文档库 最新最全的文档下载
当前位置:文档库 › 沉积学 第五章 火山碎屑岩

沉积学 第五章 火山碎屑岩

沉积学 第五章 火山碎屑岩
沉积学 第五章 火山碎屑岩

课时教学实施方案

教案

常见沉积岩的特征碎屑岩类

常见沉积岩的特征碎屑岩类 砾岩:粒径大于2mm的碎屑占50%以上,具砾状结构,层理发育差。砾石一般为圆或次圆状者称砾岩,砾石呈棱角和次棱角状者称角砾岩。主要由一种砾石成分(含量75%)组成的砾岩,称单成分砾岩,这样的砾岩一般分选性和磨圆度均好,如石英砾岩。砾石成分复杂者称复成分砾岩,一般分选不良,圆度变化也大。砾岩的胶结物有硅质、钙质、铁质和泥质等。 砂岩:粒径介于2-0.05mm之间的砂粒占50%以上,具砂状结构,各类层理均可发育,胶结物多硅质、钙质、铁质及泥质等。按砂粒大小可分为粗粒砂岩(粒径2-0.5mm)、中粒砂岩(粒径0.5-0.25mm)、和细粒砂岩(粒径0.25-0.05mm)。按成分又可分为石英砂岩、长石砂岩和岩屑砂岩。石英砂岩中石英含量占75%以上,甚至95%以上,一般磨圆度高,分选好,颜色浅。长石砂岩中石英含量<75%,长石含量>25%,浅红色到浅灰色,圆度较差,分选中等或差。岩屑砂岩中石英含量<75%,岩屑含量>25%,甚至>60%,颜色深,圆度和分选都很差。 粉砂岩:粒径介于005-0.005mm的碎屑粒占50%以上,具粉砂状结构,多呈薄层状,水平或微波状层理,颗粒细小,肉眼难以辨认,放大镜下可识别石英颗粒或少量白云母。岩石断面粗糙,无滑感,可与粘土岩相区别。黄土则是未固结的粉砂,呈土黄色,松散状,层理不清,主要由石英、长石等粉砂组成,含粘土矿物及碳酸钙结核。 泥质岩类:分布最广的一类沉积岩,均为泥质结构,并常具水平层理,主要由各种粘土矿物组成。通常按固结程度分为以下三种: 粘土:未固结或弱固结的泥质岩,具吸水性和可塑性,在水中易泡软。单矿物粘土有高岭石粘土、蒙脱石粘土、水云母粘土等,但自然界多数为复矿物粘土。 泥岩:固结较紧的泥质岩,呈块状,吸水性和可塑性极弱,在水中不易泡软。成分较复杂,多水云母,含粉砂。 页岩:固结很好的泥质岩,成页片层,无吸水性和可塑性,水中不能泡软,可按其所含次要成分进一步命名,如炭质页岩、钙质页岩等。 化学岩及生物化学岩类:这类岩石结构多样,有碎屑结构和生物结构,但以化学结构为主。由于岩石多数为非晶质或隐晶质,肉眼不能分辩矿物颗粒,因此,要注意区分岩石种类众多的化学成分和矿物成分。其中主要的岩石种类有以下几种: 碳酸盐岩:主要由钙镁的碳酸盐组成,分布广泛,在沉积岩中仅次于页岩和砂岩,结构以碎屑结构和化学结构为主,最主要的岩石有石灰岩和白云岩。 石灰岩:主要由方解石组成,常呈灰或灰白色,由于含有机质多少不等,颜色可由浅灰到黑色,一般较致密,断口呈贝壳状,硬度不大,加稀盐酸起泡剧烈。常因结构不同而给予不同的名称,如豹皮灰岩、鲕状灰岩和竹叶状灰岩等。灰岩中常含有粘土矿物、硅质等杂质,含量较多时称为泥灰岩、硅质灰岩等。

从岩石组合看大地构造

大地构造读书报告 学院: 专业: 学号: 姓名:

从岩石组合到大地构造 摘要:当今科学发展的一个重要特点,是不同学科之间的相互渗透交叉。地质学中的板块构造学、岩石学与地球化学的发展,以及分析手段、测试精度的提高,在总结岩石学特征与板块构造关系方面出现一个介于岩石学、大地构造学和地球化学之间的一个边缘学科——岩石大地构造学。本篇文章就是从岩石组合的角度对大地构造进行分析,主要介绍几种重要的岩石大地构造组合,分别是蛇绿岩(套)、混杂堆积、双变质带、超高压变质岩(带)、复理石、磨拉石。 第一章.蛇绿岩(套) 1、概念 1972年9月,在美国召开的彭罗斯(Penrose)蛇绿岩会议上,赋予蛇绿岩一词如下含义: 1)蛇绿岩是镁铁质至超镁铁质岩的特征的岩石组合; 2)蛇绿岩不应作为一种岩石名称或填图单元; 3)发育完整的蛇绿岩层序由下而上包括超镁铁质杂岩、辉长岩类杂岩、镁铁质席状岩墙群和镁铁质火山杂岩; 4)伴生的岩石类型包括上覆沉积层序中的条带状硅质岩、页岩夹层和少量灰岩,通常与纯橄榄岩伴生的豆荚状铬铁岩,以及富Na 的长英质侵入和喷发岩;可填图的岩石单元之间通常为断层接触,完整剖面可能缺失。因此,蛇绿岩可以是不完全的,肢解的或变质的。

2、蛇绿岩套的组成及层序 蛇绿岩套以其层序性、岩浆作用、变质作用和构造变形这四个方面的紧密联系特征,通常认为完整蛇绿岩套在层序上(由下至向上)有:超镁铁质岩-辉长岩-辉绿岩-枕状玄武岩熔岩-深海沉积层。 (1)变质超镁铁质杂岩:有纯橄榄岩、多期变形变质,常形成蛇纹化石橄榄岩或蛇纹岩。 (2)堆积杂岩:为岩浆结晶分异作用所造成的“晶体堆积体”,下部为堆积的橄榄岩,上部为堆积的辉长岩。有时,尚有英云闪长岩、斜长花岗岩等产于辉长岩顶部(基性岩浆结晶分异产物)。 (3)席状岩墙群:由许多近于垂直,互相紧挨着的辉绿岩墙组成,相邻岩墙在接触处出现对称的冷凝边,可见岩墙是岩浆沿张性裂隙先后依次贯入而成; (4)枕状熔岩:属海底喷发,以拉斑玄武岩为主,常有细碧岩,形成紧密堆积的岩枕,岩枕中有气孔、冷凝边及放射状裂隙。 (5)深海沉积物:包括放射虫硅质岩、含钙质超微化石的灰岩、页岩和硬砂岩等。 3、蛇绿岩的成因 关于蛇绿岩的成因模式为:洋脊扩张时,地幔成分的物质沿扩张裂隙上涌,同时发生玄武质岩浆的部分熔融,这种基性岩浆在岩浆房中不断分异和固结,就依次形成海底喷发的基性熔岩,贯入的席状岩墙,以及堆晶的层带超基性岩、基性杂岩、分异的终端产物还有淡色岩类(奥长花岗岩、闪长岩等),而残留下来的物质则为方辉橄榄岩、

沉积学第一章概论分析

课时教学实施方案 课程:沉积岩及沉积相授课班级:资源专1201-1202 授课学期:2012-2013学年2

教案 第一章沉积岩的概述 导入新课:沉积岩在地球表面分布非常广泛,据统计,地壳表面约有75%面积被沉积岩所覆盖,而在我国沉积岩分布面积占77.3%,在沉积岩中蕴藏着十分丰富的沉积矿产,因此,我们必须进一步认识沉积岩,掌握其特征,分布规律从而研究它与石油天然气的关系。 第一节沉积岩的一般特征 一、沉积岩的定义 1)沉积岩(sedimentary rock):是在地壳表层条件下由母岩风化产物、生物来源的物质、火山物质、宇宙物质等原始物质,经过搬运作用、沉积作用和沉积后作用而形成的岩石。 2)特征: 1、地壳表层条件----形成环境 2、沉积岩的原始物质----物质基础 3、一系列作用----形成作用 4、一类岩石----结果 二、沉积岩的物质成分 在化学成分上,沉积岩中Fe2O3多于FeO,K2O多于Na2O,岩浆岩则与此相反。因为地表环境富含水和二氧化碳,所以沉积岩中水和二氧化碳的含量也明显比岩浆岩中的高。 矿物成分的特征: 1.高温矿物罕见:橄榄石、辉石、角闪石等铁镁矿物及基性斜长石不出现/甚少。 2.低温矿物富集:钾长石、酸性斜长石和石英在沉积岩中也广泛存在。

3.沉积岩中有特有的自生矿物:氧化物和氢氧化物、粘土矿物、盐类矿物、碳酸盐矿物——在地表的常温、常压并富含O2、CO2、H2O的条件下生成,又称为自生矿物。 三、沉积岩的颜色 颜色是沉积岩重要的直观特征,它不仅反映岩石本身的物质成分、沉积环境及成岩后的次生变化,对鉴定岩石具有重要意义,而且还可作为地层划分与对比和推断沉积环境的重要标志之一。其中起决定作用的是岩石中所含色素(染色物质)。沉积岩的颜色按成因可分为原生色和次生色。 原生色又进一步分为继承色和自生色。 1、原生色: 1)继承色主要取决于岩石中所含矿物碎屑的颜色,常为碎屑岩所具有,如长石砂岩呈红色是继承了母岩中红色长石颗粒的颜色; 2)自生色是在沉积成岩阶段由自生矿物造成的,为大部分粘土岩、化学岩所具有。 2、次生色是在沉积岩形成后由于次生变化而产生的,如在露头上海绿石砂岩常被风化成黄褐色、褐红色等。研究沉积岩要注意区分原生色和次生色。 次生色常沿裂隙、孔洞和破碎带分布,呈斑点状。原生色分布均匀、稳定,且与岩层的界线一致。原生色常能指示沉积环境。一般来说,粒度越细、越潮湿,观察面越阴暗,颜色越深;反之则浅。因此,描述颜色必须观察岩石的新鲜面,并说明是在怎样的状态下观测的。 四、沉积岩的构造 沉积岩的构造是指沉积岩各组分在空间的分布、排列和充填方式。一般包括层理、层面构造和层内构造。

沉积相

海相沉积与湖相沉积的特征及其经济意义 摘要:一个地区的沉积层受到该区物理、化学和生物等方面的综合影响,使其具有独特的特征。由于环境和外营力作用有序地变化,沉积物的综合特征也随之发生变化,称为相变。早在1894年,德国J.瓦尔特就提出“相的连续定律”来阐述沉积相在横向上变化与垂向上变化的关系。他指出:垂向上所见到的沉积相序列也可在横向上见到。在连续沉积的情况下,只有那些现在并列出现的相和相区,才能在垂向剖面中互相叠置,而没有间断。这种相序关系使人们在勘探中,可以从垂向上出现的沉积相序列来推断相邻地区横向上的类型和系列,为勘探油气、煤炭、地下水和其他沉积矿床服务。沉积相的研究,也能推动地貌学、古地理学和沉积学研究的深入。不同的沉积相的经济和工程意义不经相同,近期阅读了一些关于海相沉积和湖相沉积的文章,故本文将叙述一下两者的特征及其对人类的经济意义。 关键词:海相沉积;湖相沉积;特征;经济意义 1 海相沉积 海相沉积指海洋环境下,经海洋动力过程产生的一系列沉积,包括来自陆上的碎屑物,海洋生物骨骼和残骸,火山灰和宇宙尘等。具有海洋环境的一系列岩性特征和生物特征。其特点是颗粒较细而分选好,且在海水温度比大陆温度低而变化小的环境下沉积。海相沉积易产石油,生成的石油十分广泛,一般情况下也最丰富。海相沉积又可细分为: 滨海相沉积(水深0~20米),又称海岸带沉积,位于正常浪基面以上,沉积成分中粘土占80%。 浅海相沉积(水深20~200米),有的达500m,主要为陆架环境下陆源型沉积,又分大陆架滩、大陆架盆、递变大陆架、碳酸盐大陆架与礁、蒸发盆等沉积环境,其成分主要为砂、软泥、生物与碳酸盐,沉积结构具有斜层理和冲蚀、生物碎屑等海水剧烈运动的痕迹,以及鲕粒结构和周期性多变的沉积层。 半深海相沉积(200~2000米),又称大陆坡沉积,基本以陆源物质沉积终点为界,沉积物为蓝色、红色等暗色软泥及灰质软泥。 深海相沉积(水深>2000m),主要为抱球虫软泥、红色粘土、硅藻软泥、放射虫软泥,沉积速度仅1~0.5毫米/年。海相沉积另一特点是化学沉积比例较大,尤其碳酸盐沉积。

火山岩大地构造环境

火山岩大地构造环境 摘要:花岗岩与大地构造环境之间存在着成因联系,因为岩浆活动受到了构造环境的控制。在大地构造演化的各个阶段中,花岗岩的岩石化学成分表现出有序的演化趋势,这种趋势在常量、微量及稀土元素等方面都有反映。通过化学成分的变化,并利用典型的构造环境中花岗岩的数据及数学手段建立的一套判别方法,可以用来判别花岗岩形成的大地构造环境。 关键词:花岗岩;构造环境;成因分类;成分演化 花岗岩与大地构造的成因联系: 板块构造理论的建立为岩石大地构造学的研究提供了理论依据。不同的构造环境由于物质组成、温压条件及构造变动的差异,岩浆在形成机制、混染程度、分异类型、运移过程和侵位方式及其以后的变质、变形等地质作用也必然有不同的表现形式,并形成一定的岩石类型和岩浆岩组合。BarkerD.5.关于岩浆作用的基本假设反映了岩浆活动与大地构造作用的内在关系:(1)岩浆是由地慢或地壳部分熔融产生的,没有一个长久的世界性的岩浆房存在。(2)熔化是动力过程的反映,热量不能聚集在一个很小的高温空间中,且仅仅依靠放射热能不足以引起熔融。因此,岩浆的形成有三种方式:(a)通过下部岩浆的热传导或者断裂、剪切、俯冲等作用的运移使岩石达到高温状态;(b)断裂抬升或贯入作用的降压过程;(c)变质作用中固相线较低的物质成分变化。(3)即使岩浆在进入地壳中用地质的时间尺度看是瞬时的,不同期次的岩浆作用(甚至是被改造过的)也将保留其化学特征川。这些基本假设明确地阐述了岩浆作用与大地构造作用之间的成因联系,前两条假设说明了大地构造作用对岩浆作用的限制性,第三条假设则说明了探索二者之间关系的可能性。PeiveA.B等人把花岗岩的形成与地壳的演化直接联系起来,将地壳的发展演化划分为大洋、过渡和大陆三个有序阶段。洋壳在俯冲作用等一系列复杂的过程中受到改造,向过渡壳演化。在这一过程中,玄武岩通过局部熔融或者交代作用,在不成熟的过渡壳(如岛弧)中可以形成局部新生的花岗岩层,构成未来陆壳的“萌芽体”,其明显的特点是Na 2 O的含量大于 K 2 O的含量,反映了花岗岩层的新生性质和不成熟特点。斜长花岗岩化是过渡壳成熟过程中的产物,反映了洋壳物质不断被改造,并向陆壳逐步演化的过程。由斜长花岗岩化发展为大规模的钾长花岗岩化是过渡壳向陆壳演化阶段的突出事 件,K 2O和Na 2 O的含量也发生了变化,使地壳走向最终的成熟阶段。这种新的认 识揭示了花岗岩在大地构造演化中的意义,并且明确了地壳演化中各个阶段的花岗岩种类及其性质,成为地壳演化不同阶段的直接标志。近年来Wiokham5.M.对东比利牛斯裂谷变质作用的研究认为,花岗岩可以形成于大陆裂谷这一高温低压的构造环境。由于裂谷作用使地壳拉伸减薄,引起上地慢热物质的上涌,并使地壳物质发生部分重熔,形成大量的花岗岩类侵入体和若干代表极高的地温梯度的凝缩变质岩系川。上地慢的热物质在裂谷环境中也可能直接参与了岩浆的混染改造作用,使地壳物质向过渡类型转化,形成拉张型过渡壳,由此何国琦等提出了地壳演化的五阶段模式闭。所有这些关于花岗岩与大地构造作用之间的关系的新认识,就是我们研究二者之间内在联系的基础,也是我们进行花岗岩的构造环境判别的理论依据。 花岗岩的构造成因分类: 近代一些花岗岩学说都包含了一种假说,即花岗岩的形成与造山运动和区域变质作用有关。从这一观点出发,传统的槽台学说认为,地槽褶皱回返或者造山运动的各个不同阶段可以形成一些不同特征的花岗岩,并将其分为同造山期花岗

火山碎屑岩

120第五章 火山碎屑岩 火山碎屑岩是主要由火山碎屑物质组成的岩石。 火山碎屑岩是介于正常火山岩与正常沉积岩之间的岩石类型,兼有二者的特点,又与二者相互过渡。在沉积岩系中它属于碎屑沉积岩中的一种特殊类型。 与火山碎屑岩相伴生的是熔岩、次火山岩(或超浅层侵入岩)和正常沉积岩类。 火山碎屑岩在自然界分布十分广泛,从前寒武纪至第四纪均有分布。我国东部地处环太平洋火山活动地带,中、新生代沉积中有着发育的火山岩系。由于不少重要矿产常与其有关,近十年来,对于这些地区的火山作用及火山碎屑岩的研究,有较大的进展。 火山岩和火山碎屑岩可做为油气储集层,目前已是我国中、新生代陆相含油气盆地中重要的油气储集层类型之一。 第一节 一般特征及分类 一、物质成分 火山碎屑物质按其组成及结晶状况分为岩屑(岩石碎屑)、晶屑(晶体碎屑)和玻屑(玻璃碎屑)三种。此外,也还有一些其它的物质成分,如正常沉积物、熔岩物质等。兹分述如下。 1. 岩屑 岩屑形状多样,大小不一,可由微细粒至数米的巨块。依其物态可分为刚性及塑性两种。 刚性岩屑是已凝固的熔岩、或火山基底和管道的围岩,当火山爆炸时冲碎而成。塑性岩屑又 图5-1 塑性浆屑 具流纹构造,去玻化后显皱晶和 球粒结构,河北,下花园,白垩系 图5-2 火山弹 山西、大同

121 称塑性玻璃岩屑、浆屑或火焰石等,是由塑性、半塑性熔浆在喷出后经塑变而成,具玻璃质结构,断面呈火焰状、撕裂状、树枝状、纺缍状、透镜状、条带状等(图5-1)。火山弹是由于塑性熔浆团在空中旋转而成,形如纺缍、椭球、麻花、陀螺、梨状等,表面具旋扭纹理和裂隙,并具一层淬火边(图5-2),大者可达数米。 2. 晶屑 晶屑多为早期析出的斑晶随熔浆炸碎而成。大小一般不超过2~3mm,常呈棱角状,有 时也保持原来的部分晶形,其成分多为石英、长石、黑云母、角闪石、辉石等。石英晶屑表面极为光洁,具不规则裂纹及港湾状溶蚀外形(图5-3)。长石晶屑主要为透长石、酸性至基性斜长石,有较高自形程度,可见沿解理破裂及明显的裂纹(图5-4),扫描电镜下更为清晰(图5-5)。黑云母和角闪石晶屑常具弯曲、断裂及暗化现象(图5-6)。辉石主要出现在偏基性的火山碎屑岩中。 1. 玻屑 玻屑通常大小在0.1~0.01mm 之间,很少超过2mm;2~0.01mm 者称火山灰,小于0.01mm 者称火山尘。酸性和中酸性熔浆生成的玻屑折光率在1.48~1.51之间。刚性玻屑有弧面棱角状和浮石状两种。前者出现普遍,形状多样,镜下常用弓形、弧形、镰刀形、月牙形、鸡骨状、管状、海绵骨针状、不规则尖角状等一系列形容词来描述(图5-7)。综观其共同特点不外是一些不完整的气孔壁和贝壳状断口等所组成。后者,不甚普遍,是没有彻底炸碎的弧 图5-3 石英晶屑 取自张家口-富化一带中生代凝灰岩 图5-4 长石晶屑 取自张家口-富化一带中生代凝灰岩岩

岩浆岩岩石学——火山碎屑岩类

第十二章火山碎屑岩类 火山碎屑岩是火山剧烈爆发中产出的火山碎屑堆积物经压实、固结以后形成的岩石。同一般岩浆岩比较起来,火山碎屑岩的形成过程有以下三个特点:第一。其中的碎屑物质是由火山爆破的机械作用产生的岩石碎块、晶体或玻璃质的碎块构成,而非岩浆冷凝的产物;第二,火山碎屑物质有些是喷射至大气中后经过空气介质而沉落于陆地,有些可能是降落在水中再经一定的搬运作用而在异地沉积的;而岩浆岩无这一沉积过程;第三,火山碎屑岩是由松散的火山碎屑堆积物经过压实、胶结作用后形成的岩石。而岩浆岩却是岩浆直接的冷凝结晶产物。由于火山碎屑岩形成过程(机械破碎、沉积、压实、胶结等)和沉积岩相似,因而,也形成了许多和沉积岩相似的特征(如碎屑结构、层理等)。由于火山碎屑岩中的碎屑物质来源是火山活动这种内动力地质作用的产物,但其沉积—成岩过程中却又有外动力地质作用的因素,即它在成因上具内、外动力地质作用的二重性;在岩性上也显示岩浆岩和沉积岩的双重特征,因而它是岩浆岩—沉积岩之间的过渡类型。据此,有些人也把它归到沉积岩的分类体系中。 火山碎屑岩分布十分广泛,从前寒武纪的古老地层至近代死火山堆积物中均有产出。在许多喷出岩出露的地区,也往往相伴而生,共同构成复杂的火山岩系,如我国东南沿海诸省的中生代火山岩系。火山碎屑岩常富集有一般金属矿产,稀有、放射性元素矿产等,而且规模也比较大。 一、火山碎屑物质的一般特征 火山碎屑物质的主要特征表现在它的物态、形状和大小上。 (一)火山碎屑物质的物态和形状 火山碎屑物质的物态一般指它降落着地时的物理状态,即是固态、液态,抑或是塑性体。固态碎屑包括岩屑、晶屑和玻屑;塑性碎屑包括浆屑,塑性玻屑。 1.岩屑 是火山活动中早期先凝结的喷出岩和火山通道的围岩经火山作用爆碎后形成的岩石碎块。岩屑的形状极不规则,呈棱角状,一般大于2毫米。 2.晶屑 是火山爆碎的各种矿物的晶体碎块,常见者是石英、长石的晶屑,它们多半是岩浆中早期形成的斑晶破碎以后的产物。晶屑棱角尖锐,有时在显微镜下可见到熔化痕迹,一般粒度小于2毫米。根据晶屑的矿物成分可大致判断火山岩的岩浆成分。 3.玻屑

沉积岩石学

沉积岩石学 第一章沉积物的来源 1. 沉积岩石学研究的主要任务?P3 (2000) 第二章沉积物的搬运和沉积作用 1. 以花岗岩为例说明母岩风化产物的类型及其与沉积岩的关系?P16 (2010,2009,2008,2005,2003) 2. 沉积物的来源有哪些?P8 (2010,2008,2007,2006,2001) 3. 鲍马提出浊流形成和运动的阶段是什么?P33 (2011,2000) 第四章沉积岩的构造和颜色 1. 水平层理与平行层理的区别?P67 (2009,2005) 第六章 1. 底砾岩与层间砾岩?(2010) 2. 碎屑岩的基本组成部分有哪些?P92 (2011,2009,2008,2006,2005,2004L,2000) 3. 碎屑的碎屑结构包括哪些内容?P97 (2007) 4. 碎屑岩的主要胶结类型及成因?P104 (2011,2009,2007,2006) 5. 砾岩(角砾岩)的研究方法和地质意义?P111 (2001) 6. 砂岩的分类?P112 (2001) 7. 试述长石砂岩的一般特征及成因意义?P115 (2010,2008,2007,2005,2004,2003,2002,2001,2000) 8. 石英砂岩的一般特征及成因?P115 (2011,2009) 长石石英砂岩的地质意义?P115 (2001) 9. 粒屑结构和碎屑结构在构成上的异同?(2010,2006) 第九章 1. 碳酸盐岩中粒屑结构中颗粒类型主要有哪些?P161 (2001,2000) 2. 碳酸盐岩的结构-成因分类?P165 (2011,2008,2006,2005,2000) 3. 威尔逊的碳酸盐岩沉积模式中区分出哪几个标准相?(2000) 第十章 1. 硅质岩的一般特征?P190 (2010,2009(及成因类型L),2004) 第十二章 1. 沉积相/环境的识别标志?P220 (2011,2008,2007,2006,2005,2003,2001,2000)试述识别古沉积环境的成因标志?P220 (2010) 2. 沉积环境的划分?P221 (2008,2005) 3. 河流相的鉴别标志?P221 (2004) 4. 河流环境沉积的一般特征?(2010,2008,2007,2001,2000(及亚相、微相的划分)) 5. 冲积扇的沉积特点?P225 (2002,2001) 6. 三角洲类型有哪些及三角洲亚相划分?P229 (2011,2005,2002,2001(微相),2000) 7. 浊积岩的一般特征?P237 (2004,2002,2001L) 8. 试述陆源碎屑浊积岩的识别标志?P237 (2009,2006) 9. 陆表海与陆缘海?P240 (2002) 10. 海相碳酸盐沉积环境特点?P240 (2001) 岩浆岩石学 第二章岩浆及岩浆岩的特征 1. 岩浆作用及岩浆岩特征?P11 (2009) 第三章岩浆岩的产状和相

沉积相考试重点 (2)

对比淡化澙湖与咸化澙湖的沉积特征。 答:淡化澙湖与咸化澙湖在沉积特征上的不同之处如下: (1)岩石类型:淡化澙湖以钙质粉砂岩、粉砂质粘土岩、粘土岩为主,粗碎屑岩极少见。可见方解石、铁锰结核,二氧化硅沉积矿物。当澙湖底出现还原环境时,可形成黄铁矿、菱铁矿等自生矿物,岩石呈暗色或黑色,澙湖若为碳酸盐沉积时,则以泥晶、微晶石灰岩及白云岩、含泥石灰岩为主。 咸化澙湖以粉砂岩、粉砂质泥岩为主,并可夹有盐渍化和石膏化的砂质粘土岩,几乎无粗碎屑岩沉积,可出现石膏,盐岩夹层。若为清水沉积时,则主要是石灰岩、白云岩,并夹石膏及盐岩层,可出现天青石、硬石膏、黄铁矿等自生矿物。 (2)沉积构造:淡化澙湖中,交错层理一般不发育,若有波浪作用,可发育缓波状层理,水平波状层理,及对称或不对称波痕。虫孔少见,偶见干裂。咸化澙湖中一般多出现水平层理及塑性变形层理,斜层理不发育,盐类沉积中可见周期性溶解作用所引起的“冲刷面”,可见盐类假晶及泥裂。 (3)生物化石:淡化澙湖中为适应淡化水体的广盐性生物如腹足类,瓣鳃类,苔藓类,藻类等数量大为增多,正常海相生物常发生畸变,如出现个体变小,壳体变薄,具特殊纹分布等反常现象,当澙湖底部有H2S存在时,则可使生物群绝迹。咸化澙湖中以广盐性生物最发育,如腹足类,瓣鳃类,介形虫等,正常盐度的生物则全部绝迹,当盐度增高至一定限度时(一般不超过5~5.5%),大生物即行灭绝。 简述不同类型河流的主要特征。 答:①平直河流:弯度指数小于1.5,河床坡陡水流急,多出现于一条河流的上游。 ②辫状河:弯度指数小于1.5河道宽、水浅、坡陡、流急,心滩是辫状河最重要的沉积类型,心滩出现使河道频繁分叉合并,故形态呈辫状,多出现于中上游。 ③曲流河:弯度指数大于1.5,河道窄、水深、坡缓、流速小,点坝是曲流河最具特征的沉积类型。多出现于中下游。 ④网状河:由多条弯曲多变的河道联结似网状而故名。弯度指数大于1.5,冲积岛(湿地)发育,常占60~90%,为网状河最重要的地貌特征,常出现于下游。 简述湖泊环境的一般特点。 答:(1)水动力特征:主要表现为波浪和岸流作用,缺乏潮汐作用。波基面常常不超过20米。常有众多的河流注入。 (2)物理化学条件:①湖泊对大气温度变化较为敏感,湖水出现温度分层现象。②湖水含盐度变化大,可由小于1%至大于25%。因有不同源区的河流注入,湖水化学成分变化大。③稳定同位素,稀有元素等与海洋差别较大,如18O/16O 13C/12C低于海相,海相碳氢化合物的34S/32S较为稳定,湖泊中变化大。B、Li、F、Sr 在淡水湖泊中较海洋中少,Sr/Ba常<1。 (3)生物学特征:常发育良好的淡水生物群,如淡水的腹足类、瓣鳃类等底栖生物,介形虫、叶肢介、鱼类等浮游和游泳生物,还常发育有轮藻、蓝藻等低等植物等。 简述湖泊相沉积的一般特征。 湖泊相一般具有下列特征: ①岩石类型以粘土岩、砂岩、粉砂岩为主.砾岩少见,仅分布于滨湖地区。砂岩的成分成熟度和结构成熟度中等,但一般比河流相略高。由岸向湖心,粘土岩比例增加。粘土岩中含丰富的有机质,是良好的生油岩系。 ②沉积构造类型多样,粘土岩中多发育水平层理、块状层理,砂岩中发育交错层理、波纹交错层理,同时可见对称及不对称波痕、泥裂、雨痕及生物搅混构造。

火山碎屑岩的一般特征

火山碎屑岩的一般特征 火山碎屑岩:是火山作用(包括地下火山作用)形成的各种火山碎屑物,堆积后经多种成岩方式固结而成的岩石。火山碎屑岩中除火山碎屑物外,还可含有一定数量的正常沉积物或熔岩物质(作为胶结物)。 火山碎屑岩不仅见于地表,亦可见于火山管道和次火山岩体中。火山碎屑岩在各个地质时期,不论在陆上,还是水下,均有广泛分布。 火山碎屑物指的是由于火山爆发所产生的各种碎屑物质,主要来自地下熔融的岩浆或已凝固的熔岩,经火山爆发时被粉碎或破碎而成各种岩屑、晶屑和玻屑。有时亦可混入火山通道两侧、上部或基底围岩的碎屑。因此它带有内生成因特征;另一方面,火山碎屑物被喷出后,又在空气或水盆地中搬运、降落、沉积,所以它们又具有沉积形成的特点。火山碎屑岩的物质成分与相应的熔岩有密切联系,尤其是向熔岩过渡的种属很相似,在空间分布上,两者者也经常是共生的;而在结构构造上有的则和正常沉积碎屑岩有相似之处,但又有很多差别。如前者岩石和矿物的碎屑多半成棱角状,碎屑物分选很差,成分和结构构造上变化很大,常缺乏稳定的层理,只有正常沉积物增多及在水中沉积时,这些特点才逐渐消失。所以火山碎屑岩是一种介于熔岩和正常沉积岩之间的过渡类型岩石,向两端都有一系列过渡变种。因此含有火山碎屑物50-10%的岩石,可属广义的火山碎屑岩,而正常火山碎屑岩则含火山碎屑物应在90%以上。 火山碎屑岩的成岩方式不同于其它岩石。向熔岩过渡的火山碎屑岩,主要由熔浆胶结凝固而成。向沉积岩过渡的火山碎屑岩,则粘土物质、化学沉积物及火山灰次生变化产物—蒙脱石、绿泥石、沸石等胶结。而正常火山碎屑岩主要不是压紧固结,部分有火山灰分解产物或化学沉积物胶结。另外还有一种特殊的成岩方式,即是在较酸性、碱性、粘度大,富含挥发分的岩浆上升过程中,气体析出成“牛奶泡沫”状,形成火山碎屑流,火山碎屑物高温熔结在一起,而成为熔结火山碎屑岩。 火山碎屑岩常具有特殊鲜艳的颜色,如浅红、浅黄、淡绿、灰绿等各种色调。颜色主要取决于本身的物质成分,如中基性的火山碎屑岩颜色很深,为暗紫红色、墨绿色等,而中酸性火山碎屑岩则颜色较浅,常为粉红色、淡黄色。其次决定于次生变化,如凝灰岩的绿色与绿泥石化作用有关,而含铁较少的凝灰岩,蒙脱石化后则呈灰白色或粉红色。

碎屑岩

碎屑岩 岩石机械风化后形成的岩石碎屑和矿物碎屑,经搬运、沉积、压实、胶结而成的岩石,称为碎屑岩。 基本简介 碎屑岩是由于机械破碎的岩石残余物,经过搬运、沉积、压实、胶结,最后形成的新岩石。又称陆源碎屑岩。碎屑岩中碎屑含量达50%以上,除此之外,还含有基质与胶结物。基质和胶结物胶结了碎屑,形成碎屑结构。按碎屑颗粒大小可分为砾岩、砂岩、粉砂岩等。 碎屑岩 按物质来源分类 按物质来源可分为陆源碎屑岩和火山碎屑岩两类。火山碎屑岩按碎屑粒径又分为集块岩(>64毫米)、火山角砾岩( 64~2毫米)和凝灰岩(256毫米)、粗砾岩(256~64毫米)、中砾岩(64~4毫米)、细砾岩(4~2毫米)。砂岩按砂粒大小可细分为巨粒砂岩(2~1毫米),粗粒砂岩(1~0.5毫米)、中粒砂岩(0.5~0.25毫米)、细粒砂岩(0.25~0.1毫米)、微粒砂岩( 0.1~0.0625毫米)。粉砂岩按粒度可分为粗粉砂岩( 0.0625 ~0.0312毫米),细粉砂岩( 0.0312~0.0039毫米)。碎屑岩主要由碎屑物质和胶结物质两部分组成。

碎屑物 碎屑岩 碎屑物质又可分为岩屑和矿物碎屑两类。岩屑成分复杂,各类岩石都有。矿物碎屑主要是石英、长石、云母和少量的重矿物。胶结物主要是化学沉积形成的矿物,它们充填在碎屑之间起胶结作用,主要有硅质矿物、硫酸盐矿物、碳酸盐矿物、磷酸盐矿物及硅酸盐矿物。碎屑岩的孔隙是储存地下水及油、气的对象,研究碎屑岩对寻找地下水及油气矿床有实际意义。 矿物成分 碎屑岩的矿物成分以石英和长石为主,它们对储层物性的影响不同。一般说来,石英砂岩比长石砂岩储集物性好。 碎屑岩成分 原因一

火山岩的结构与构造

火成岩的结构与构造 火成岩的名称,固然与其所含的矿物成分、化学成分有密切的关系,但了解这些物质组分的形态面貌也十分重要,后者用专门术语来说就是岩石的结构和构造。火成岩命名时的另一基本原则,就要考虑它的结构和构造。这是因为同样的矿物成分、化学成分的岩浆,当其沿裂隙上升到某一部位时,冷凝后表现出来的结构和构造也是不同的,这样,岩石的名称也就自然有差别了。例如在酸性岩类中,正长石、斜长石、石英等基本矿物形成晶体时,呈粒状结构,就称为花岗岩;而当其喷溢出地面,虽然其物质组分相同,但颗粒结构不清楚,有时还出现流动的带状构造,这样,就不能称做花岗岩,而叫流纹岩了。 由此可见,火成岩的野外定名,不可不注意其结构和构造。 什么是岩石的结构?简单地说,是指岩石物质组分的结晶程度、颗粒大小、形态特征以及它们之间的相互关系等。 什么是火成岩的构造?是指组成岩石的各部分(集合体)在形成岩石时,在排列充填其空间方式上所构成的岩石特点;或者也可以说,是集合体的排列、配置与充填方式的关系。 具体地怎样认识火成岩的结构与构造呢,现分别予以阐述,先谈结构,主要应从以下几方面去认识。 ①岩石的结晶程度。我们把岩石中的矿物形成晶体的,称为结晶物质,简称晶质;把另一种未能形成晶体的物质,称为玻璃质,简称非晶质。所谓岩石的结晶程度,即指晶质与非晶质之间的比例关系。 此种比例关系,大体分为三大类: 全晶质结构--岩石中的矿物,全部都形成晶体,例如花岗石。 玻璃质结构--岩石中的矿物全部都是非晶质的,跟玻璃十分相似,主要见于某些火山喷出岩,如黑耀岩。 半晶质结构--岩石中既有矿物晶体,又有玻璃物质,火山喷出岩类颇为常见,如流纹岩、安山岩、玄武岩等。 ②矿物颗粒的形状。这是由于矿物的习性和结晶空间约束的变化,使晶体形成不同

岩石学笔记-第一篇

第一章岩石及其地质分布 自然界的岩石可以划分为三大类 : 火成岩、沉积岩和变质岩。 火成岩( igneou s rocks) 是由地幔或地壳的岩石经熔融或部分熔融 ( partialmelting)形成岩浆 (magma )冷却固结的产物。岩浆可以是由全部为液相的熔融物质组成 ,称为熔体 ( melt ) ;也可以含有挥发分及部分固体物质 ,如晶体及岩石碎块。岩浆从高温炽热的状态降温并伴有结晶作用的过程称为岩浆固结 ( solidified) 作用。 沉积岩 ( sedimentary rocks ) 形成于地表的条件 ,常常呈层状 ,是由①化学及生物化学溶液及胶体的沉淀作用 ; ②先存的岩石经剥蚀及机械破碎形成岩石碎屑、矿物碎屑或生物碎屑再经过水、风或冰川的搬运作用 ,最后发生的机械沉积作用 ;③上述两种作用( 总称为沉积作用)综合形成的。沉积岩形成过程中也可以有结晶作用发生 ,但不同于火成岩的结晶作用。前者结晶于地表或近地表的温度和压力条件下,而且是在水溶液或胶体溶液中结晶的。多数沉积岩经历过胶结、压实和再结晶作用。 变质岩 ( metamorphic rocks)是由火成岩和沉积岩经过变质作用形成的。它们的矿物成分及结构构造都因为温度和压力的改变以及应力的作用而发生变化 , 但它们并未经过熔融的过程 ,主要是在固体状态下发生的。变质岩形成的温、压条件介于地表的沉积作用和岩石的熔融作用之间。 三大类岩石是根据自然界岩石的特征和形成作用的差异而划分的。然而,由于自然界的许多作用具有连续性和过渡性, 所以三大类之间也具有过渡类型的岩石。

三大类岩石的特征和形成作用具有明显的差异, 但三种岩石可以相互转化, 三种作用可以相互过渡, 例如: 先存的变质岩、火成岩及埋深较大的沉积岩可以在高温条件下发生熔融或部分熔融形成岩浆, 岩浆固结成火成岩。先存的火成岩、沉积岩和变质岩暴露于地表后经过剥蚀、机械破碎、搬运和沉积可以形成沉积岩。先存的火成岩及沉积岩在温度、压力及应力的作用下可以发生变质形成变质岩。 什么是岩石学?及其意义? 岩石学是研究天然岩石的学科。由于岩石是除去大气圈及水圈后地球的主要组成部分,因此岩石学在地球科学中具有十分重要的位置。 基础岩石学包括了岩相学 (Petrography) 和岩理学 (Petrogenesis) 两部分,岩相学是以研究岩石分类和描述岩石特征为主, 立足于详细的野外及室内的观察与测试, 如对岩石的颜色、结构构造、矿物成分和野外产状以及它们的化学成分作出研究, 可以对各类岩石作出进一步的分类和命名。岩理学则是将岩相学的知识与实验研究和理论分析结合, 通过归纳和演绎对有关各类岩石的成因、形成演化及构造背景进行研究。在归纳和演绎的过程中要与相邻学科相互印证以期获得符合实际情况的结论。 现代的沉积物与地质历史上的沉积物的丰度有很大的差别: 在前寒武纪, 白云岩是石灰岩的 3 倍, 但是现代白云岩的产地却很少,在 25 亿年(2.5Ga) 之前太古宙的地层中, 硅质岩的体积分数约占 15% , 而现在除了深海盆地外, 硅质岩已经不很重要了;科马提岩, 多数出现在太古宙, 块状斜长岩、更长环斑花岗岩多数出现在元古宙;太古宙麻粒岩、灰色片麻岩、紫苏花岗岩等是研究地壳早期演化和早期大地构造特征的重要内容。岩石学研究还可以作为地球深部的“探针”。 岩石在地球上的分布: 除外地核和极少量赋存于地壳或上地幔中的熔/ 流体外, 地球主要是由固态物质组成的。 在陆地, 表层沉积岩的体积分数约占 66% , 其余的火成岩和变质岩大约各占一半。在大洋下面, 沉积物和沉积岩形成薄层状覆盖在下部的火成岩和变质岩之上, 后两种岩石组成了大洋地壳的主体。 地球的层圈构造: 分异后的地球具有层圈构造。根据地球物理的资料, 地球可划分为 3 个一级的层圈: 地核、地幔和地壳, 其中地核占地球总体积 (1.083×1021m3)的16.2% , 地幔占 83.2% ,地壳占0.6%。在 3 个圈层之间分布有明显的地震波速突变的不连续界面 (或带) , 三个层圈化学成分有显著差异, 因而上述不连续界面主要是由化学成分差异造成的。 地核进一步分为内核与外核, 它们主要由 Fe 元素组成, Si、Ni 为次要组分。其中, 外核呈液态存在, 因为温度和压力条件使 Fe 呈熔融状态。地核与地幔之间的界面为古登堡不

沉积岩石学各章重点

沉积岩石学重点知识 绪论 1.沉积岩的概念。 2.“自生矿物”的概念。 3.沉积岩的种类? 4. 沉积岩的结构?特有结构? 第一章 1.组成沉积岩的沉积物来源? 2.母岩风化作用按照作用的性质和因素分为哪三种? 3. 母岩风化作用的产物? 4.“元素的风化分异”的概念。 5..造岩矿物的稳定性比较。 第二章 1.按沉积物被搬运和沉积的方式不同,把沉积物的搬运和沉积作用分为哪三种?

2.机械搬运作用方式有哪两种? 3.对沉积物进行搬运和沉积的介质主要是和,其次是、 等,使沉积物发生搬运和沉积的地质营力主要是和,其次还有、、等。 4.作为沉积物搬运和沉积的流体自然界存在两种基本类型,即和,其中属于牛顿流体,属于非牛顿流体。 5..名词解释:“载荷”、“载荷量”、“满载”、“超载”。 6.急流、缓流和福劳德数的关系。 7.层流、紊流和雷诺数的关系。 8.紊流对沉积的作用? 9.“沉积物重力流”的概念。 10.水下沉积物重力流的分类? 11.搬运过程中碎屑物质的变化? 12.生物的搬运作用对沉积作用意义巨大。

13.“地表沉积分异作用”的概念。 第三章 1.简述沉积期后变化的阶段划分、特点以及代表矿物。 2.比较表生作用和风化作用。 3.图示沉积期后各阶段形成的结核产状,并加以必要的文字说明。 第四章 1.图示指示地层顶底和流水方向的沉积构造。 2.比较水平层理和平行层理。 相同点: 不同点:

第六章(重点) 1.“陆源碎屑岩”的概念 2.碎屑岩的基本组成。 3.碎屑岩“的成分成熟度”的概念及其衡量标准。 4.碎屑岩的“结构成熟度”的概念及其衡量标准。 5.图示颗粒支撑和杂基支撑,并用文字加以表述。 6.图示胶结物的结构。 7.“构造长石砂岩’和”气候长石砂岩“的概念。 8.评述砂岩的成分——成因分类方案以及命名原则。

碳酸盐岩沉积相

第二十四章碳酸盐岩沉积相 §24-1 碳酸盐岩沉积环境和沉积作用一、碳酸盐岩沉积环境和沉积特征 ●主要形成于温暖气候条件的浅海环境。 以化学、生物化学、生物、机械多种机制综合形成的一类化学岩及生物化学岩。颗粒和灰泥(相当于杂基)的比例及其组合而成的多种岩石类型,是浅海相碳酸盐岩沉积环境的重要标志。深水碳酸盐岩多起因于风暴条件,形成于大陆坡及深水盆地中。具有叠覆递变的角砾化碳酸盐岩、具有鲍玛层序的典型浊积岩和深水超微化石及遗迹化石的组合层序是鉴别深水碳酸盐岩的重要相标志。碳酸盐岩的形成和分布不仅受制于沉积环境,也与成岩环境和成岩作用密切相关。碳酸盐岩具有易溶性和易变性。 二、碳酸盐岩沉积过程和沉积作用 ●潮坪碳酸盐岩——缺乏陆源输入物、海浪被阻止、潮汐为主的碳酸盐岩 盆地环境,——古今分布最广的一类碳酸盐岩沉积。潮汐沉积作用带主要发生在: 1)潮下带环境——高能、低能沉积带。 2)潮间沉积带——具间歇能所形成的岩石类型和相标志。 3)潮上沉积带——具暴露蒸发和交代作用标志。 潮坪环境中以物理—生物作用为特征所形成的藻叠层及其形态分带是划分潮坪环境(相)的主要相标志。 ●海滩碳酸盐岩——主要处于缺乏障璧的开阔浅海(无广阔藻席);其次 主要受制于波浪能量大小,在不同古地形和水动力条件作用下,形成鲕粒滩(岩)、内碎屑滩(岩)和生屑滩(岩)等,其中有发育的冲洗层理和交错层理,以及生物扰动构造。视岩性、结构和构造特征的变化,它们可分别组合成不同类型的相层序。 ●生物礁碳酸盐岩——具格架的珊瑚礁碳酸盐岩,特定形成条件: 1)造礁生物在迎浪带原地生长营造起来的。 2)具水下凸起的地貌,沉积厚度比相邻地区大。 3)具生物格架或只有造礁生物原地生长的痕迹。

火山岩岩石化学整理及应用

火山岩岩石化学整理及应用 作用与目的: (一)客观反映研究对象的化学特征,如氧化物、微量元素的丰度、演化学变化规律、富集及迁移规律。 方法:与平均值、与克拉克值对比,用分析值、某些比值以及哈克图解等方法分析、研究。(二)求化学参数确定火成岩基本类型、系列 如碱性、钙碱性,高钾、低钾、铝饱和、硅饱和、分异度… *对于火山岩,尤为主要是确定拉斑系列和钙碱性系列,采用参数、比值、图解等方法。(三)研究火山岩成因类型 如花岗岩类的I、S;火山岩的钠质、钾质类型;大西洋型、太平洋型… (四)确定成因及大地构造环境 如岛弧、板内、板缘… (五)确定岩石成岩过程中的温压信息(地质温度计、压力计),计算P、T参数… (六)分析成矿情况 *对每一计算,要明确计算要满足的基本条件和数据解释的有效性 *对图解,要确定使用范围,参数的取值范围,计算公式对标准图解要弄清原图的思路,有无改进方法… 火山岩整理、掌握 一、火山岩类的铁调整 (注意:计算氧化度等值时,不允许调整) A:Fe2O3上限值的确定: ①基性一超基性玄武岩类建议用Fe2O3=TiO2+1.5(由于岩石中TiO2较稳定,不易风化蚀变等影响。而TiO2与Fe2O3有一定的关系。) ②中基性岩火山岩(参明照花岗岩的铁调整) B:调整方法 包括不同成分的火山岩、深成岩,均可采用Le Maitre(1976)方法进行调整 1.是否需要调整?视实际氧化度(O X实)与允许氧化度(O X允)的相对大小而定。 所谓O X实是由岩石化学分析结果中的FeO、Fe2O3值计算所得,它反映岩石中实际计算

出来的已有的氧化度。 即:O X实=FeO/(FeO+ Fe2O3) 所谓O X允,是由岩石化学分析结果中的SiO2、K2O,Na2 O值计算所得。深成岩与火 山岩的计算式不同,反映岩石中根据SiO2、K2O+Na2 O(Alk)确定岩石中允许的氧化度。 由于岩石易于氧化,因此O X实的数值不一定可靠,常常由于Fe2O3高、FeO低,而使 O X实低。而由SiO2、K2O+Na2 O(Alk)确定,因此是岩石真正氧化度的标准值。 综前所述,岩石中SiO2、Alk愈高,O X允愈小,则允许的Fe2O3上限值愈大;反之,SiO2、Alk愈低,O X允愈大,则允许的Fe2O3上限值也愈小。火山岩与深成岩O X允计算式不同。 即对于深成岩:O X允=0.88-0.0016SiO2-0.027(K2O+Na2 O) 对于火山岩:O X允=0.93-0.0042SiO2-0.022(K2O+Na2 O) 如果由岩石中Fe2O3、FeO计算的O X实大于由岩石中计算的SiO2、K2O+Na2O计算的O X 允,说明该岩石的Fe2O3不高(FeO不低),不需要调整;反之,如果O X实< O X允,说明该岩石中Fe2O3,超过上限值,需要调整Fe2O3、FeO。 2.如何进行调整?已知O X=FeO/(FeO+ Fe2O3);设调整后的Fe2O3(即Fe2O3的上限值) 为x,如多余的Fe2O3,换算为FeO,则调整后的FeO=FeO+0.9(Fe2O3-x),以之代入O X=FeO /(FeO+ Fe2O3),则 O X =[FeO+0.9(Fe2O3-x))/(FeO+0.9(Fe2O3-x)+x] 得x= (1-O X)(FeO+0.9 Fe2O3)/(0.1O X+0.9) 此x值为调整后的Fe2O3,也即Fe2O3的上限值;该式中O X为O X允,即O X实=O X允。调整 后的FeO设为y,则y=FeO +0.9(Fe2O3-x)。 综上所述,可小结如下: 1.凡是要研究岩石的氧化程度,而不需要计算标准矿物者,岩石中Fe2O3、FeO不应调整。 2.凡是计算标准矿物的岩石,如Fe2O3不超过上限值者,一般也不需要调整;只有超过上 限值者,才需要调整。 3.对于各种成分的火山岩、深成岩,均可用Le Maitre(1976)方法进行调整Fe2O3、FeO。凡 O X允O X实者,则需要调整。 二岩石化学指数计算(常用以下7 项) 1. 钙碱指数(CA):碱性(CA<51)、碱钙(5161) 4类。 2. 里特曼指数(σ):σ=(Na2O+K2O)2/(SiO2-43) (σ在SiO2值42%~70%有效)

相关文档