文档库 最新最全的文档下载
当前位置:文档库 › 医用高等数学定积分习题精讲

医用高等数学定积分习题精讲

医用高等数学定积分习题精讲
医用高等数学定积分习题精讲

习 题 五

习 题 五

1. 由定积分的几何意义计算下列定积分 (1) 2π 0sin d x x ?

(2

) R

x -?

(3) 0

13d x x -?;

(4) π

cos d x x ?.

1. 解:由定积分的几何意义 (1) 2π 0sin d x x ?

π

sin d sin d A (A)0x x x x =+=+-=??π

(2

) R

x -

?

2 1

2

R

x R -==?

π

(3) 0

13d x x -?32

=

(4) π

cos d x x ?π

2π 0

2cos d cos d A (A)0x x x x =+=+-=??π

2. 用定积分的定义,计算由曲线21y x =+与直线1,4x x ==及x 轴所围成的曲边梯形的面积.

解:因为被积函数2()1f x x =+在[14],上是连续的,故可积,从而积分值与区间[14],的分割及点i ξ的取法无关. 为了便于计算,把区间[14],分成n 等份,每个小区间的长度都等于3

n

,分点仍记为

012114n n x x x x x -=<<<

<<=

并取(12)i i x i n ξ==,,,,得积分和

22

21

1

1

1

33

()(1)(1)11)n

n

n

n

i

i

i

i i i i i i i i f x x x x n n

====?=+?=+?=+∑∑∑∑ξξ

((

+)

23211

27186n n

i i i i n n ===++∑∑ 32

19181

(1)(21)(1)622n n n n n n n =

+++++ 9111

(1)(2)9(1)62n n n

=+++++ 令n →∞(此时各小区间的长度都趋于零,故0λ→),对上式取极限,由定积分的定义,

4

2

21

01

9111

(+1)d lim (1)lim[(1)(2)9(1)6]242n

i i n i x x x n n n →→+∞==+?=+++++=∑?

λξ

3. 判断下列式子是否一定正确 (1) ()d 0b

a f x x ?≥(其中()0f x ≥);

(2) ()d ()d ()b

b

a

a

f x x f x x

a b

?≥.

3. 解:

(1)不一定正确,这是因为题中未指明a 与b 的大小关系. 当a b ≤时,有 ()d 0b

a

f x x ?≥;当a b ≥时,有 ()d 0b

a

f x x ≤?.

(2)一定正确.

由定积分的性质,已知a b <,()()f x f x ≥,则 ()d ()d .b b

a

a

f x x f x x ??≥

4. 试比较下列各组积分值的大小,并说明理由 (1) 1

1

1

23 0

d d d x x x x x x ???,,;

(2) 4 4 4

2 3

3

31

ln d (ln )d d ln x x x x x x

???

,,; (3) 1

1

1

d ln(1)d

e d x x x x x x +???,,.

4. 解:

(1)当[0,1]x ∈时,有23x x x ≥≥,因此 1

1

1

23 0

d d d x x x x x x ≥≥???.

(2)当[3,4]x ∈时,有ln 1x ≥,21(ln )ln ln x x x

≥≥, 因此 4

4

4

2 3

3

3

1

(ln )d ln d d ln x x x x x x

≥≥???

5. 计算

(1) 3 0

(1cos )d lim

sin x

x t t x x

→--?;

(2) 3 0

(1cos )d lim

tan x

x t t x x

→--?.

解:(1)根据洛必达法则和积分上限函数导数的性质

3 0

(1cos )d lim

sin x

x t t x x

→--?

301cos lim

1cos x x

x

→-=- 20

lim(1cos cos )3x x x →=++=

(2)同理

3 0

(1cos )d lim

tan x

x t t x x

→--?

3201cos lim

sec 1

x x

x →-=- 24003cos sin 3cos sin 3

lim lim 2sec tan sec 2tan 2x x x x x x x x x x →→=== 6.

求21 d x y t t =?(0)x >的导函数().y x '

解: 0

2

2

1 0

()[cos d d ]x

y x t t t t ''=+??

1

220 0

[cos d d ]x t t t t '=-+??

2

2

211cos ()x x =-?-+2211cos x x x = 7. 计算下列定积分 (1) 3

22 11

()d x x x

+

?; 解: (1) 3

22 11()d x x x +

?3311()13x x =-=193

(2) 4

1d x ? 9

4)d x x =?3229211

()454326

x x =+=

(3) 4

1

?

22

,,d 42

t t

t x dx t -==

4

2

1

1

2)d 8

t t =-?

3

1[283t t =-=

(4) 1

x ?

2,1,2d t x t dx t t ==+=

2221

021t dx t =+?

?22[-arctan ]0t t =2201

2[1]1dx t =-+?42arctan 2=-

(5) 1

1d x x x -? 0

1

22 1 0

d d x x x x -=-+??=0

(6)π

2π 2

sin d x x -?

π02π0

2

sin d sin d x x x x -

=-

+?

?=2

(7)e

1 e

ln d x x ?1

e

1 1e

ln d ln d x x x x =-

+??11

111

1[ln ]ln e

e e

e

x x

dx x x dx =--+-??1

2-e =

(8) x ?

d x x =

2d x x =

2cos x =-3

244cos 233

x π

=-= (9) ln 2

2 0e (1e )d x x x +?

ln 2

23 0

(e 2e +e )d x x x x =+?23ln 21(e e +e )03x x x =+1

63

=

(10) 1

x -?

1

1

x -=?

1

1

x -=-+??

02

20

11))22x x -=

---?? 33

2021

2210112(1)|(1)| 333

x x -=---= (11) e

1

2ln d x

x x

+? e 12ln dln x x =+?2e 152ln ln 122x x =+=

(12

) ln 0

x ?

22

2,ln(1),d d 1

t

t x t x t t =+=

+

ln 0

x ?

2

l

2 02d 1t t t =+?12(arctan )0t t =-π22

=-

(13

) 0

a

x x ?

sin ,d cos d x a t x a t t ==令

0 a

x x ?

222220

=sin cos d a t a t t π?? 2

20

=[1cos 4]d 8

a t t π

-?

2220

=sin 2d 4

a t t π

?

2sin 4 =[t ]2820

a t

π

-2 =

16a π (14

)x ?

2

1

02d 1t t t

=+?

21

0112d 1t t t -+=+?

1012[1]d 1t t t

=-++?

2

12[t ln(1)]02

t t =-++2ln 2-1=

(15

) 4

?

,d 2d t x t t =

4

?

2

0d 21t t

t =+?

2 0(11)2d 1t t t

+-=+? 2 012(1)d 1t t =-

+?2=2(ln(1))0t t -+=42ln3-

(16

)3

e 1

?3

e 1

2=

?

3=2=

(17

) 1x 22

24

cos t d sin t t π

π

=?22241sin t d sin t t ππ-=?2241[1]d sin t

t π

π=-? 24

[cot ]

14

t t ππ

π=--=-

(18)π

5

2 0cos sin 2d x x x ?6

20

cos 2sin d x x x π

=?

6202

2cos dcos 7

x x π

=-=?

(19)

π

cos d x x x ?

π

dsin x x =? π

sin sin d x x

x x π=-?0

cos x

π=2=-

(20) e

1ln d x x x ? e 2 11ln d 2x x =? e 2e

1 111ln d 22x x x x =-? e

2 111e d 22x x =-?21(e 1)4

=+ (21) 1 0e d x

x x -? 1 0d(e )x x -=-? 110 0e e d x x x x --=-+? 11 0e e d x x --=-+?21e

=- (22)

220

sin d x

e x x π

?

22

d cos x

e x π

=-?222

cos cos d 20

x

x

e x x e π

π

=-+?2220

cos 2cos d 20x

x e x e x x

π

π

=-+?2220

cos 2d sin 20

x x

e x e x π

π

=-+?22220cos 2sin 4sin d 2200x x x e x e x e x x π

ππ=-+-?

22

sin d x e x x π

?

221[cos 2sin ]225

00

x x e x e x ππ=-+2155

e π=+ (23)

1

arctan d x x ?

1201arctan d 01x x x x x

=-+? 12

20111arctan d(1)021x x x x

=-++? 2111arctan ln(1)002x x x =-+1

ln 242

π=-

(24

3

x ?

2,1,2d t x t dx t t ==-=

3

x ?

22112ln 2d 4ln d t t t t t t ==??2124[ln d ]1t t t =-?224[ln ]11t t t =-8ln 24=- 8. 求函数 2 031

()d 1

x

t I x t t t +=-+?

在区间[01],上的最大值与最小值.

解:被积函数231

()1

t f t t t +=

-+在[01],上连续,因此 2 031()d 1x t I x t t t +=-+?可导.

231

()01

x I x x x +'=

>-+,因此 2 031()d 1x t I x t t t +=-+?在[01],上为增函数. 将0,1x =代入求得最小值为(0)0I =

,最大值为 12 031(1)d 1t I t t t +==-+?.

9. 试证

(1) 1

1

(1)d (1)d m n n m

x x x x x x -=-??

证明:令1x t =-,则

1

(1)d m n x x x -? 0 1

(1)d n m t t t =--? 1 0

(1)d n m t t t =-? 1

(1)d n m x x x =-? (2)1

1

2

2 111d d 11x x t t t t =++?? 证明:令1

t u

=

,则 1

2 1d 1x t t +? 1 12 2

11()d 11x u u u

=?-+? 112 1d 1x u u =-+?1 2 11d 1x u u =+?1 2 11d 1x u u =+?1

2 11d 1x t t =+? (3)ππ

22 0 0sin d cos d n

n x x x x =??.

证明:令2

x t π

=

-,则

π2 0

sin d n

x x ?

2

cos d n

x x =-?π

2 0cos d n x x =?

10. 判断下列广义积分的收敛性,若收敛,则算出广义积分的值 (1) 4

1

d x x +∞?

解:收敛.

4 1d x x +∞

?

31

1133

x -+∞=-= (2

) 1

+∞?解:发散. (3) 2

e

d (ln )

x

x x +∞?

解:收敛.

2 e

d (ln )x x x +∞

?

2 e dln (ln )x x +∞=?e

1ln x

+∞

=-

1=

(4)发散 (4

) e

x +∞

?

解:发散 (5) 2

1

arctan d x

x x

+∞?

解:收敛.

2

1

arctan d x

x x +∞

?

11

arctan d()x x +∞

=-?

11arctan d()x x

+∞=-? 12

1111arctan 1x dx x x x +∞+∞

=-+-?+?

2 11()41x

dx x x π+∞=---+?

4π=--π1ln 242=+ (6) 2

d 22

x

x x ∞

++?

+- 解:收敛.

2 d 22x

x x ∞

++?

+- 2 d(1)(1)1x x ∞∞+=++?+-arctan(1)x ∞

=++-π=

(7

) 0

a

?

解:收敛.

a

?

d()

a

x =?

arcsin a x a =2

π

=

(8

) 2 1

?

解:收敛. 令sec x t =

,则 2

1

? arcsec2

arcsec1

d t =?

3

π=

(9) 1

1d (2)

x

x x --?

解:发散 (10

) e

1

?

解:收敛.

e

1

?

e

1

=?

1

arcsin(ln )

e x =2

π

=

11.

用抛物线线法计算x ?

的近似值(取10n =,计算到小数点后三位)

. 解:简要步骤如下:

(1)用分点01291001i x x x x x x ==,,,,,,,把区间[01],10等分,每个小区间的

相关文档