文档库 最新最全的文档下载
当前位置:文档库 › 泵与风机答案何川

泵与风机答案何川

泵与风机答案何川
泵与风机答案何川

泵与风机(课后习题答案)

2-3有一离心式水泵,转速为480r/min ,总扬程为136m 时,流量V q =5.73m /s ,轴功率为P =9860KW ,其容积效率与机械效率均为92%,求流动效率。设输入的水温度及密度为:t=20℃,ρ=1000kg/3m 。 解:η=

e P P =1000V gq H P ρ=1000 5.713610009860

g ????=0.77 又∵η=h ηV ηm η ∴h η=

V m η

ηη=0.770.920.92

?=0.91=91% 2-4用一台水泵从吸水池液面向50m 高的水池输送V q =0.33m /s 的常温清水(t=20℃,ρ=1000kg/3m ),设水管的内径为d =300mm ,管道长度L =300m ,管道阻力系数λ=0.028,求泵所需的有效功率。

解:根据伯努利方程 1z +1p g ρ+212v g +H =2z +2p g ρ+2

2

2v g +w

h

由题知:1z -2z =50; 1p =2p =0; 1v =2v 1v =2v =

2

4

V

q d π=

2

0.3

0.34

π

?=4.246(m/s )

w h =λl d 22v g =76.258

.92246.43.0300028.02

=???

m 代入方程得H =75.76(m)

e

P =1000V gq H ρ=7.2221000

76

.753.08.91000=???(kW ) 2-5设一台水泵流量V q =25L /s ,出口压力表读数为323730Pa ,入口真空表读数为39240Pa ,两表位差为0.8m ,(压力表高,真空表低),吸水管和排水管直径为1000mm 和750mm ,电动机功率表读数为12.5kW ,电动机效率g η=0.95,求轴功率、有效功率、泵的总效率(泵与电动机用联轴器直接连接)。 解:由题知:2e P =323730Pa ,1v P =39240Pa ,1e P =-1v P =-39240Pa 12z z -=0.8m ,1d =1000mm=1m ,2d =750mm=0.75m 'g P =12.5kW , g η=0.95, tm η=0.98

032.01

14.3100025

442

211=???==

d q v v πm/s 057.075.014.3100025

442

2

22=???==

d q v v πm/s 1z +

1p g ρ+212v g +H =2z +2p g ρ+22

2v g

得: H =12z z -+21p p g ρ-+2

2

212v v g

-=0.8+323730(39240)10009.8--?8.92032.0057.022?-+=37.84m

e P =1000V gq H

ρ=310009.8251037.84

1000

-????=9.27(KW ) P ='g P tm ηg η=12.5?0.98?0.95=11.64(KW )

η=

e P P ?100%=9.311.64

?100%=79.6% 2-6有一送风机,其全压是1962Pa 时,产生V q =403m /min 的风量,其全压效率为50%,试求其轴功率。 解:P =

1000V q p η=

62.25

.010********

40=???(kW ) 2-8一台G4-73型离心式风机,在工况1(流量V q =703003m /h ,全压p =1441.6Pa ,轴功率P =33.6k W )及工况2(流量V q =378003m /h ,全压p =2038.4Pa ,轴功率

P =25.4k W )下运行,问该风机在哪种工况下运行较为经济?

解:工况1:1η=e P P =1000V q p P = 6.33360010006

.144170300??? ?100%=83.78%

工况2:2η=e P P =1000V q p P =4

.25360010004

.203837800????100%=84.26%

∵2η?1η ∴在工况2下运行更经济。 第三章 相似理论

3-1有一离心式送风机,转速n=1450r/min ,流量V q =1.53m /min ,全压p =1200Pa ,输送空气的密度为ρ=1.23/kg m 。今用该风机输送密度ρ=0.93/kg m 的烟气,要求全压与输送空气时相同,问此时转速应变为多少?流量又为多少? 解:由题知:

p m

D D =1 ;各效率相等,p p =m p

根据全压相似关系

p m

p p =

p m ρρ2()p m D D 2()p m n n =p m ρρ2

()p m

n n =1 得m n =p

n

?流量与密度无关,根据相似关系

Vp Vm

q q =

p m

n n 得

Vm q =m Vp

p

n q n =1674.321.51450?=1.73(3m /min)

3-2有一泵转速n=2900r/min ,扬程H=100m ,流量V q =0.173m /s ,若用和该泵相似但叶轮外径2D 为其2倍的泵,当转速n=1450r/min 时,流量为多少? 解:由题知:2m D =22p D ,由于两泵相似 根据流量相似关系Vp Vm

q q =23

2(

)

p m

D D p

m n n =31()2

?29001450=1

4

得:Vm q =

81450

0.172900

??=0.68(3m /s ) 3-5 G4-73型离心风机在转速n=1450r/min 和2D =1200mm 时,全压p =4609Pa ,流量V q =711003/m h ,轴功率P =99.8KW ,空气密度ρ=1.23/kg m ,若转速和直径不变,但改为输送锅炉烟气,烟气温度t=200℃,当地大气压amb p =0.1MPa ,试计算密度变化后的全压、流量和轴功率。 解:由题知

22p m

D D =1

p m

n n =1

由于流量与密度无关 所以流量V q 不变,71100=Vm q m 3/h

763.0101325

101.020*********.11013252732736

0=??+?=+=p t m ρρkg/m 3

全压m p =

m p

ρρp p =56.293046092.1763

.0=?Pa 轴功率m P =

m p

ρρp P =46.638.992.1763

.0=?kW

3-8已知某锅炉给水泵,最佳工况点参数为:V q =2703/m h ,H =1490m ,

n =2980r/min ,i =10级。求其比转数s n 。

解:s n

34()i

34()10

3-10 G4-73-11No18型锅炉送风机,当转速n =960r/min 时的运行参数为:送风量V q =190003/m h ,

全压p =4276Pa ;同一系列的No8型风机,当转速n =1450r/min 时的送风量V q =252003/m h ,全压p =1992Pa ,它们的比转数是否相等?为什么? 解:两台风机的比转数分别为

y n

=

4

34276

360019000

960?=4.17

y n

比转数不相等,因为一台风机在不同工况下有不同的比转数,一般用最高效率点的比转数,作为相似准则的比转数。所以题中的两台风机(同一系列)在最高效率点的比转数是相同的,但题中给出的工况不同,所以比转数不同。

第四章 泵的汽蚀 4-1除氧器内液面压力为117.6?310Pa ,水温为该压力下的饱和温度104℃,用一台六级离心式给水泵,该泵的允许汽蚀余量[?h]=5m ,吸水管路流动损失水头约为1.5m ,求该水泵应装在除氧器内液面下多少米? 解:[g H ]=

e v

P P g

ρ--[h ?]-w h e P =v P 倒灌高度

∴[g H ]=-[h ?]-w h =―5―1.5=-6.5(m )

4-3有一吸入口径为600mm 的双吸单级泵,输送20℃的清水时,V q =0.33/m s ,

n =970r/min ,H =47m ,汽蚀比转数c =900。试求:

⑴在吸水池液面压力为大气压力时,泵的允许吸上真空高度[s H ]为多少? ⑵该泵如用于在海拔1500m 的地方抽送t =40℃的清水,泵的允许吸上真空高度[s H ]又为多少?

解:⑴由题知:单级双吸泵 c

=900 得r h ?=3.12(m )

c h ?=r h ?=3.12 [h ?]=c h ?+K =3.12+0.3=3.42(m ) 由V q =s Av 得 s v =

V q A

2

0.3

0.64

π

?=1.06 (m/s )

查表4-1及4-2得amb H =10.3(m )V H =0.238(m )

[s

H ]=e v

P P g

ρ-+

2

2s v g -[h ?]=10.3-0.238+0.057-3.42=6.7(m ) ⑵海拔1500m 查表4-1 amb H =8.6 t =40℃ 查表4-2 V H =0.752

'[]s H =[s H ]-10.33+amb H +0.24-V H

=6.7-10.33+8.6+0.24-0.752=4.46(m )

4-5有一离心式水泵:V q =4000/L s ,n =495r/min ,倒灌高度为2m ,吸入管路阻力损失为6000Pa ,吸水液面压力为101.3?310Pa ,水温为35℃,试求水泵的汽蚀比转数c 。 解: r h ?=a h ?=

e v

P P g

ρ-+g H -w h =

25.118

.974.9886000

258.08.974.988103.1013=?-+-??m c

4

325

.1110004000

49562.5??=905 4-6有一台吸入口径为600mm 的双吸单级泵,输送常温水,其工作参数为:

V q =880/L s ,允许吸上真空高度为3.2m ,吸水管路阻力损失为0.4m ,试问该泵装在离吸水池液面高2.8m 处时,是否能正常工作。 解: 11.36

.014.31000880

442

2=???==

D q V V s πm/s

[][]m m h g V Hs Hg w s 8.23.24.08

.9211.32.322

2<=-?-=--=

所以不能正常工作。

4-7有一台疏水泵,疏水器液面压力等于水的饱和蒸汽压力,已知该泵的[?h ]=0.7m ,吸水管水力损失为0.2m ,问该泵可安装在疏水器液面下多少米? 解:由题知:e v P P =

所以[g H ]=-[h ?]-w h =―0.7―0.2=-0.9(m )

流体力学泵与风机期末试卷与答案

《流体力学泵与风机》期末考试试卷参考答案 一、判断题(本大题共 10 小题,每小题1 分,共 10 分) 1.没有粘性的流体是实际流体。 错 (1分) 2.在静止、同种、不连续流体中,水平面就是等压面。如果不同时满足这三个条件,水 平面就不是等压面。错 (1分) 3.水箱中的水经变径管流出,若水箱水位保持不变,当阀门开度一定时,水流是非恒定流动。 错 (1分) 4.紊流运动愈强烈,雷诺数愈大,层流边层就愈厚。错 (1分) 5.Q 1=Q 2是恒定流可压缩流体总流连续性方程。错 (1分) 6.水泵的扬程就是指它的提水高度。错 (1分) 7.流线是光滑的曲线,不能是折线,流线之间可以相交。错 (1分) 8.一变直径管段,A 断面直径是B 断面直径的2倍,则B 断面的流速是A 断面流速的4倍。 对 (1分) 9.弯管曲率半径Rc 与管径d 之比愈大,则弯管的局部损失系数愈大。错 (1分) 10.随流动雷诺数增大,管流壁面粘性底层的厚度也愈大。错 (1分) 二、填空题(本大题共 4小题,每小题 3 分,共 12 分) 11.流体力学中三个主要力学模型是(1)连续介质模型(2)不可压缩流体力学模型(3)无粘性流体力学模型。 (3分) 12.均匀流过流断面上压强分布服从于水静力学规律。 (3分) 13.正方形形断面管道(边长为a),其水力半径R 等于4a R =,当量直径de 等于a d e = ( 3分) 14.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为 3 211 111s s s s + +=。管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82 .097 .0=,流量比Q 孔口 /Q 管嘴 等于 82 .060 .0= 。 (3分) 三、简答题(本大题共 4小题,每小题 3分,共 15 分) 15.什么是牛顿流体?什么是非牛顿流体? 满足牛顿内摩擦定律的流体为牛顿流体,反之为非牛顿流体。 (3分) 16.流体静压强的特性是什么? 流体静压强的方向垂直于静压面,并且指向内法线,流体静压腔的大小与作用面的方位无关,只于该点的位置有关。 (3分) 17.什么可压缩流体?什么是不可压缩流体? 流体的压缩性和热胀性很小,密度可视为常数的液体为不可压缩流体,反之为可压缩流体。(3分) 18.什么是力学相似?

泵与风机部分思考题与习题答案.(何川_郭立君.第四版)

泵与风机(思考题答案) 绪论 3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数?答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 5.离心式泵与风机有哪些主要部件?各有何作用? 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。 压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。 导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。 密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。 轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的 间隙泄漏到泵外。 离心风机 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能 蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。 集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。 进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。 9.试简述活塞泵、齿轮泵及真空泵、喷射泵的作用原理? 答:活塞泵:利用工作容积周期性的改变来输送液体,并提高其压力。 齿轮泵:利用一对或几个特殊形状的回转体如齿轮、螺杆或其他形状的转子。在壳体内作旋转运动来输送流体并提高其压力。 喷射泵:利用高速射流的抽吸作用来输送流体。 真空泵:利用叶轮旋转产生的真空来输送流体。 第一章 1.试简述离心式与轴流式泵与风机的工作原理。 答:离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。流体沿轴向流入叶轮并沿径向流出。 轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。 流体沿轴向流入叶轮并沿轴向流出。 2.流体在旋转的叶轮内是如何运动的?各用什么速度表示?其速度矢量可组成怎样的图形? 答:当叶轮旋转时,叶轮中某一流体质点将随叶轮一起做旋转运动。同时该质点在离心力的作用下,又沿叶轮流道向外缘流出。因此,流体在叶轮中的运动是一种复合运动。 叶轮带动流体的旋转运动,称牵连运动,其速度用圆周速度u表示;

流体力学泵与风机期末复习重点总结

第一章绪论 作用在流体上的力 1kgf=9.807N 力作用方式的不同分为质量力和表面力。 质量力:作用在流体的每一个质点上的力。单位质量力f 或(X,Y,Z )N ╱kg 表面力:作用在流体某一面积上且与受力面积成正比的力。又称面积力,接触力。 表面力 单位N ╱㎡,Pa 流体的主要力学性质 流体都要发生不断变形,各质点间发生不断的相对运动。 液体的粘滞性随温度的升高而减小。 气体的粘滞性随温度的升高而增大。 黏度影响(流体种类,温度,压强) 压缩系数:单位体积流体的体积对压力的变化率。○ 流体的力学模型 将流体视为“连续介质”。 无粘性流体。 不可压缩流体。以上三个是主要力学模型。 第二章流体静力学 流体静压力:作用在某一面积上的总压力。 流体静压强:作用在某一面积上的平均或某一点的压强。 流体静压强的方向必然是沿着作用面的内法线方向。 在静止或相对静止的流体中,任一点的流体静压强的大小与作用面的方向无关,只与该点的位置有关。 静止流体质量力只有重力。 水平面是等压面。 水静压强等值传递的帕斯卡定律:静止液体任一边界面上压强的变化,将等值地传到其他各点(只要原有的静止状态不被破坏)。 自由面是大气和液体的分界面。 分界面既是水平面又是等压面。 液体静压强分布规律只适用于静止、同种,连续液体。 静止非均质流体的水平面是等压面,等密面和等温面。 静止气体充满的空间各点压强相等。 平面上的液体压力 水静压力的方向是沿着受压面的内法线方向。 作用于受压平面上的水静压力,只与受压面积A ,液体容重γ及形心的淹没深度h c 有关。 作用于平面的水静压力数值上等于压强分布图形的体积。 曲面上的液体压力 压力体:受压曲面与其在自由面投影面积之间的柱体。 垂直于表面的法向力(P ) 平行于表面的切向力(T )

泵与风机课后思考题答案

泵与风机课后思考题答案 Final approval draft on November 22, 2020

思考题答案 绪论 思考题 1.在火力发电厂中有那些主要的泵与风机其各自的作用是什么 答:给水泵:向锅炉连续供给具有一定压力和温度的给水。 循环水泵:从冷却水源取水后向汽轮机凝汽器、冷油器、发电机的空气冷却器供给冷却水。 凝结水泵:抽出汽轮机凝汽器中的凝结水,经低压加热器将水送往除氧器。 疏水泵:排送热力系统中各处疏水。 补给水泵:补充管路系统的汽水损失。 灰渣泵:将锅炉燃烧后排出的灰渣与水的混合物输送到贮灰场。 送风机:向锅炉炉膛输送燃料燃烧所必需的空气量。 引风机:把燃料燃烧后所生成的烟气从锅炉中抽出,并排入大气。 2.泵与风机可分为哪几大类发电厂主要采用哪种型式的泵与风机为什么 答:泵按产生压力的大小分:低压泵、中压泵、高压泵 风机按产生全压得大小分:通风机、鼓风机、压气机 泵按工作原理分:叶片式:离心泵、轴流泵、斜流泵、旋涡泵 容积式:往复泵、回转泵 其他类型:真空泵、喷射泵、水锤泵 风机按工作原理分:叶片式:离心式风机、轴流式风机 容积式:往复式风机、回转式风机 发电厂主要采用叶片式泵与风机。其中离心式泵与风机性能范围广、效率高、体积小、重量轻,能与高速原动机直联,所以应用最广泛。轴流式泵与风机与离心式相比,其流量大、压力小。故一般用于大流量低扬程的场合。目前,大容量机组多作为循环水泵及引送风机。 3.泵与风机有哪些主要的性能参数铭牌上标出的是指哪个工况下的参数 答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 4.水泵的扬程和风机的全压二者有何区别和联系 答:单位重量液体通过泵时所获得的能量增加值称为扬程; 单位体积的气体通过风机时所获得的能量增加值称为全压 联系:二者都反映了能量的增加值。 区别:扬程是针对液体而言,以液柱高度表示能量,单位是m。 全压是针对气体而言,以压力的形式表示能量,单位是Pa。 5.离心式泵与风机有哪些主要部件各有何作用 答:离心泵 叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。 吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

3-473_泵与风机教案简稿(8)

§2叶片式泵的性能及结构 §2-1泵内汽蚀 一、泵内汽蚀现象(水力机械的系统和设备,现象举例) 机械侵蚀(内向爆炸性冷凝冲击,微细射流)疲劳 化学腐蚀(汽泡溃灭→活性气体→凝结热) 2.什么是:汽泡形成,发展,溃灭,以致使过流壁面破坏的全过程。 3、分 类:移动汽蚀、固定汽蚀、旋涡汽蚀、振动汽蚀。 二、对泵运行的危害 1、缩短泵的使用寿命:粗糙多孔→显微裂纹→蜂窝状或海绵状侵蚀→呈空洞。 2、产生噪声和振动 :若振动产生汽泡,汽蚀产生振动→互相激励→汽蚀共振。 3、影响泵的运行性能:断裂工况(汽泡堵塞流道);潜伏性汽蚀(易被忽视)。 提出问题:既然泵内汽蚀对泵运行的危害有如此之大,那么泵内汽蚀的产生与那些因素有关?又如何防止呢? 一般卧式离心泵,泵轴心线距液面的垂直距离称为泵的几何安装高度,或称几何吸上高度,用符号H g 表示,如图2-3所示。实践表明:汽蚀与泵的几何安装高度有关,它是影响泵工作性能的一个重要因素。当 增加泵的几何安装高度时,会在更小的流 量下发生汽蚀,如图2-4所示。由图可以 看出,对某一台水泵来说,尽管其全性能可以满足使用要求,但是,如果几何安装高度不合适,由于汽蚀的原因,会限制流量的增加,从而使性能达不到设计要求。因此,正确地确定泵的几何安装高度是保证泵不发生汽蚀的重要条件。那么,如何正确地确定泵的几何安装高度呢? 1、形 成: 点蚀→蜂窝状。 图 2-3 离心泵的几何安装高度 图 2-4 n s =70的单级离心泵发生汽蚀的性能曲线

g 2/2s υ三、泵的几何安装高度与吸上真空高度的确定(H g 、H s ) 我们知道,泵内产生汽蚀的原因是因流道内某一部位的液流压强过低,而泵内液流压强最低的部位是在叶轮入口附近。因此,在使用泵时常常在泵吸入口安装一个压强指示仪表(真空计或压强计),以监测水泵的正常运行。泵吸入口的压强与吸入侧管路系统(几何安装高度,吸入管路中的能头损失)及吸水池液面压强等密切相关。现以图2-3为例写出吸水池液面e-e 及泵入口断面s-s 之间的能量方程式以建立它们之间的关系: 则 式(2-1s-s 受大气压p a 可写成: s 2 s s g g 2h H H ∑--=υ (2-2) 由上式可以看出,泵的几何安装高度与吸上真空高度、吸入管流速及能头损失有关。在标准大气压下,由于1atm=10.33mH 2O ,所以泵的几何安装高度H g 总是小于10.33mH 2O 的。通常,如果泵是在某一定流量下运行,则及∑h s 基本上是定值,所以泵的几何安装高度H g 将随泵的吸上真空高度H s 的增加而增加。如果吸上真空高度增加至某一最大值H smax 时,即泵内最低压强点接近液体的汽化压强p V 时,则泵内就会开始发生汽蚀。这时,H smax 称为最大吸上真空高度,亦称临界吸上真空高度,其值由制造厂用试验方法确定。为了保证泵不发生汽蚀,把最大吸上真空高度H smax 减去一个安全量(通常为0.3)作为允许吸上真空高度而载入泵的产品样本中,并用[H s ]表示,即: [H s ]=H smax ―0.3 (2-3) 显然,为使泵在运行时不产生汽蚀,依式(2-2),允许几何安装高度可按下式确定。即: [][]s 2 s s g g 2h H H ∑--=υ (2-4) 在计算[H g ]中必须注意以下三点: (1)通常[H s ]随流量增加而下降。用式(2-4)确定[H g ]时,必须以泵在运行中可能出现的最大流量所对应的[H s ]为准。而泵铭牌[H s ]值则是指最高效率点流量时的[H s ]值。 (2)在泵样本或说明书中所给出的[H s ]值,是制造厂在标准条件(大气压为10.13×104Pa ,温度为20℃的清水)下由试验得出的。当泵的使用条件与上述条件不符时,

泵与风机课后习题标准答案(标准版)

扬程:单位重量液体从泵进口截面到泵出口截面所获得的机械能。 流量qv :单位时间内通过风机进口的气体的体积。 全压p :单位体积气体从风机进口截面到风机出口截面所获得的机械能。 轴向涡流的定义:容器转了一周,流体微团相对于容器也转了一周,其旋转角速度和容器的旋转角速度大小相等而方向相反,这种旋转运动就称轴向涡流。影响:使流线发生偏移从而使进出口速度三角形发生变化。使出口圆周速度减小。 叶片式泵与风机的损失:(一)机械损失:指叶轮旋转时,轴与轴封、轴与轴承及叶轮圆盘摩擦所损失的功率。(二)容积损失:部分已经从叶轮获得能量的流体从高压侧通过间隙向低压侧流动造成能量损失。泵的叶轮入口处的容积损失,为了减小这部分损失,一般在入口处都装有密封环。(三),流动损失:流体和流道壁面生摸差,流道的几何形状改变使流体产生旋涡,以及冲击等所造成的损失。多发部位:吸入室,叶轮流道,压出室。 如何降低叶轮圆盘的摩擦损失:1、适当选取n 和D2的搭配。2、降低叶轮盖板外表面和壳腔内表面的粗糙度可以降低△Pm2。3、适当选取叶轮和壳体的间隙。 轴流式泵与风机应在全开阀门的情况下启动,而离心式泵与风机应在关闭阀门的情况下启动。 泵与风机(课后习题答案) 第一章 1-1有一离心式水泵,其叶轮尺寸如下:1b =35mm, 2b =19mm, 1D =178mm, 2D =381mm, 1a β=18°,2a β=20°。设流体径向流入叶轮,如n=1450r/min ,试 画出出口速度三角形,并计算理论流量,V T q 和在该流量时的无限多叶片的理论扬程T H ∞。 解:由题知:流体径向流入叶轮 ∴1α=90° 则: 1u = 1n 60 D π= 3178101450 60 π-???=13.51 (m/s ) 1V =1m V =1u tg 1a β=13.51?tg 18°=4.39 (m/s ) ∵1V q =π1D 1b 1m V =π?0.178?4.39?0.035=0.086 (3m /s ) ∴2m V = 122V q D b π=0.086 0.3810.019 π??=3.78 (m/s ) 2u = 2D 60 n π= 3381101450 60 π-???=28.91 (m/s ) 2u V ∞=2u -2m V ctg 2a β=28.91-3.78?ctg20°=18.52 (m/s )

泵与风机课后习题参考答案(完整版)

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min 时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v 2(q v 单位以m 3/s 计算)?已知管路特性曲线方程Hc=10+8000q v 2(q v 单位以m 3/s 计算)。 【解】根据Hc=10+8000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 Hc (m ) 10 10.8 13.2 17.2 22.8 30 管路特性曲线与泵并联前性能曲线交于M 点(46L/s ,27m ) 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v 2(q v 单位以m 3/s 计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 根据Hc=20+2000q v 2取点如下表所示,绘制管路特性曲线: q v (L/s) 60 q v (m 3/s) 0 0.01 0.02 0.03 0.04 0.05 0.06 Hc (m ) 20 20.2 20.8 21.8 23.2 25 27.2 管路特性曲线与泵并联前性能曲线交于C 点(33L/s ,32m ) 管路特性曲线与泵并联后性能曲线交于M 点(56L/s ,25m ). 5-3为了增加管路中的送风量,将No.2风机和No.1风机并联工作,管路特性曲线方程为p =4 q v 2(q v 单位以m 3/s 计,p 以p a 计),No.1 及No.2风机的性能曲线绘于图5-50中,问管路中的风量增加了多少? 【解】根据p =4 q v 2取点如下表所示,绘制管路特性曲线: q v (103m 3/h) 0 5 10 15 20 25 q v (m 3/s) 0 1.4 2.8 4.2 5.6 7 p (p a ) 0 7.84 31.36 70.56 125.44 196 管路特性曲线与No.2风机和No.1风机并联工作后性能曲线交于点M (33×103m 3/h ,700p a ) 于单独使用No.1风机相比增加了33×103-25×103=8 m 3/h 5-4 某锅炉引风机,叶轮外径为1.6m ,q v -p 性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B 点(q v =1.4×104m 3/h ,p =2452.5p a )工作,若采用加长叶片的方法达到此目的,问叶片应加长多少? 【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: B p 36005.2452?min /r 114246145030m m p m p =?==v v v q n n q q ,

叶片式泵与风机的理论

第八章叶片式泵与风机的理论 第一节离心式泵与风机的叶轮理论 离心式泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片就对流体做功,从而使流体获得压能及动能。因此,叶轮是实现机械能转换为流体能量的主要部件。 一、离心式泵与风机的工作原理 泵与风机的工作过程可以用图2—l 来说明。先在叶轮内充满流体,并在叶轮不同方向 上取A、B、C、D 几块流体,当叶轮旋转时,各块流体也被叶轮带动一起旋转起来。这时每块流体必然受到离心力的作用,从而使流体的压能提高,这时流体从叶轮中心被甩向叶轮外缘,,于是叶轮中心O处就形成真空。界流体在大气压力作用下,源源不断地沿着吸人管 向O 处补充,而已从叶轮获得能量的流体则流人蜗壳内,并将一部分动能转变为压能,然后沿压出管道排出。由于叶轮连续转动,就形成了泵与风机的连续工作过程。 流体在封闭的叶轮中所获得的能(静压能): 上式指出:流体在封闭的叶轮内作旋转运动时,叶轮 进出口的压力差与叶轮转动角速度的平方成正比关系变 化;与进出口直径有关,内径越小,外径越大则压力差 越大,但进出口直径均受一定条件的限制;且与密度成 正比关系变化,密度大的流体压力差也越大。 二、流体在叶轮内的运动及速度三角形 为讨论叶轮与流体相互作用的能量转换关系,首先 越大,但进出口直径均受一定条件的限制;且与密度成 正比关系变化,密度大的流体压力差也越大。 二、流体在叶轮内的运动及速度三角形 为讨论叶轮与流体相互作用的能量转换关系,首先 要了解流体在叶轮内的运动,由于流体在叶轮内的运动比较复杂,为此作如下假设:①叶轮中叶片数为无限多且无限薄,即流体质点严格地沿叶片型线流动,也就是流体质点的运动轨迹与叶片的外形曲线相重合;②为理想流体,即无粘性的流体,暂不考虑由粘性产生的能量损失;③流体作定常流动。 流体在叶轮中除作旋转运动外,同时还从叶轮进口向出口流动,因此流体在叶轮中的运动为复合运动。 当叶轮带动流体作旋转运动时,流体具有圆周运动(牵连运动),如图2—3(a)所示。其运 动速度称为圆周速度,用符号u表示,其方向与圆周切线方向一致,大小与所在半径及转速有关。流体沿叶轮流道的运动,称相对运动,如图2—3(b)所示,其运动速度称相对速度,符号w表示,其方向为叶片的切线方向、大小与流量及流道形状有关。流体相对静止机壳的运动,称绝对运动,如图2—3(c)所示,其运动速度称绝对速度,用符号V表示,由这三个速度向量组成的向量图,称为速度三角形,如图2—4 所示。速度三角形是研究流体在叶轮中运动的重要工具。绝对速度u可以分解为两个相互垂直的分量:即绝对速度圆周方向的 分量和绝对速度在轴面(通过泵与风机轴心线所作的平面)上的分量。绝对速度v与圆周速度u之间的夹角用α表示,称绝对速度角;相对速度与圆周速度反方向的夹角用β表示,称为流动角。叶片切线与圆周速度反方向的夹角,称为叶片安装角用β表示。流体沿叶片型线运动时,流动角β等于安装角βa。用下标l 和 2 表示叶片进口和出口处的参数,∞表

流体力学泵与风机_课后题答案详解

流体力学泵与风机部分习题答案 2-15 解:(1)当1γ为空气 21p p = ()A B p h z p =++γ ()h z p p p B A +=-=?γ 3.01000 8.9??= k p a pa 94.22940== (2)当1γ为油 31p p = ()z H h p p A +++=γ1 ()H h p p B γγ++=13 H h z H h p p p p p B A γγγγγ--+++-=-=?131 h z h 1γγγ-+= 1.09000 2.010008.91.010008.9?-??+??= k p a pa 04.22040== 2-16 解:21p p = ()211h h H p p M +++=水γ 212h h p p a 汞油γγ++= ()2121h h p h h H p a M 汞油水γγγ++=+++ ()2.010008.96.1378502.05.110008.998011???+?=++??+-h h 26656785098002.098005.1980098011+=+?+?+-h h 1960147009802665619501--+=h m h 63.51= 2-28 解:()21h h p -=γ

() () () b h h h b h h h h P 0 2210 212145 sin 45 sin 21-+--= γγ ()() 145 sin 22310008.9145 sin 232310008.92 10 ?-??+?-? -???= kN N 65.343465022 510008.9==? ?= () () ()P bl h h h bl h h h h l D D D 2 22110 212145 sin 45 sin 2 1-+--=γγ m 45.22 2 510008.92 22210008.923 22 210008.9=? ????+? ? ?= 2-32 解:b h h b h h P 0 22 21 45 sin 2 145 sin γγ+ = 22 22210008.92 122 22110008.9?? ???+ ????= kN N 8576.1106.1108572810008.9==??= P h h b h h h h b h h l D 0 2102202102145sin 3245sin 2145sin 245sin ? ?? ?? ++??? ??+=γγ 2810008.92 3 72410008.9222410008.9??? ??+???= 2613= 267 22613=-=p l T P G l T l P l G ?=?+? 226 72810008.9162.19?=???+?T kN T 31.1013 4.27481.9=+ = 2-41 解:245sin 0 =?=r h b h h P x ?? ??=2 1γ 421221000 8.9?? ? ??=

论《泵与风机运行及检修》优质核心课程建设过程

论《泵与风机运行及检修》优质核心课程建设过程 教育部相关文件(教高〔2011〕8号)文件中提出,“通过优质核心课程建设,推动各专业进一步明确专业核心能力和实践技能要求, ...... 促进教学质量的全面提升。”《泵与风机运行及检修》课程是我院电厂设备运行与维护专业的一门专业核心课程,同时也是从事电厂设备的运行、安装调试和检修岗位工作的理论结合实践的课程,该课程建设能否达到“优质”水平,将对本专业人才培养目标的实现起到深远影响。 1 课程建设的思路 《泵与风机运行及检修》优质核心课程建设之初,先由具有多年一线教学经验,且下厂实践锻炼的双师型教师根据专业培养目标来初步制定课程建设方案,提出改革创新的重点难点,并聘请热电厂从事设备运行维护的专家教学专家共同论证方案的可行性,再由建设团队负责人制定出课程建设提纲,最后由团队成员按照提纲完成各自建设内容,落实工作。 2 课程建设的内容 具体说来,我学院《泵与风机运行及检修》课程建设主要包括该前期课程调研、课程标准制定、教学资源建设、教学材料建设等四个方面。 2.1 课程调研 课程调研主要通过深入包头东华热电、东方希望包头铝业自备电厂等企业一线岗位考察、同泵与风机相关工作岗位的专工进行沟通走访、咨询请教企业高工等方式进行,从而全面了解泵与风机行业对该课程知识体系的专业技能的要求,然后根据典型的工作过程设计教学情境,力求让课堂环境贴近工作现场,让课程内容贴近于工作任务,使学生从一开始就明确自己所学课程的目的、课程的重要技能点在哪里,一进入企业就能用所学知识解决处理实际问题。

2.2 课程标准 一门专业课程建设的“优质”与否,课程标准的制定是核心。《泵与风机运行及检修》课程标准主要包括”课程性质与定位”、“课程目标”、“课程内容及学习情境设计”、“考核与评价”、“教学实施条件”等五项内容,而“课程内容及课程情境设计”是课程标准中最最要的内容。 例如,设计“泵与风机的运行工况与调节”教学情境时,按照实际工作过程,又把它拆分成几个子学习情境:子情境1—泵与风机的工作点及工作点稳定性、子情境2—泵与风机工作点调节、子情境3—泵与风机的汽蚀与抗汽蚀措施、子情境4—泵与风机运行故障分析。每个子情境都会列出学生的学习目标、学习任务;教师的教学内容、教学方法及实施过程。 有了详细的学习情境设计,授课教师可以牢牢把握住课程知识、技能要点。 2.3 教学资源建设 教学资源主要包括教学团队的优化配备、校园模拟实训室建设、校外实习实训基地建设等。 本课程的教学团队配备了本校专职教师(双师)、企业兼职教师(高工),整体素质较强。而且现已建成了泵与风机实训室、电工电子实训室、火电系统仿真模拟实训室等理实一体化实训室。此外,也与包头东华热电有限公司、包头第三热电厂等合作,相继建立了校外实习实训基地。 2.4 教学材料建设 教学材料建设包括授课计划、授课教案、电子课件、教学视频、课程教材、实践教学指导书、在线测试、试题/试卷库等。 教学材料的建设中,教材建设是教学材料建设的重点及难点,开发教材也是我学院建设《泵与风机运行及检修》优质核心课程的主要特色。根据课程标准,将本课程分为三大模块,即泵与风机电气控制模块、泵与风机运行操作模块、泵与风机维护检修模块。每个模块侧重点不同,但是各模块间相互切合,是一个有机整体,即都是服务于

流体力学泵与风机(教学大纲)

《流体力学泵与风机》课程教学大纲 课程简介 课程简介:本门课程讲述流体的基本概念和属性,尤其是流体与刚体和固体在力学行为方面的区别。以此为基础和出发点,介绍流体静平衡所遵循规律及点压和面压的计算方法,并以介绍流体运动的一系列基本概念为前提,推导出流体力学的三大基本方程。然后介绍管路系统的水力计算和流体孔口出流计算以及水击现象的基本概念,并介绍相似性原理和因次分析方法,讲述泵与风机工作原理及典型结构,了解泵与风机的实际运行知识,重点掌握如何选择泵与风机。 课程大纲 一、课程的性质与任务: 本课程是热能与动力工程、建筑环境与设备工程专业的主干技术基础课程之一,是学科基础课。本课程是研究流体的基本力学规律及其在工程(特别是本专业各类工程)中应用的一门学科。 本课程以流体力学基础为主,流体力学部分学生主要应掌握基本理论和计算方法,特别是一元流动的基本理论和计算方法,需要牢固掌握泵与风机结构、工作原理和运行维护知识。这为后续课程的学习提供必要基础知识和计算方法,同时,也为学生今后解决生产实际问题打下理论基础和技能准备。 二、课程的目的与基本要求: 本课程以讲述流体力学基本概念、基础知识和基本原理为主,特别 是一元流动的基本理论和计算方法,培养学生从纷繁复杂的流体运动中 突出主要矛盾、忽略次要矛盾、提炼力学模型的辩证唯物主义的科学思 维方法,着重培养学生解决工程问题的能力。了解流体力学课程的基本 内容及其在制冷、空调、建筑给排水、食品冷藏等工程中的应用,认识

到流体力学是热能与动力工程、建筑环境与设备工程专业的主要专业技术基础课。并通过一定数量习题和实验,使学生具有足够的感性认识和实际动手的能力。通过学习,能正确掌握本课程对各类流体力学问题的分析和处理方法。 三、面向专业: 热能与动力工程、建筑环境与设备工程 四、先修课程: 《高等数学》、《大学物理》、《工程数学》、《工程力学》等。 五、本课程与其它课程的联系: 本课程的先修课程:《高等数学》、《大学物理》、《工程数学》、《工程力学》等。与本课程之间联系是: 1)高等数学:本课程需要高等数学中微分学、积分学、场论等方面 的基础知识; 2)大学物理:大学物理中的力学、分子物理学和热力学以及振动和 波都是学习本课程的基础; 3)工程力学:工程力学是学习本课程的重要基础,特别是其中连续 介质取分离体的概念,应力的概念,受力分析与平衡方程式,牛 顿第二定理及动量定律等。 本课程的后续课程:《传热传质学》、《流体输配管网》、《暖通空调》、《制冷原理与设备》、《汽轮机》等,本课程是学好这些后续课程必备的专业基础。 六、教学内容安排、要求、学时分配及作业: 第一章绪论(4学时) 1.流体力学的研究对象、任务及应用(B); 2.作用在流体上的力(A); 3.流体的主要力学性质(A); 4.流体的力学模型(B)。 作业:P12—P13,习题1-3、1-7、1-9、1-12、1-14. 第二章流体静力学(8学时) 1.流体静压强及其特性(A);

泵与风机考试试题,习题及答案

泵与风机考试试题 一、简答题(每小题5分,共30分) 1、离心泵、轴流泵在启动时有何不同,为什么? 2、试用公式说明为什么电厂中的凝结水泵要采用倒灌高度。 3、简述泵汽蚀的危害。 4、定性图示两台同性能泵串联时的工作点、串联时每台泵的工作点、仅有 一台泵运行时的工作点 5、泵是否可采用进口端节流调节,为什么? 6、简述风机发生喘振的条件。 二、计算题(每小题15分,共60分) 1、已知离心式水泵叶轮的直径D2=400mm,叶轮出口宽度b2=50mm,叶片 厚度占出口面积的8%,流动角β2=20?,当转速n=2135r/min时,理论 流量q VT=240L/s,求作叶轮出口速度三角形。 2、某电厂水泵采用节流调节后流量为740t/h,阀门前后压强差为980700Pa, 此时泵运行效率η=75%,若水的密度ρ=1000kg/m3,每度电费0.4元,求:(1)节流损失的轴功率?P sh; (2)因节流调节每年多耗的电费(1年=365日) 3、20sh-13型离心泵,吸水管直径d1=500mm,样本上给出的允许吸上真空 高度[H s]=4m。吸水管的长度l1=6m,局部阻力的当量长度l e=4m,设 沿程阻力系数λ=0.025,试问当泵的流量q v=2000m3/h,泵的几何安装高 度H g=3m时,该泵是否能正常工作。 (当地海拔高度为800m,大气压强p a=9.21×104Pa;水温为30℃,对应饱 和蒸汽压强p v=4.2365 kPa,密度ρ=995.6 kg/m3) 4、火力发电厂中的DG520-230型锅炉给水泵,共有8级叶轮,当转速为n =5050r/min,扬程H=2523m,流量q V=576m3/h,试计算该泵的比转 速。

工程流体力学泵与风机课后答案

第1章绪论 1.1 试从力学分析的角度,比较流体与固体对外力抵抗能力的差别。 答:固体在承受一定的外力后才会发生形变; 而流体只要承受任何切力都会发生流动,直到切力消失; 流体不能承受拉力,只能承受压力。 1.2 何谓连续介质模型?为了研究流体机械运动的规律,说明引用连续介质模型的必要性和可能性。 答:把流体当做是由密集质点构成的、内部无空隙的连续体来研究,这就是连续介质模型。建立连续介质模型,是为了避开分子运动的复杂性,对流体物质的结构进行简化,建立连续介质模型后.流体运动中的物理量都可视为空间坐标和时间变址的连续函数.这样就可用数学分析方法来研究流体运动。 1.3 按作用方式的不同,以下作用力:压力、重力、引力、摩擦力、惯性力,哪些是表面力?哪些是质量力? 答:压力、摩擦力是表面力;重力、引力、惯性力是质量力。 1.4 为什么说流体运动的摩擦阻力是内摩擦阻力?它与固体运动的摩擦力有何不同? 答:上平板带动与其相邻的流层运动,而能影响到内部各流层运动,说明内部各流层间存在切向力,即内摩擦力,这就是黏滞性的宏观表象。也就是说,黏滞性就是流体的内摩擦特性。摩擦阻力存在于内部各流层之间,所以叫内摩擦阻力。固体运动的摩擦力只作用于固体与接触面之间,内摩擦阻力作用于流体各流层之间。 1.5 什么是流体的粘滞性?它对流体流动有什么作用?动力粘滞系数μ和运动粘滞系数v有何区别及联系? 答:黏滞性的定义又可表示为流体阻抗剪切变形的特性。由于流体具有黏性,在流动时存在着内摩擦力,便会产生流动阻力,因而为克服流动阻力就必然会消耗一部分机械能。消耗的这部分机械能转变为热,或被流体吸收增加了流体的内能,或向外界散失,从而使得推动流体流动的机械能越来越小。运动黏滞系数是动力黏滞系数与密度的比。 1.6 液体和气体的粘度随着温度变化的趋向是否相同?为什么? 答:水的黏滞系数随温度升高而减小,空气的黏滞系数则随温度升高而增大。原因是液体分子间的距离小,分子间的引力即内聚力是构成黏滞性的主要因素,温度升高,分子动能增大,间距增大,内聚力减小,动力黏滞系数随之减小:气体分子间的距离远大于液体,分子热运动引起的动掀交换是形成黏滞性的主要因素.温度升高.分子热运动加剧,动址交换加大,动力黏滞系数随之增大。 1.7 液体和气体在压缩性和热胀性方面有何不同?他们对密度有何影响? 答:压缩性是流体因压强增大.分子间距离减小,体积缩小,密度增大的性质。热胀性是温度升高.分子间距离增大,体积膨胀,密度减小的性质。水的压缩性和热胀性都很小,一般均可忽略不计。气体具有显著的压缩性和热胀性。压强与温度的变化对气体密度的影响很大。

流体力学泵与风机 蔡增基 第五版 下 答案讲解学习

流体力学泵与风机蔡增基第五版下答 案

1.描绘出下列流速场 解:流线方程: y x u dy u dx = (a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43 直线族 (b )4=x u ,x u y 3=,代入流线方程,积分: c x y +=283 抛物线族 (c )y u x 4=,0=y u ,代入流线方程,积分: c y = 直线族 (d )y u x 4=,3=y u ,代入流线方程,积分: c y x +=232

抛物线族 (e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243 椭圆族 (f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22 双曲线族 (g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22 同心圆 (h )4=x u ,0=y u ,代入流线方程,积分:c y =

直线族 (i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=2 2 抛物线族 (j )x u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (k )xy u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (l )r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y +=

220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x = 直线族 (m )0=r u ,r c u =θ,220y x cy r y r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22 同心圆 2.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。如果是有旋流动,它的旋转角速度的表达式是什么? 解:无旋流有:x u y u y x ??=??(或r r u u r ??=??θθ) (a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动 对有旋流动,旋转角速度:)(21y u x u x y ??-??=ω (b )23 =ω (c )2-=ω (d )2-=ω (e )27 -=ω (g )4-=ω (i )2-=ω (k )x 2-=ω

泵与风机杨诗成第四版习题集及标准答案

4-1 输送20℃清水的离心泵,在转速为1450r/min 时,总扬程为25.8m, q v =170m 3/h, P=15.7kW, ηv =0.92, ηm =0.90,求泵的流动效率ηh 。 4-1 解: 76.07 .151000/8.253600/17081.91000=???=== P H gq P P v e ρη h v m ηηηη??= ∴92.092 .090.076 .0=?= ?= v m h ηηηη 4-2 离心风机叶轮外径D 2=460mm,转速n=1450r/min,流量q v =5.1m 3/s,υ1u ∞=0,υ2u ∞ =u 2,(1+P)=1.176,流动效率ηh =0.90,气体密度ρ=1.2kg/ m 3。试求风机的全压及有效功率。 4-2,解: p T ∞=ρ(u 2v 2u ∞-u 1 v 1u ∞) ∵v 1u ∞=0 ∴p T ∞=ρu 2v 2u ∞=1.2×6046.014506046.01450?????ππ=1462.1(Pa ) 根据斯托道拉公式:P K +=11,∴855.017 .11==K ∴p= K·ηh ·p T ∞=0.855×0.90×1462.1=1124.7(Pa ) P e =pq v /1000=1124.7×5.1/1000=5.74 (kw) 4-3 离心风机n=2900r/min ,流量q v =12800 m 3/h ,全压p=2630Pa ,全压效率η=0.86,求风机轴功率P 为多少。 4-3 P=η P e =0.86×pq v /1000=0.86×2630×12800/3600/1000=8.04 (kw) 4-4 离心泵转速为480r/min ,扬程为136m ,流量q v =5.7m 3/s,轴功率P=9860kW 。设容积效率、机械效率均为92%,ρ=1000kg/m 3,求流动效率。 4-4解: 77.09860 1000/1367.581.91000=???=== P H gq P P v e ρη 91.092 .092.077 .0=?= ?= v m h ηηηη 4-5 若水泵流量q v =25L/s,泵出口出压力表读数为320kPa ,入口处真空表读数为40kPa ,吸入管路直径d=100cm,出水管直径为75cm ,电动机功率表读数为12.6kW ,电动机效率为0.90,传动效率为0.97。试求泵的轴功率、有效功率及泵的总效率。 ∵P e =ρg·q v ·H ∵()w Z g v v g p p H h Z 2122 12212+-+-+-=ρ

泵与风机课后习题参考答案

泵与风机(课后习题答案) 第五章 5-1 水泵在n=1450r/min时的性能曲线绘于图5-48中,问转速为多少时水泵供给管路中的流量为Hc=10+17500q v2(q v单位以m3/s计算)?已知管路特性曲线方程Hc=10+8000q v2(q v单位以m3/s计算)。 2 同一水泵,且输送流体不变,则根据相似定律得: 5-2 某水泵在管路上工作,管路特性曲线方程Hc=20+2000q v2(q v单位以m3/s计算),水泵性能曲线如图5-49所示,问水泵在管路中的供水量是多少?若再并联一台性能相同的水泵工作时,供水量如何变化? 【解】绘出泵联后性能曲线 2 管路特性曲线与泵并联后性能曲线交于M点(56L/s,25m). 5-3为了增加管路中的送风量,将风机和风机并联工作,管路特性曲线方程为 p=4 q v 2(q v 单位以m3/s计,p以p a计),及风机的性能曲线绘于图5-50中,问 管路中的风量增加了多少? 2 p a )于单独使用风机相比增加了33×103-25×103=8 m3/h 5-4 某锅炉引风机,叶轮外径为,q v-p性能曲线绘于图5-51中,因锅炉提高出力,需改风机在B点(q v=×104m3/h,p=)工作,若采用加长叶片的方法达到此目的,问叶片应加长多少?

【解】锅炉引风机一般为离心式,可看作是低比转速。 求切割直线: a A 点与B 点为对应工况点,则由切割定律得 m 8.1)11 14(D D )(22222==' '=',D D q q v v 则应加长 略 5-6 8BA-18型水泵的叶轮直径为268mm ,车削后的8BA-18a 型水泵的叶轮直径为250mm ,设效率不变,按切割定律计算qv 、H 、P 。如果把8BA-18a 型水泵的转速减至1200r/min ,假设效率不变,其qv 、H 、P 各为多少?8BA-18型水泵额定工况点的参数为:n=1450r/min ,q v =s ,H=18m ,P=,η=84%。 【解】根据公式得: 可知该泵为低比转速,可用如下切割定律求出切割后的qv 、H 、P ,其值如下: 对8BA-18a 型水泵只改变转速,可根据相似定律计算泵的qv 、H 、P ,其值如下:

流体力学泵与风机 蔡增基 第五版 下 答案

1、描绘出下列流速场 解:流线方程: y x u dy u dx = (a)4=x u ,3=y u ,代入流线方程,积分:c x y +=43 直线族 (b)4=x u ,x u y 3=,代入流线方程,积分:c x y +=283 抛物线族 (c)y u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (d)y u x 4=,3=y u ,代入流线方程,积分:c y x +=232

抛物线族 (e)y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2 243 椭圆族 (f)y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22 双曲线族 (g)y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22 同心圆 (h)4=x u ,0=y u ,代入流线方程,积分:c y = 直线族 (i)4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22

抛物线族 (j)x u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (k)xy u x 4=,0=y u ,代入流线方程,积分:c y = 直线族 (l)r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y += 220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x = 直线族

相关文档
相关文档 最新文档