; 2)试件数量:每组试件应不少于3块,取其平均值作为单轴抗压强度; 3)试件加工精度:试件端面磨平度小于0.02mm;轴线垂度不超过0.001弧度;侧面不平度小于0.3mm; 4)试件含水状态:试件保存期不超过30天,应尽可能保持天然含水量。 (2)试样描述 测定前核对岩石名称及其编号。对试件颜色、颗粒、层理、节理、裂隙、风化程度、含水状态等进行描述并填入记录表内。 (3)检查试件加工精度,量测试件尺寸 试件加工精度用专门的水平检测台检查。试件直径应在其高度的中部两个互相垂直的方向分别测量,取其平均值,填入记录表内。 (4)试验仪器 采用美国MTS公司生产的815.03型号的电液伺服岩石力学试验系统(Electro-Hydraulic Servocontrolled Rock Mechanics Testing System)。该试验系统配备有轴压、围压和孔隙水压等三种独立的闭环伺服控制系统,具有单轴(压缩)试验、假三轴(压缩)试验、真三轴试验等基本试验功能。单轴压缩试验采用位移控制加载。 (5)试件加载 开动压力机,使其处于可用状态。将试件置于压力机承压板中心,使试件上下面受力均

GCTS岩石三轴仪

GCTS岩石三轴仪 RTR-1000 特点&规格 ●动静闭环数字电液伺服控制,可以进行应变或者应力控制,也可以进行破坏后的行为 试验 ●高压三轴压力室,配备有液压提升/锁定装置,可以快速,方便和安全的安装试样 ●轴向加载1000kN,1500 kN(升级选项),加载框架刚度达到1750 kN/mm(可以升级 到10,000 kN/mm,或者3,500 kN/mm的刚度)(根据要求,也可以提供更大的加载能力) ●集成的围压&孔压控制面板和双增压器,压力可以达到140 MPa,压力分辨率0.01Mpa, 液体体积分辨率0.01CC ●岩芯试样尺寸:最大75mm(3英寸) ●动态频率:0-10Hz ●轴向& 径向LVDT测量,变形范围±2.5mm,变形分辨率0.001mm ●温度:150℃,可选200℃温度范围 ●压力室自动安装装---无需紧固件 ●符合国际岩石力学学会关于岩石三轴试验的标准以及ASTM标准

RTR-1000描述 RTR-1000岩石三轴测试系统是一套闭环数字伺服控制的装置,可以快速安装试样。一套三轴压力室的自动液压装置和滑动底座使得这套系统相对于传统的三轴压力室,试样安装起来更为迅速和方便。压力室的快速安装和拆除可以通过按下一个按钮实现。无需额外的螺栓和紧固件来组装三轴压力室,这就使得用户可以有更多的时间按来专注于实验的进行。 通常使用GCTS的数据采集包进行操作,该数据采集包包括Windows (98/2000/NT/XP) 测试软件和数字信号调节系统。快速,方便和安全的操作时的这套系统特别适合应用于生产任务。该系统可以根据用户的要求设计制作来测试不同尺寸的试样。 自动传感器识别功能使得当需要更换传感器来完成不同的测试程序时,传感器接入十分方便。三轴压力室是由不锈钢制成的并且适合用最大至75mm的圆柱形试样。标准单元带有一个刚性加载活塞以及低摩擦石墨密封。这种独立的压力室的优点在于一旦当试样完全准

相关文档
相关文档 最新文档