文档库 最新最全的文档下载
当前位置:文档库 › 干扰专题介绍

干扰专题介绍

干扰专题介绍
干扰专题介绍

干扰专题介绍

干扰的分类

(一)移动通信系统内部频率的干扰

现在陆地移动通信蜂窝系统均采用频率复用方式,以提高频率利用率。这虽然增加了系统的容量,但同时也增加了系统的干扰程度。这些干扰主要包括同频干扰、邻频干扰和互调干扰。

1、同频干扰。所谓同频干扰,即指无用载频的频率与有用载频的频率相同,并对接收同频有用信号的载频造成的干扰。当小区不断分裂使基站服务区不断缩小,大量的同频干扰将取代人为噪声和其它干扰。当同频干扰的C/I小于某个特定值时,就会直接影响到手机的通话质量,严重的就会产生掉话或起呼失败。

2、邻频干扰。所谓邻频干扰,即指干扰小区邻频功率落入服务小区邻频接收机带内造成的干扰。当邻频的C/I小于某个特定值时,就会直接影响到手机的通话质量,严重的就会产生掉话或使手机用户无法建立正常的呼叫。

3、交调干扰。当两个以上不同频率信号作用于一非线性电路时,将互相调制,产生新频率信号输出,如果该频率正好落在接收机工作信道带宽内,则构成对该接收机的干扰。交调干扰主要是指数模共站的基站,由于模拟基站发射机的影响,而对数字基站产生的干扰。这种干扰的直接后果是时隙分配不出来,造成基站资源的浪费,也会产生掉话。

(二)外来电波的强烈干扰

由于移动通信是靠空中电波传播的,当空中某些电波对正在使用的电波产生的干扰达到一定程度时,会使信号噪声比下降到标准值以下(影响通话质量),便容易出现掉话、起呼失败和切换失败。这些干扰电波来源非常复杂,是多方面的,例如工业干扰、电源火花干扰、天电干扰和其它专业的邻近电波干扰等,这些干扰是很难完全避免的。

干扰产生的原因

移动通信系统中无线电波传播的特性,决定了其在通信过程中必然受到外界多种因素的影响,因此,外来电波的干扰是造成移动通信系统干扰的主要原因之一。另外,由于移动通信系统的复杂性(有线与无线的综合体),它还一定程度

上受到网络内部其它因素的影响,如同频干扰、领频干扰、交调干扰,以及其它因网络参数设定不当而造成的干扰等。外来电波的干扰与外界环境有关,但主要还是由于移动系统内部原因造成的干扰。

1、频率规划时频率复用不当、频点设定不正确导致两同频小区之间的距离不能够满足条件,造成同频、邻频现象在短距离范围内存在。当手机在服务小区中收到很强的同频或邻频干扰信号时,会引起误码率恶化,使手机无法准确解调邻近小区的BSIC码或不能正确接收MS的测量报告。基站在通过SDCCH为手机分配话音信道后,由于没有临近小区BSIC码而无法判断具体的小区,无法发生切换,从而产生掉话,另一个原因是服务小区干扰质差,下行信令失败,移动台收不到切换命令,引起掉话。

2、BTS的发射功率参数设置不合理。如下行太强而下行不足,如果目前的直放站调整中出现加大下行而不加大上行输出,小区范围得到大幅度的放大,容易被选择和发生切换,之后因上行太弱测量汇报无法上传引起掉话,。

3.基站天线的俯仰角及方位角设置不合理或存在偏差,导致基站的覆盖范围不合理,从而导致同频及邻频干扰。俯仰角过小,会造成对附近同频站的干扰;过大则会造成对相邻站的邻频干扰,所以一定程度上为避开对前方小区造成的同频干扰,适当加大下倾是有必要的。方位角设置存在偏差(如安装准确度,台风以及话务调整原因),易导致基站的实际覆盖与所设计的不相符,从而导致一些意想不到的同频及邻频干扰。另一个原因是阻挡引起一定区域服务小区的改变,另一个角度上,也是规划中的现场考查不足所造成的。

4、直放站设置不合理,造成对周围信号的干扰。为减少投资,扩大覆盖范围,一些县城内的小基站普遍采用直放站直接放大其信号,但由于目前大量使用的直放站是900MHz宽带放大器,它对所接受的信号进行直接放大,然后再发射出去。且基站与直放站之间绝大多数又是射频连接方式,加之直放站的规划和选址上存在一些问题,特别是施主天线的位置不正确,因而易造成对周围信号的干扰。

干扰的解决

对于干扰的解决,我们应抓住干扰产生的原因作为突破点。在日常维护中,我们可借助TEMS,华星,以及OMC-R的参数调整窗口,CQT呼叫质量拨打测试结果等,对产生干扰的原因进行具体分析。

具体实施时,利用系统的测量报告以及DT、CQT测量结果;根据同频信道资料可以查出是不是由本系统内的同频站引起的同频干扰或外来干扰;(但测量报告极限于邻区关系),否则要进一步判断是不是邻频干扰。

(1)同频干扰的解决办法:修改问题小区的同频频率;增加两个同频小区间的间距;降低移动台或基站的发射功率;加大下倾,采用低增益天线。

(2)对于非本系统的外来干扰,需要借助专门的仪表发现并消除干扰源。

另外,使用不连续发射(DTX)和跳频技术,可以有效地降低无线系统的干扰(包括系统内干扰和外来干扰)。DTX使用的目的是在基站不传送话音信号时停止发射,限制无用信息的发送,减少了发射的有效时间,从而降低了系统的干扰电平,并能延长电池寿命。跳频可有效地改善无线信号的传输质量,特别是慢速移动体的传输质量,这是由于跳频能将部分频率的干扰平均化,因此能明显地降低掉话率,提高接通率和切换成功率。

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

2012上行干扰处理流程及案例

2012遵义上行干扰处理流程及案例 根据省公司“工兵行动”专项干扰优化要求,各分公司将按照自查自纠展开工作。干扰问题一直是属于优化的重点,干扰会造成后台指标恶化,同时用户感到呼叫困难、通话质量差、异常掉话等。因此,处理干扰刻不容缓。 目前,遵义全网存在三种类型干扰:一是直放站干扰(设备稳定性较差)。二是网内干扰(谐振腔、馈线头、避雷器、天线等)。三是外部干扰(如电信CDMA、私装天线等)。处理起来比较繁琐、较为复杂,网优室结合现场处理经验。梳理了排查步骤和案例如下,各公司要进行认真学习,强化干扰处理能力,着实提升网络质量。 一、排查步骤 1、带直放站干扰小区 若接直放站,则将直放站全部甩开,将直放站合路器一同拆下,保持基站天馈原有状态。 (切忌不可只关直放站电源),联系机房人员查看上行干扰是否消失或减弱(让机房工作人员多刷新几次)。 若上行干扰消失,则需联系直放站厂家对直放站设备进行处理。处理完成后,维护人员 应打机房电话确认干扰是否消除,并且到直放站远端覆盖区域检查覆盖是否减弱。 若上行干扰没有任何变化,需要做如下步骤。 2、若无直放站小区存在上行干扰 排查该干扰小区100米内是否存在电信基站,若存在电信基站,建议首选协调电信关闭 电信基站后联系机房查看干扰小区的上行干扰情况。若无法协调电信关闭基站,建议将干扰小区天线方位角转向背向电信基站方向,联系机房查看上行干扰情况,判断是否减弱或消失。若干扰减弱或消失,则该小区的干扰源为电信基站,建议协调电信整改或者安装滤波器。若不是电信干扰,需要做如下步骤。 3、网内干扰处理 该小区无电信站在附近,无直放站,基本可以判断为基站网内干扰,涉及到的部件有: ANC、ANY、1/2跳线头、避雷器、7/8馈线头、天线。首先检查1/2跳线头是否老化、松

常见电磁兼容(EMC)问题及解决办法

常见电磁兼容(EMC)问题及解决办法 通讯类电子产品不光包括以上三项:RE,CE,ESD,还有Surge--浪涌(雷击,打雷)医疗器械最容易出现的问题是:ESD--静电,EFT--瞬态脉冲抗干扰,CS--传导抗干扰,RS--辐射抗干扰。针对于北方干燥地区,产品的ESD--静电要求要很高。针对于像四川和一些西南多雷地区,EFT防雷要求要很高。 如何提高电子产品的抗干扰能力和电磁兼容性: 1、下面的一些系统要特别注意抗电磁干扰: (1)微控制器时钟频率特别高,总线周期特别快的系统。 (2)系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 (3)含微弱模拟信号电路以及高精度A/D变换电路的系统。 2、为增加系统的抗电磁干扰能力采取如下措施: (1)选用频率低的微控制器: 选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。 (2)减小信号传输中的畸变微控制器主要采用高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS 电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。 信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。可以粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微控制器构成的系统中常用逻辑电话元件的Tr(标准延迟时间)为3到18ns之间。 在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在

联通FDD-LTE干扰排查案例

武汉联通FDD-LTE干扰排查案例 红光社区保障房 一、问题现象 在8月4日LTE的日常网络优化问题跟踪中,发现在L石洋污水处理厂_2等13个小区

二、优化分析 1.针对小区异常情况,我们首先在华为网管对该小区进行告警查询,结果发现这些站未出现有影响业务的告警,并未发现其与影响业务的重大告警,可以排除由于基站硬件原因。 2.查看采集到通过收集这13个小区的上行PRB干扰数据,统计干扰出现规律。经统计发现13个小区的干扰一直存在,且干扰波形类似,持续的时间都很长,基本是24小时,出现时间为7月26日晚,初步确定干扰源为外部有源固定干扰源,而且长时间不间断供电。 可以看出干扰主要集中在前40个RB上,为此详细分析了前40个RB值的干扰情况: 可以看出干扰波形走势类似,可以认定为同一个干扰源影响,并且在第13个RB上的干扰有突增,对应频率段为1747.4MHz。 3.假定干扰为外部干扰:分析采用扫频仪(美国泰克YBT-250),并配备八木天线,

现场频谱扫描,设定频率1745-1750MHz。 A、从基站小区受干扰的轻重程度、基站的部分受干扰扇区覆盖区域入手,初步判断干扰源可能存在的大致区域。 B、在初步认定的干扰源区域附近选取测试点多个合适的测试点,检测出干扰源的最强方向,并在图层上作出射线,通过多条射线的方向汇合点,进一步确定干扰源位置。 C、在确定的干扰源位置上用过观测附近环境和扫频测试精确找到干扰源。 最终确定干扰源为红光社区保障房3栋3201的业主私装手机信号放大器。 三、干扰排除 通过联系业主当面沟通后发现为移动用户因为手机信号不好私自加装了手机信号放大器。了解到该业主是7月26日搬到这所新租的房子内,并使用了房东留下的手机信号放大

高干扰小区排查方法全解

高干扰小区排查方法 1.概述 目前GSM干扰主要来自网内和网外的干扰。网内干扰主要是频率资源有限,频率复用越紧密,网络容量越大,复用距离越小,干扰就越大;网外干扰主要来自GSM往外的干扰,如干扰器、雷达等产生影响。干扰的大小是影响网络的关键因素,对通话质量、掉话、切换、拥塞均有显著影响。 经筛选,目前石家庄网络共177个小区存在4-5级干扰,如下: 目前7个小区存在外部干扰,需要用相关的扫频设备进行扫频;134个宏站存在频点或者互调干扰,可修改频点或者携带相关设备仪器进行天馈排查;另外36个室分小区存在互调干扰,需要排查室分干放设备,小区列表如下: 干扰小区列表.xls 2.干扰排查 目前干扰发现主要是测试和华为OMC操作台。上行干扰是BTS在空闲时可以利用一幀中的空闲时隙对其TRX所用频点的上行频率进行扫描,并统计到五个等级干扰带中,通过WEB LMT可实时观察目前载频干扰带分布和等级,在话统可以提取出五个等级的干扰带的统计。石家庄现网中统计4-5级干扰带所占比例,4-5级干扰带比例越高,则小区的干扰越强。

3.干扰处理流程 根据上图,在OMC的操作台的话统统计中统计4-5级干扰带比例,确定小区是否存在上行干扰。在凌晨时段定时发空闲的Burst后,根据干扰带变化和最近一段时间中全天的走势和强度,以及所有干扰小区的分布区域,初步确定是否存在外部干扰,如果确定外部干扰,则要对外部干扰区域进行扫频。 如果确定不是外部干扰,可通过iManager Nastar检查该小区的频点,从频点的干扰程度和复用程度判定是否修改频点。确定不是频点干扰后,可将干扰定位为设备的互调干扰,根据互调干扰定位方法进行分析。 3.1.外部干扰小区排查 观察话统统计,SJGH0115师大图书馆在早忙时8点干扰突然上升,通过对比前天的干扰带指标,干扰是突发出现,对用户的通话质量造成了一定的影响,该站掉话次数明显增加。下图为造成干扰的区域:

直放站技术及覆盖案例探讨(东讯)

目录 第一章了解直放站 一、概述 二、无线直放站介绍 三、移频直放站介绍 四、光纤直放站介绍 五、室内信号分布系统 第二章直放站对基站的影响第三章覆盖案例探讨

第一章了解直放站 一、概述: 近几年来,移动通信在我国发展迅速,两大网络运营商——中国移动和中国联通的竞争态势基本形成,移动通信用户的数量上升迅猛,使得网络容量和频率资源日现紧张。为了适应这种情况和提高服务质量,两大网络运营商也进行了大规模的网络扩容和优化工作。但即使这样,移动通信网络仍存在各种急需解决的问题。 在各种问题中,最明显的是由于网络运营商在组网布局时,出于经费及地形地物等方面的考虑,会出现覆盖不到的地域,通常称为盲区或死角。即使不考虑经费问题,也不可避免的会出现盲区和信号分配不均或信号太弱或干扰严重等问题,室内的如城市中的高层建筑、展览大厅、大型写字楼、酒店、商场、机场、地铁车站、地下室等,室外的如村镇、旅游风景区、公路、铁路、厂矿、隧道、小区、别墅等地方。而解决这些问题的最基本、最经济、最有效、最直接的方法,就是采用移动通信中继设备——直放站(Repeater),来达到信号覆盖、信号增强、信号均匀分配的目的,扩大和延伸基站的覆盖范围,提高覆盖质量,以此建立基站(BS)与移动用户(MS)之间的可靠的、高质量的通信。 1、直放站的定义 什么是直放站呢?直放站实际上就是一个同频双向放大的中继站(Repeater),通过它把基站的部分信道引过来,以实现接收和转发来自基站和移动用户的信号。其中有一类称为无线直放站(RF Repeater)的,主要由施主天线(也叫反向天线,对基站方向)、直放站主机、和用户天线(也叫覆盖天线或前向天线,对用户方向)三个部分组成。天线一般采用高增益的定向天线,直放站主机包括双工滤波器(Duplex)、低噪声放大器(LNA-low noise amplifier)、功率放大器(PA-power amplifier)等。直放站一般可获得80dB左右的增益,覆盖距基站35km以内的地区。直放站的优点是经济、简单、可靠、易于安装等。 直放站的类型很多,比较流行的有无线直放站(RF Repeater)、光纤直放站(Fiber optic repeater)、微蜂窝外置功放(Micro cellular PA)、室内信号分布系统(Indoor

化工仪表常见的外部干扰问题及处理措施孙爱敏

化工仪表常见的外部干扰问题及处理措施孙爱敏 发表时间:2019-11-20T12:45:08.563Z 来源:《中国电业》2019年15期作者:孙爱敏 [导读] 随着时代的快速发展,进而相关的化工行业也紧随其后不断发展 摘要:随着时代的快速发展,进而相关的化工行业也紧随其后不断发展,在整个化工行业的生产过程中相应的化工仪表是其中非常关键工具,相应的化工仪表在整体的生产过程中起着监测和显示的作用,从而保证整体化工生产的有序安全进行。 关键词:化工仪表常;外部干扰问题;处理措施 引言 化工仪表就是化工自动化仪表的简称,指的就是化工生产中对压力、温度、流量、液位等变量进行自动控制与监测的显示仪表。随着化工仪表智能化水平的不断提高,化工生产中仪表技术越来越成熟,逐渐实现了化工仪表的网络自动化,具有非常广泛的应用范围。 1造成化工仪表外部干扰的一些因素 在整体的化工生产过程中,对于相应的化工仪表可能产生干扰的主要因素包括电磁场的突变,高频电压干扰因素以及电磁场高压的影响等等。这些因素的存在都会对于相应的化工仪表的正常运行产生影响,对于这些因素的存在有些是化工的生产过程中不可避免的,所以相应的人员对于这些影响相应的化工仪表正常工作的一些外部因素进行充分了解,了解其产生的原因以及造成影响的程度,从而才能做到对于相应的干扰因素采取相应的有效措施,以下对于这些对于化工仪表外部产生的一些干扰因素进行简要的陈述和分析。 1.1横向干扰 在化工生产的过程中,影响化工仪表横向干扰的主要因素有以下3个:①体现在电磁场的突变上。电磁场的突变是横向干扰中最为典型的一种电磁干扰,尤其是在化工生产过程中,由于需要设置较多的强电流机器设备,比如高频率变压器及其电流较强的电网等,导致化工广场的磁场稳定性不足,易受到影响,进而导致化工仪表的测量准确性有所偏差。同时,如果化工厂的磁场干扰强度不断上升并达到所限制的强度范围,不仅会导致化工仪表无法正常运转,还会造成化工仪表的信号传输端口出现问题。②化工仪表会受到高频干扰因素的影响。与突变电磁场相比,高频电压对化工仪表的影响相对较小,其原因主要是在化工仪表的输入回路带电容的情况下,进行自我闭合或断开动作时,其触点会产生花火,而这些花火均为高频干扰源,进而对化工仪表的工作运转造成了影响。由于化工仪表在工作时大多处于低频状态,因此,相比于电磁场突变,该因素的影响度较小。③在实际的化工生产过程中,由于需要设置高频变压器、交流电动机等具有高压的设备,所以,化工仪表还会受到电磁场高压的影响,在对化工仪表产生电势干扰的同时,导致化工仪表的回路出现电容,进而影响了化工仪表的正常运行。 1.2纵向干扰 化工仪表的纵向干扰通常是指由漏电电阻产生的平行干扰。所谓“漏电电阻”,也称为绝缘电阻,即在电容正负之间的介质并不是完全绝对绝缘的,而是作为有限数值存在着。在这种绝缘电阻的影响下,纵向干扰的电压通常处于几伏特到几十伏特之间。因此,纵向干扰对化工仪表产生的影响通常是基于横向干扰的转换之后才造成的。而纵向干扰转向横向干扰的情形主要有以下2方面:①基于入地电流的影响。入地电流主要是指大地中流动着的电流。当化工仪表的周边置放着大功率的电气设备时,由于该电气设备没有较强的绝缘性,易造成地面漏电的情况发生,出现入地电流。除此之外,化工仪表在使用时,其电路的接入点通常不止一个,导致电流在经过地面时接入点出现电位差,进而对化工仪表的正常运转造成影响。②电流泄漏的干扰是影响化工仪表运作的因素。其表现通常为绝缘材料的老化现象。在生产过程中,由于多种变量信号集中传输,加之绝缘材料的老化,导致电流泄漏,进而干扰到了其他信号的输送,阻碍了化工仪表的工作运转。比如在化工仪表工作时,采用220V的供电,使电源与其信号线产生短路,设备被烧坏,进而影响了化工仪表的正常运转。 1.3大功率设备 在化工生产的过程中,如果在化工仪表的周边存在着较大功率的设备时,也会对于仪表的正常工作产生影响。主要原因是相应大功率的电气设备没有较强的绝缘性,这样就非常容易出现地面漏电的现场的产生,如果出现了相应的地面漏电现象的发生,就会产生入地的电流,进而对于设备的整体的运转造成非常大的影响。在实际的化工生产过程中,以上这些因素的存在都会对于相应的化工仪表的正常工作产生干扰,存在的这些干扰因素中,有些干扰因素对于相应的化工仪表的正常运行的影响是非常严重的,所以相应的人员就需要对于这些存在的干扰因素进行有效的排除,如果不采取一定的措施,很容易造成相应化学仪表的工作异常甚至损坏,严重还会影响整体化工的正常生产运行。 2化工仪表外部干扰问题的处理措施 2.1屏蔽法 为了避免电磁场干扰,可以对电缆线加设屏蔽管,或者用导线穿线管对化工仪表电缆予以覆盖,也就是说,把电缆穿入穿线管当中,金属在本身磁阻作用下,屏蔽之后的交变磁场就不会对穿线管中德电缆产生影响;屏蔽之后的干扰电压将会降低为原来的1/20。此外,对导线进行绞合,之后穿入屏蔽管,能够有效降低干扰。 2.2滤波法 感性原件具有储能作用,当化工仪表输入信号源与输出驱动为感性原件的时候,在接点闭合的状态下就会发生电弧,断开的状态下就会出现高于电源电压的反电势,对于此种干扰源而言,可以通过滤波法予以处理,在化工仪表输入端设置R-C或者L-C滤波电路,削弱干扰程度,并且以触发电平的方式,对杂波信号予以拦截。 2.3隔离法 隔离法指的就是借助放大器浮空避免干扰,也就是说,避免放大器和化工仪表之间的直接接触。在化工生产中,在放大器和化工仪表之间放置绝缘材料,将放大器垫起,使其和化工仪表之间保持一定的距离,这是切断纵向干扰的有效手段,此种做法可以避免电压泄露,有效杜绝了纵向干扰。电源也是干扰化工仪表正常运转的主要因素,此种干扰主要指的就是由供电线路阻抗耦合产生的,部分大功率用电设备均会成为干扰源,一般指的是大功率变频器。为了有效防治此种干扰,可以在仪器交流电源输入端设置隔离变压器,使电源和供电线路之间保持一定的距离,尽可能降低干扰程度。 2.4接地法 通常情况下,干扰源频率均在1MHz以下,可以一点接地;而针对干扰源频率超出10MHz的情况而言,需要设置多点接地;当干扰源频

108.上行干扰排查之隐性故障干扰优化

VOLTE上行干扰排查之隐性故障干扰 优化 目录 上行干扰排查之隐性故障干扰优化 (2) 一、问题描述 (2) 二、分析过程 (11) 三、解决措施 (14) 四、经验总结 (16)

VOLTE 上行干扰排查之隐性故障干扰优化 【摘要】对于上行干扰TOP 小区从干扰时间和干扰特征入手进行分析,同时结合话统指标和扫频仪频谱分析,界定系统内外部干扰类型,并通过RRU 通道指标识别射频硬件故障问题,最终通过更换RRU 解决此干扰问题。 【关键字】上行干扰、指标恶化、RRU 隐性故障 【业务类别】优化方法、参数优化 一、 问题描述 1.1 上行干扰小区情况 日常指标监控中发现TOP 小区福永天佑第二工业园-800_1小区存在较强的干扰,从而导致接通率和掉线率偏高,下面将对该小区进行干扰排查。 1.2 上行干扰分类介绍 阻塞干扰 阻塞干扰一般为附近的无线电设备发射的较强信号被LTE 设备接收导致的,现阶段发现的阻塞干扰主要为其他频段基站系统带来的。其干扰特点如下: ① 小区级平均干扰电平跟干扰源话务关联大,干扰源话务忙时LTE 干扰越大。 ② 干扰基站天线与LTE 小区天线隔离度越小,干扰越严重。当然仅仅通过工参信息无 法得知系统间天线隔离度大小,但可以从天线高度和天线水平方位角大致了解天线隔离度。 ③ PRB 级干扰呈现的特点是PRB10之前有一个明显凸起,凸起的PRB 后没有明显的干扰波形。 日期基站名称 eNodeB 名称 小区双工模式 小区名称 本地小区标识 系统上行每个PRB 上检测到的干扰噪声的平均值(毫瓦分贝) 2019-07-01FO_福永天佑第二工FO_福永天佑第二工CELL_FDD FO_福永天佑第二工业园-800_14-922019-07-01FO_松岗恒兆商务大FO_松岗恒兆商务大CELL_FDD FO_松岗恒兆商务大厦-800_25-922019-07-01FS_田寮机楼1号综FS_田寮机楼1号综CELL_FDD 田寮村长塘路四巷9号15-92.28572019-07-01FM_宝安嘉兆花园FM_宝安嘉兆花园CELL_FDD FM_宝安嘉兆花园_2 2-92.42862019-07-01FS_四号线上梅林站FS_四号线上梅林站CELL_FDD X J-FR_四号线上梅林站到莲花北站44-92.57142019-07-01FS_福田滨海深长石FS_福田滨海深长石CELL_FDD 福田深圳高尔夫俱乐部常胜鲍鱼酒楼10-92.57142019-07-01FO_固戍上围园FO_固戍上围园CELL_FDD FO_固戍上围园_480-92.57142019-07-01FO_固戍福荣路FO_固戍福荣路CELL_FDD FO_固戍福荣路_1(CA)4-92.57142019-07-01FO_南湾满庭芳FO_南湾满庭芳CELL_FDD FO_南湾满庭芳_491-92.7143 2019-07-01FS_罗湖蔡屋围新八FS_罗湖蔡屋围新八CELL_FDD 罗湖蔡屋围丽晶大厦10-932019-07-01FM_福田中天元FM_福田中天元CELL_FDD FM_福田中天元-800_1 7-932019-07-01 FM_西乡华创达工业FM_西乡华创达工业CELL_FDD FM_西乡华创达工业园-800_0 3 -93.1429

GSM干扰问题分析方法和案例

GSM干扰问题分析方法和案例

目录 1引言 4 2干扰对基站的影响 4 3干扰的来源 4 3.1基站的内部干扰源 4 3.1.1 TRX故障 4 3.1.2 CDU或分路器故障 4 3.1.3 杂散和互调 5 3.2基站的外部干扰源 5 3.2.1频率规划不当引起的干扰 5 3.2.2直放站 5 3.2.3雷达站 5 3.2.4模拟基站 5 3.2.5其它同频段通讯设备 5 4干扰的测试工具 5 4.1频谱仪的基本知识介绍 5 4.2定向天线 6 5干扰的测试方法 6 5.1内部干扰的测试方法 6 5.2外部干扰的测试方法 6 5.3外部干扰源的收索方法7 6典型案例分析7 6.1白银模拟基站干扰7 6.2 云南不明干扰的测试8 6.3 涟源直放站干扰8 6.4甘肃的干扰问题9 6.5内蒙“干扰带”问题分析报告9 6.6阿盟雷达干扰分析11

基站干扰问题分析方法 关键词:GSM、干扰、直放站、雷达 摘要:本文对GSM基站开局维护中所碰到的各种干扰现象进行了分析,并详细描述了干扰源定位的方法。 1引言 随着公司GSM系统的规模应用,出现了形形色色的干扰问题,本文对这些干扰问题进行分析和总结,并给出了定位问题的方法,以作为今后网络维护的借鉴和指导。 2干扰对基站的影响 当基站内部存在同频干扰,或者基站受到外来的同频信号的干扰时,正常的通讯信号就可能受到不同程度的破坏,从通话效果上看,会出现以下情况: 1. 通话时经常听不到对方的话音或者背景噪音很大。 2. 固定打移动,移动打移动,经常碰到网络繁忙的提示音。 3. 通话过程经常有断续感,容易出现掉话。 如果进行基站话务统计,会发现: 1、有高达3-5级干扰带出现。 2、拥塞率高。(在信令传递过程中,由于信令信道受到外界的干扰,从而导致SDCCH或 TCH指配失败) 3、掉话率远高于正常要求;(由于外界干扰,导致切换命令信令误码或话音信道过差而导 致切换失败)。 4、误码率高。(有时即使上行接收电平达到-70dBm,接收误码率也可能大于12.8%) 3干扰的来源 .1基站的内部干扰源 基站内部的干扰可能有以下原因产生: .1TRX故障 由于TRX生产出现纰漏或者在使用中出现性能下降,可能会导致TRX放大电路自激,影响接收性能。

干扰-MR不处理分析报告案例

MR不处理分析报告 1 现象描述 C国LTE项目,做上行拉网测试时,UE从M站点FE2切换到N站点FE2,切换成功后,N站点FE2测量控制消息还没有下发,UE又上报测量报告,基站不处理,导致掉话。 前台信令截图 2 告警信息 无 3 原因分析 【问题结论】 UE从A小区成功切换到B小区后,如果B小区测量控制消息还没有下发,UE就上报测量报告要求切换到C小区,此时UE上报的测量报告中的measId是沿用A 小区下发给它的测量控制消息中的measId(因为没有收到B小区下发的测量控制消息,故无法更新),因为测量报告中的measld与B小区预期的不一致,故B小区不处理测量报告。

【原因分析】 (1)UE 从M 站点FE2(A 小区)切换至N 站点FE2(B 小区),M 站点FE2(A 小区)作为目标小区时下发的测量控制消息中预期的measIdObjectId=1,之后上报的测量报告中measId=1,两者一致,故M 站点FE2(A 小区)处理测量报告,UE 成功切换到N 站点FE2(B 小区)。 (2)UE 成功切换到N 站点FE2(B 小区)后,从前台信令可以看出,N 站点FE2(B 小区)还没有下发测量控制消息,UE 就上报测量报告。 从后台虚拟用户跟踪信令可以看出,在UE 上报多个测量报告(measId=1)后, N 站点FE2(B 小区)才下发测量控制消息(预期measIdObectId=2),两者不一致,故之前的测量报告,基站不处理,导致切换失败。 A 站点FE2作为目标小区下发 的测量控制消息

(3)该问题是在切换时出现了RRC重配置流程与MR测量报告嵌套,正常情况下,在测量控制还未下发前,UE是不会上报MR测量报告的,一般情况下,有两个原因会导致该问题发生: 1、终端UE问题,终端设计不符合协议; 2、上行信号质量较差,干扰严重。 4 处理过程 调整M站点FE2功率,降低干扰。测试发生切换失败时,区域的SINR<-5dB,RSRP为-100dbm左右,调整完M站点FE2功率后,区域的SINR>-3dB,RSRP 为-95dbm左右,复测未出现该问题; 5 学习心得 切换过程中,如果基站没有下发测量控制消息,或者UE没有收到测量控制消息,UE就无法更新其上报MR的内容,这样将导致UE想切换时,基站侧预期的MR 与实际的MR不一致,基站不处理MR,最终导致切换失败。 这种问题发生的频率不高,出现问题时应先排除上行干扰。

信号干扰案例

1 非航空干扰源基本特征 从干扰源分布范围而言,干扰可以分为民航内部干扰和非航空源干扰两类,针对民航业务内部各类无线电设施的同频干扰或邻频干扰,可以通过民航无线电管理委员会等主管部门对内部频率进行特别指配,进行协调、解决。因此,对民航无线电专用频率造成干扰的干扰源,绝大部分属于非航空干扰源,根据行业特点,大致可以分为:广播电视业务、工业、科学和医疗设备(ISM)、移动通信业务、电力传输系统、有线电视传输系统,家用电子设备等。以下对各类非航空干扰源的特征作一简要说明: (1)广播电视业务: 该业务基本特点是:使用大功率的发射设备,连续工作,台址一般靠近大城市,多在高山顶峰设置差转台,而且广播电视业务所占频段与民航无线电业务频段紧密相邻,如:74.6 MHz~75.4 MHz属民航导航(指点标)频段,76 MHz~84 MHz为广播电视业务,87 MHz~108 MHz为调频广播业务,108~117.975MHz 属民航导航(ILS、VOR)频段,而117.975~137 MHz为民航VHF通信频段。一方面频率资源有限,另一方面广播电视及民航行业发展速度很快,造成广播频率日益向上扩展,同时民航频率又在向下扩展,使得频段内过于拥挤,因此,广播电视业务极易对民航业务产生同频或邻频干扰。广播电视业务的有害干扰主要表现在两个方面:第一,其残波辐射信号落人民航频段;第二,两个或多个频率的广播信号在民航无线电接收机内形成互调,产生的互调干扰频率落在民航频段内。广播电视业务干扰民航业务有其最显著特征,即VHF通信中显现有广播话音信号。 (2)工业、科学和医疗设备: 工业、科学和医疗设备(ISM)干扰主要由其谐波和杂散辐射产生,同时因为工业设备的短时间频率稳定性较差,会出现很大的瞬时频偏,因此,ISM干扰信号类似于宽频偏、低调制频率的调频信号。造成的干扰主要表现为噪声干扰。 (3)电力传输系统: 由于电力传输系统的电晕效应和间隙放电引起的无线电噪声,主要对民航无线电台站的电磁环境造成影响,同时通过高压线传输的载波控制信号,有的采用民航频段专用频率,也易对民航业务造成干扰。另外,高压输电线路作为高大的金属物体,对无线电导航信号会产生反射和再辐射,将改变导航信号的空中场型,造成无源干扰。因此,我们要密切关注在机场区域附近的高压电传输系统修建情况。 (4)有线电视电缆传输系统: 因有线电视节目是用载波通过电缆系统传输,有的载波已占用了民航频段,如:电视增补1、2、3频道,其图像载频分别为112.25 MHz、120.25 MHz、136.25 MHz,伴音载频分别为118.75 MHz、126.75 MHz、142.75 MHz,与民航VHF通信频率重合,因此可能发生由于射频能量泄漏造成干扰,其表现亦如广播电视业务,会有广播话音出现。 (5)移动通信业务: 社会上大量存在的无绳电话,有些厂家或用户会出于某种目的,将其额定功率提高,若其在机场附近或某些特殊区域(如高山)使用,极易对地面台或飞机造成电话话音干扰。在有的地区,尤其是交通不便的山区或岛屿,电信部门可能

siRNA干扰常见问题

siRNA干扰常见问题 Q:如何选择转染方法和转染试剂? A:我们的siRNA适用于各种转染方法。转染方法和转染试剂的选择,需要根据细胞来选择,对于容易转染的细胞,常用的转染方法是脂质体转染。 Q:对于难转染的细胞,应该如何提高其转染效率?转染效率又该如何确定? A:1)对于贴壁细胞,推荐采用转染试剂转染即可;2)对于难转染的细胞的转染,如何提高转染效率的问题也是目前研究的技术难题。一般建议使用电转的方法,但是由于电转的方法对细胞损伤比较大,该方法也未必是最佳的。 转染效率的确定,常用的是使用荧光标记的siRNA,通过荧光显微镜,共聚焦显微镜,流式细胞仪检测的方法。具体可以参考我们的产品说明书。 Q:细胞的转染效率是否与siRNA序列相关?

A:转染效率的高低取决于与细胞自身及转染方法,而于siRNA的序列并没有直接关系。因此,siRNA在不同的细胞转染效率可能不一样。 Q:转染siRNA时候的细胞密度多少为宜? A:依不同的转染方法或转染试剂而定。如使用lipofectamine 2000作为转染试剂,单独转染siRNA,30%~50%密度较佳;而siRNA与质粒共转染,密度可以到80%-90%。 Q:siRNA转染时的培养基要求,可否含血清? A:不同的转染试剂可能有不同的要求,对于lipofectamine 2000,在配制siRNA和lipofectamine 2000混合物时不能含有血清,但细胞培养基可以含有血清,但不能含有抗生素。 Q:siRNA的储存液体浓度和工作浓度有何区别? A:siRNA的贮存浓度就是保存的最佳浓度,锐博推荐的贮存液浓度为20 μM;而siRNA的工作浓度就是使siRNA能够达到最佳沉默效果的转染浓度,一般10~100 nM范围内,锐博生物推荐的转染浓度是50nM。

上行干扰排查

上行干扰排查 近年来,各移动网络规模发展非常迅速,一方面,为了应对由于市场资费调整带来的话务压力,在某些人口密集地区(如商业区、大学城)出现了较多的大配置基站,基站分布变密;另一方面,为了解决网络弱覆盖以及投诉,网络中建设了大量的分布系统和直放站。这样,在解决网络覆盖和话务的同时也带来了其他一些问题,其中上行干扰问题显得较为突出,直接导致了网络质量的下降和用户投诉量的增加。本文基于干扰的排查提出一些方法及总结。 1.1 干扰分类 GSM系统的干扰按照频段有上行干扰和下行干扰之分,此次项目主要针对上行干扰进行排查和处理。根据我们目前在实际工作中所遇到的干扰类型,主要有以下几种情况: 直放站干扰 直放站干扰是网络优化过程中最常见的干扰之一。直放站有宽频直放站和选频直放站。宽频直放站实际上是一个宽频放大器,它将整个移动上行或下行频带放大,实现信号覆盖。宽频直放站有合法直放站和非法直放站之分,合法直放站由于设置不好,造成对基站干扰,但较多的宽频直放站干扰为非法私自安装的直放站,这是因为劣质宽频直放站价格便宜,在人口密度大,信号覆盖不好的场所经常私自安装。宽频直放站的干扰特点是频带宽,占据整个上行,且幅度不稳定。 选频直放站也是放大上行信号的放大器,但与宽频直放站不同,选频直放站仅工作在某一频率或几个频率上,因此产生的干扰比宽频直放站产生的干扰小。有些选频直放站仅在有手机业务信号时才存在,形成的干扰是间歇的。从频谱上看,选频直放站具有与正常手机信号相同的频谱,只是手机信号是瞬间信号,选频直放站信号相对停留时间比较长。选频直放站一般价格较高,通常不是非法直放站,而是运营商自身或运营商之间的直放站设置不好造成的。 CDMA基站及其直放站的干扰 从运行频段上看,CDMA的下行频段与GSM的上行频段比较接近,在站址选择及网络规划中如果做得不恰当,势必造成对GSM的干扰,造成GSM系统接收性能的下降(干扰是相互的,但由于GSM的发射频段与CDMA的接收频段相差较远,且CDMA是自扩频通信系统,抗干扰性能较好,所以GSM对CDMA系统所造成的干扰可以忽略)。三种主要的CDMA干扰为杂散干扰、阻塞干扰和互调干扰。其中,杂散干扰与CDMA直放站(或基站)目前在890MHz附近的带外发射有关,这是接收方(GSM系统)自身无法克服的,将导致GSM系统信噪比下降,

_重叠覆盖导致质差案例

主题:覆盖类-重叠覆盖干扰导致sinr差(TDD)优化案例作者:邹少恩 邮箱: 所在省:四川 关键字:重叠覆盖,MOD3干扰 专业:无线 设备类型:eNodeb 设备型号:RRU3257 软件版本:3900LTEDATAV100R012C10SPC230 问题描述: UE在华阳大道四段由西北向东南方向行驶,占用华阳大道三段-SCDHLS5HM3TF-D2,RSRP-95dbm,sinr-4,下载约10M,邻区有华阳大道三段-SCDHLS5HM3TF-D1、正东街-SCDHLS1HM1SL-D4、正东街-SCDHLS1HM1SL-D6,电平均在-96dbm左右,形成重叠覆盖,导致SINR差。 问题分析: 一、分析问题现象可能原因: 1、网络建设:站点建设空洞,网络弱覆盖,确实信号不好,导致SINR差;

2、网络规划:PCI规划不合理,mod 3干扰严重,邻区漏配等; 3、网络优化方面: (1)RS功率设置太低; (2)天线方位角、下倾角设置不合理; (3)智能天线运用不当 (4)TM发射模式不当; 4、网络维护:基站设备故障、天馈故障、RRU故障等; 二、处理步骤 1.站点告警排查: 该基站无异常告警。 2.设备故障排查: 该套设备在其他路段验证无故障。 3.站点干扰排查: 从邻区列表可知,主服小区华阳大道三段-SCDHLS5HM3TF-D2(PCI=188)时,与正东街-SCDHLS1HM1SL-D4(PCI=329)同模,sinr为-4. 4.覆盖情况排查: 从邻区列表可知,该路段有多个RSRP值相近(-95dBm左右)的小区,重叠覆盖且SINR

值较低。 解决措施: 该故障可通过如下优化调整进行规避: 1、调整正东街-SCDHLS1HM1SL-D4功率从92调整至132; 2、调整华阳大道三段-SCDHLS5HM3TF-D1机械下倾角增大3°;华阳大道三段-SCDHLS5HM3TF-D2机械下倾角增大3度,方位角210度调到180度; 3、调整正东街-SCDHLS1HM1SL-D6的下倾角下压5度,方位角300度调整到280度。 4、调整华阳大道三段-SCDHLS5HM3TF-D1和华阳大道三段-SCDHLS5HM3TF-D2的下倾角下压5度控制覆盖,使正东街-SCDHLS1HM1SL-D4来覆盖该路段,避免重叠覆盖。 优化后SINR图 预防/监控措施: 对于sinr较差问题,分析一般重点从硬件故障、覆盖、无线干扰、参数设置等方面进行排查,在日常测试中,如果遇到测试sinr差的时候,可首先观察是否存在弱覆盖和模3干扰;其次为覆盖问题,是否存在越区和重叠覆盖现象,对于重叠覆盖和越区覆盖严重的路段,很容易造成MOD3干扰,因为目前LTE组网是同频组网,频点相同的不同小区MOD3值相同且电平差值低于6dbm就容易产生干扰,需要根据实际情况调整天线方位角和俯仰角,确定其主服小区。

干扰问题的定位流程与基本处理方法

干扰问题的定位流程与基本处理方法 干扰问题定位流程 我们一般将干扰大致分为三类:硬件设备导致的干扰,网内干扰,网外干扰。 当通过分析怀疑某小区可能存在干扰时,首先应该检查该小区所在基站是否正常工作。在远端应检查有无天馈告警,有无关于TRX的告警,有无基站时钟告警等;在近端则应检查有无天线损坏、进水;馈线(包括跳线)损坏、进水;CDU故障、TRX故障、基站跳线接错、时钟失锁。然后再判断是否频率计划、数据配置错误导致的网内同邻频干扰,最后再确定是否是网外干扰。 基站干扰可以分为上行干扰和下行干扰。 对于上行干扰可以采用上行频点扫描,结合话务统计信令进行分析,对于下行干扰可以利用Mobile Show 和测试手机的SCAN RF功能观察下行各频点电平。 如果有频谱仪和定向天线则可以利用其进一步查找干扰源。 我们可以从无线信号的各个环节入手,逐步排除,找出产生干扰的原因。基站射频信号路径如下: 外界->天线->馈线->CDU ->TRX 这当中任何一个环节都可能产生干扰,我们可以利用频谱仪由下至上逐步测试,确认干扰的来源。关于测试方法下一节将详细介绍。 干扰问题定位流程图

注:上述流程的排查思路是:网内干扰->硬件问题->网外干扰,只是提供一种思路,请现场根据实际情况由易到难,灵活考虑排查步骤。

基站内部干扰现场处理的基本步骤: 如果该干扰带一直存在,或者干扰带随话务量增加而增强,并且通过更换频点等方法排除了基站外部干扰,就可以初步判断为基站内部干扰。可采取如下措施: 1、首先检查是否是载频或者CDU故障导致内部干扰,处理比较简单,主要是闭塞和更换单板进行处理。 2、其次检查机顶输出口与跳线,以及跳线与馈管的连接。如果端口匹配不好的话,有可能导致基站前端电路刚好处于不稳定的状态,导致电路自激振荡形成对接收带内的宽带干扰。 3、最后检查天馈系统是否产生无源互调,主要方法是关闭部分TCH载频或互换小区天馈系统,来判断是否是由于天馈互调导致的干扰问题。 这里着重介绍最常见的上行干扰的基本定位步骤,以BTS3X基站为例: (1) 登记话务统计,主要是TCH性能测量,小区性能测量,上行频点扫描,上下行平衡测量。话务统计周期可以设置为30分钟或更短。 (2) 只开一个TRX,把该基站其余的全部关掉,观察话务统计结果,此步骤目的查看是否为互调干扰,如果干扰带消失,说明为互调干扰,则进行步骤(6)。如果干扰带没有消失,则进行步骤(3)。 (3) 将TRX的主/分集接收两个输入电缆旋下,接上假负载,一般CDU未使用的接收端口处都有,观察Abis 接口上报的干扰带(现场主导,请机房同事配合观察),如果干扰带很高,说明干扰来自TRX,更换TRX,如果干扰带全在干扰带一中说明干扰来自TRX以上环节进行步骤(4)。 (4) 将TRX的接头和电缆还,将CDU连接输入处TX/RX,接功率计假负载,吸收其输出功率的同时使主集接受支路的输入信号为0,同时将CDU分集接收电缆也断开,接上匹配负载,使其输入信号也为0。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU,更换CDU;如果更换CDU和TRX均不起作用,则可能基站时钟有问题,检查TMU13MHz时钟,检查TMU至TRX之间的时钟总线,检查时钟匹配拨码开关,检查机顶时钟匹配头,如果干扰带全在干扰带一中,说明干扰来自CDU以上环节,进行步骤(5) (5) 将CDU的接头和电缆还原,将机顶该小区TX/RX和RXD的射频软跳线断开,在机顶TX/RX和RXD端口接上匹配负载。观察Abis接口上报的干扰带,如果干扰带很高,说明干扰来自CDU至机顶端口的射频电缆,更换之;如果干扰带全在干扰带一中,说明干扰来自机顶以上环节,进行步骤(6) (6) 打开所有TRX,在机顶将该小区和邻近小区该邻近小区无干扰天馈互换,观察Abis接口上报的干扰带,

GSM上行干扰排查指导书

GSM上行干扰排查指导书

1 概述 本文通过XXX上行干扰排查,对造成上行干扰的原因和排查方法进行总结,指导现场用服人员,合作方督导,维护人员对上行干扰的排查工作。 2 上行干扰表现及原因 2.1 上行干扰判断 上行干扰带是话统中判别上行干扰的一项重要指标。它是利用载频RSSI电平上报这一功能,在空闲时隙上统计机顶口功率电平来判别上行信号受干扰的程度。因为空闲时隙是没有业务的,此时检测到任何电平都可以认为是对有用信号的干扰,这种干扰可能来自网内同频干扰、外界干扰或基站内部的互调干扰等。在无干扰的情况下,上行干扰带的统计等级都为1。 上行干扰带等级的定义如下: 如下图所示,TRX9和TRX12 4级干扰带占绝大部分,这时即存在上行干扰现象。

2.2 上行干扰因素 产生上行干扰的主要原因有: 1)无源互调 2)直放站干扰 3)C网干扰 4)网内同临频干扰 5)载频问题 6)其它外部干扰 其中无源互调属于基站及天馈系统内部干扰,直放站干扰和C网干扰属于外部干扰。 3 上行干扰原因及排查方法 3.1 无源互调 上行干扰最多的就是基站和天馈系统(包括天线)的无源互调。无源互调特性(PIM)是指接头、馈线、天线和滤波器等无源部件在多个载波的大功率信号条件下,由于部件本身存在非线性而引起的互调效应。通常认为无源部件是线性的,但是随着基站功率和载波数的增加,无源部件都不同程度地存在一定的非线性,这种非线性主要是由以下因素引起的:不 同材料的金属的接触;相同材料的接触表面不光滑;连接处不紧密;存在磁性物质,器件功

率容量不足等。 互调产物会对通信系统产生干扰,特别是落在接收带内的互调产物将对系统的接收性能产生严重影响。 无源互调判断方法:凌晨话务较少时,先统计小区的干扰带,然后小区所有载频发送空闲burst,再统计小区干扰带,如果干扰带有明显上升,比如原先为1,发射后出3级或以上干扰带,则可证明存在上行互调干扰。这里发送空闲BURST是为了让多个载波大功率信号作用于天馈系统,把隐藏的上行互调问题暴露出来。 3.1.1 无源互调排查方案一: 上图为基站系统结构图,基站发射信号通道中的所有无源器件,都可能产生无源互调,包括基站系统中的双双工器DDPU和DDPM;合路单元DCOM和DFCU;室内天馈部分的滤波器,避雷器和下跳线;室外天馈部分的上跳线和天线;馈线等。系统产生的无源互调无法直接判断出是哪一个部件出的问题,只能进行分段排查,排查每一段时观察干扰带变化(比较空闲时隙测试前后频谱)。 在确定存在互调现象后可采用如下排查方法: 步骤-:检查基站设备及天馈系统基本情况 1)进入机房后,请先检查基站设备及天馈系统的基本情况。 2)检查载频和空腔的射频连线是否正确; 3)检查基站空腔发射口的接头、跳线与馈线的接头是否松动;检查利旧部件各个接头 是否锈蚀,接头是否存在碎屑等制作不良。

相关文档
相关文档 最新文档