文档库 最新最全的文档下载
当前位置:文档库 › 组合最优化问题及其求解优化算法

组合最优化问题及其求解优化算法

组合最优化问题及其求解优化算法
组合最优化问题及其求解优化算法

组合最优化问题最基本的特点就是变量是离散的, 由此导致其数学模型中的目标函数和约束函数在其可行域内是也是离散的。在现实世界中,许多的实际问题本质上是离散事件的而不是连续事件,都可归结为组合最优化问题。这类问题在理论上多数都属于NP难问题,NP类问题仍属于可计算问题,即存在算法来求解。求解这类组合最优化问题方法分为精确算法和近似算法两类。

常用的精确算法有动态规划、分支定界和枚举等。精确算法只能解决一些小规模问题,当求解小规模组合优化问题时可以用这类精确算法在较短的时间内得到最优解。当求解大规模组合优化问题时,理论上可以得到问题的最优解,但由于计算量太大,所以使用精确算法并不可行。利用精确算法求解NP-hard组合优化问题时,即使能得到最优解,但所需要的计算时间过长,在实际问题中难以直接应用。

近似算法是指在合理的计算时间内找到一个近似的最优解。近似算法虽然求解速度较快,但并不能保证得到问题的全局最优解。近似算法分为基于数学规划(最优化)的近似算法、启发式算法和基于智能优化的近似算法。

1) 基于数学规划(最优化)的近似算法是根据对问题建立的数学规划模型,运用如拉格朗日松弛、列生成等算法以获得问题的近似解,是以数学模型为基础,采用列生成、拉格朗日松弛和状态空间松弛等求解问题。

拉格朗日松弛(LR)算法求解问题的主要思想是分解和协调。首先对于NP难的优化问题,其数学模型须具有可分离性。通过使用拉格朗日乘子向量将模型中复杂的耦合约束引入目标函数,使耦合约束解除,形成松弛问题,从而分解为一些相互独立的易于求解的子问题,设计有效的算法求得所有子问题的最优解。利用乘子的迭代更新来实现子问题解的协调。列生成(Column generation, CG)算法是一种已经被认可的成功用于求解大规模线性规划、整数规划及混合整数规划问题的算法。

与智能优化算法相比,基于数学规划的近似算法的优点是通过建立问题的数学模型,松弛模型中难解的耦合约束或整数约束,得到的松弛问题的最优解可以为原问题提供一个下界。同时基于数学规划的近似算法还具有很好的自我评价功能,通过算法运行给出的问题的近优解(或最优解)为原问题提供一个上界,上界与下界进行比较,可以衡量算法的性能。

2) 启发式算法根据求解问题的特点,按照人们经验或某种规则设计的。这是一种构造式算法,比较直观、快速,利用问题的知识设计求解的方法步骤,相对比较简单,这种方法的求解速度较快,但所得解的质量不一定好。

3) 基于智能优化的近似算法是基于一定的优化搜索机制,并具有全局优化性能的一类算法。这类智能优化算法常见的有:模拟退火(SA)、遗传算法(GA)、蚁群算法(ACO)、路径重连算法(PR)、迭代局部搜索算法(ILS)、禁忌搜索算法(TS)、分散搜索算法(SS)、粒子群算法(PSO)等,这些算法也称超启发式算法(Meta-heuristic)。

智能优化算法是一种通用的算法框架,只要根据具体问题特点对这种算法框架结构进行局部修改,就可以直接应用它去解决不同的问题。这类算法本身不局限于某个框架,具有实践的通用性,适应于求解工业实际问题,能较快地处理大规模数据的同时得到令人满意的解。基于智能优化的近似算法,采用不同的搜索策略和优化搜索机制,寻找问题的近似最优解,具有很好的求解优势。虽然基于智能优化的近似算法不能保证求得全局最优解,但因其高效的优化性能、无需问题特殊信息、易于实现且速度较快等优点, 受到诸多领域广泛的关注和应用。基于智能优化的近似算法(超启发式算法)成为求解复杂组合最优化问题主要的有效方法。

本文的仿真实验分为两个部分,一为通过对实际大规模数据进行的实验,验证算法解决实际问题的能力;二为通过人工产生的小规模数据,测试随机产生的小规模算例,检验算法的解的质量。为验证禁忌搜索算法的质量,使用ILOG公司的约束规划软件CP 求解小规模数据,并将CP 产生的结果同禁忌搜索产生的结果相比较。在同CP 比较中,禁忌搜索算法用远小于CP计算的时间获得了优于或等于CP 的解,证明了算法的解质量。

第一类实验中,从国内规模最大的某钢铁企业获取了4 套实时数据。模型中关于惩罚和目标函数的权重由此钢铁企业的资深专家给定。实验结果如表1 所示。禁忌搜索算法较初始解平均改进幅度18158 % ,证明了禁忌搜索算法面对实际大规模问题的有效性。

第二类实验中,随机产生了6 组数据以模拟钢铁企业的实际生产情况。使用约束规划软件CP进行求解,通过比较CP 和禁忌搜索算法的结果来衡量算法的解的质量。根据实际生产环境,模拟了两个小型的生产系统,分别包含3 个和5 个工序层,每个工序层上有2 个机组。通过控制工单的质量改变问题的规模。CP 和禁忌搜索算法的结果如表2 所示。禁忌搜索算法在所有6 组实验中,获得了等于或者优于CP 优化软件所获得的解,而所消耗的计算时间远远少于CP 所消耗的时间。考虑CP是目前最好的约束规划软件之一,小规模的实验证明了算法的解的质量。

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

基于遗传算法的多式联运组合优化

第四章基于遗传算法的集装箱多式联运运输组合优化模型 的求解 4.1 遗传算法简介 4.1.1 遗传算法 遗传算法(Genetic Algorithm,GA)是在20世纪六七十年代由美国密歇根大学的Holland J.H.教授及其学生和同事在研究人工自适应系统中发展起来的一种随机搜索方法,通过进一步的研究逐渐形成了一个完整的理论和方法体系取名为基本遗传算法(Simple Genetic Algorithm)。在接下来几年的研究过程中Holland在研究自然和人工系统的自适应行为的过程中采用了这个算法,并在他的著作《自然系统和人工系统的适配》中对基本遗传算法的理论和方法进行了系统的阐述与描写,同时提出了在遗传算法的理论研究和发展中具有极为重要的作用的模式理论,它的编码技术和遗传操作成为了遗传算法被广泛并成功的应用的基础,经过许多学者多年来的研究,遗传算法逐渐成熟起来,到现在已经成为了一个非常大的体系,广泛的应用于组合优化、系统优化、过程控制、经济预测、模式识别以及智能控制等多个领域。De Jong于1975年在他的博士论文中设计了一系列针对于各种函数优化问题的遗传算法的执行策略,详细分析了各项性能的评价指标。在此基础上,美国伊利诺大学的Goldberg于1989年系统全面的阐述了遗传算法理论,并通过例证对遗传算法的多领域应用进行了分析,为现代遗传算法的研究和发展奠定了基础。 遗传算法是一种模仿基于自然选择的生物进化过程的随机方法,它以类似于基因的编码作为种群的个体,首先,随机的产生初始种群的个体,从这个群体开始进行搜索,根据类似于生物适应能力的适应度函数值的大小,按照不同问题各自的特点,在当前的种群中运用适当的选择策略选择适应能力大的个体,其中所选择出来的个体经过遗传操作、交叉操作以及变异操作产生下一代种群个体。如此反复,像生物的进化过程一样逐代进化,直到满足期望的终止条件为止。

最优化理论与算法(第八章)

第八章 约束优化最优性条件 §8.1 约束优化问题 一、 问题基本形式 min ()f x 1()0 1,,.. ()0 ,,i e i e c x i m s t c x i m m +==?? ≥=?L L (8.1) 特别地,当()f x 为二次函数,而约束是线性约束时,称为二次规划。 记 {} 1()0 (1,,);()0 ,,i e i e X x c x i m c x i m m +===≥=L L ,称之为可行域(约束域)。 {}1,,e E m =L ,{}1,,e I m m +=L ,{}()()0 i I x i c x i I ==∈ 称()E I x U 是在x X ∈处的积极约束的指标集。积极约束也称有效约束,起作用约束或紧约束(active constraints or binding constraints )。 应该指出的是,如果x * 是(1)的局部最优解,且有某个0i I ∈,使得 0()0i c x *> 则将此约束去掉,x * 仍是余下问题的局部最优解。 事实上,若x *不是去掉此约束后所得问题的局部极小点,则意味着0δ?>,存在x δ,使得 x x δδ*-<,且()()f x f x δ*<,这里x δ满足新问题的全部约束。注意到当δ充分小时,由0() i c x 的连续性,必有0()0i c x δ≥,由此知x δ是原问题的可行解,但()()f x f x δ*<,这与x * 是局部极小 点矛盾。 因此如果有某种方式,可以知道在最优解x * 处的积极约束指标集()()A x E I x * *=U ,则问题 可转化为等式的约束问题: min ()f x .. ()0i s t c x = ()i A x *∈ (8.2) 一般地,这个问题较原问题(8.1)要简单,但遗憾的是,我们无法预先知道()A x * 。

最优化理论与算法 fibonacci法

function [a,b,n,x]=fibonacci(fname,a,b,d,L) % fname函数句柄,d辨别常数,L最终区间长度a(1)=a; b(1)=b; F=zeros(1,10); %选择fibonacci数列k值为10,可任意更改 F(1)=1; F(2)=2; for k=2:10 %k取到10,生成fibonacci数列 F(k+1)=F(k)+F(k-1); F(k); end Fn=(b(1)-a(1))/L; Fk=[F Fn]; N=sort(Fk); n=find(Fn==N); %查找计算函数值的次数n t(1)=a(1)+F(n-2)*(b(1)-a(1))/F(n); %计算试探点t(1),u(1) u(1)=a(1)+F(n-1)*(b(1)-a(1))/F(n); for k=1:n-2 ft=feval(fname,t(k)); fu=feval(fname,u(k)); if ft>fu a(k+1)=t(k); b(k+1)=b(k); t(k+1)=u(k); u(k+1)=a(k+1)+F(n-k-1)*(b(k+1)-a(k+1))/F(n-k); while k==n-2 t(n)=t(n-1); u(n)=t(n-1)+d; ft=feval(fname,t(n)); fu=feval(fname,u(n)); if ft>fu a(n)=t(n); b(n)=b(n-1); else a(n)=a(n-1); b(n)=t(n); end end else a(k+1)=a(k); b(k+1)=u(k); u(k+1)=t(k); if k~=n-2 t(k+1)=a(k+1)+F(n-k-2)*(b(k+1)-a(k+1))/F(n-k); ft=feval(fname,t(k));

组合最优化简介

weili@https://www.wendangku.net/doc/849402697.html,

主要内容 ?组合最优化问题概论 ?现代最优化计算方法 –禁忌搜索(tabu search) –模拟退火(simulated annealing) –遗传算法(genetic algorithms) –人工神经网络(neural networks) –拉格朗日松弛算法(Lagrange slack arithmetic)

?组合最优化(combinatorial optimization ) –是通过对数学方法的研究去寻找离散事件的最优编排、分组、次序或筛选等 –组合最优化问题的数学模型 其中,f(x)为目标函数,g(x)为约束函数,x 为决策变量,D 表示有限个点组成的集合 D x 0 g(x) .t .s ) x (f min ∈≥

?组合最优化(combinatorial optimization ) –一个组合最优化问题可用三参数(D,F,f )表示,其中D 表示决策变量的定义域,F 表示可行解区域F 中的任何一个元素称为该问题的可行解,f 表示目标函数。满足的可行解称为该问题的最优解 –组合最优化的特点是:可行解集合为有限点集 –有可行解一定有最优解 }0)x (g ,D x |x {F ≥∈=}F x |x)(f {min )x (f *∈=*x

?组合最优化问题 例1.(最优投资问题)设一个人的财富为b ,现有n 只价格为、预期收益分别为的股票,如何选择投资策略使得该人投资收益最大?解:用数学模型表示为: )n ,2,1i (a i L =)n ,2,1i (c i L =(3) n ,2,1i },1,0{ x (2) ,b x a .t .s (1) x c max i n 1 i i i n 1 i i i L =∈≤∑∑==

粒子群算法和蚁群算法的结合及其在组合优化中的应用e

2007年第2期空间电子技术收稿日期:2006-04-03;收修改稿日期:2006-04-30 粒子群算法和蚁群算法的结合及其在 组合优化中的应用 张长春苏昕易克初 (西安电子科技大学综合业务网国家重点实验室,西安710071) 摘要文章首次提出了一种用于求解组合优化问题的PAAA 算法。该算法有效地 结合了粒子群算法和蚁群算法的优点,先利用粒子群算法的随机性、快速性、全局性得到 初始信息素分布(即粗搜索),再利用蚁群算法的并行性、正反馈性、求解精度高等优点求 精确解(即细搜索)。将文中提出的算法用于经典TSP 问题的求解,仿真结果表明PAAA 算 法兼有两种算法的优点,同时抛弃了各自的缺点。该算法在时间效率上优于蚁群算法,在 求精效率上优于粒子群算法,是综合了两种算法长处的一种新的启发式算法,达到时间性 能和优化性能上的双赢,获得了非常好的效果。 主题词蚁群算法粒子群算法旅行商问题PAAA 0引言 近年来对生物启发式计算(Bio-inspired Computing )的研究,越来越引起众多学者的关注和兴趣,产生了神经网络、遗传算法、模拟退火、粒子群算法、蚁群算法等许多用于解决复杂优化问题的新方法。然而,面对各种问题的特殊性和复杂性,每种算法都表现出了自身的优势和缺陷,都存在时间性能和优化性能不能兼得的矛盾。 粒子群优化(Particie Swarm Optimization ,PSO )算法[1, 2]是由Eberhart 和Kennedy 于1995年提出的一种全局优化算法,该算法源于对鸟群觅食行为的模拟。它的优势在于:(1) 算法简洁,可调参数少,易于实现;(2) 随机初始化种群,具有较强的全局搜索能力,类似于遗传算法;(3)利用评价函数衡量个体的优劣程度,搜索速度快;(4)具有较强的可扩展性。其缺点是:不能充分利用系统中的反馈信息,求解组合优化问题的能力不强。 蚁群算法[3,4](Ant Coiony Optimization ,ACO ) 是由意大利学者M.Dorigo ,V.Maniezzo 和A.Coiorni 于20世纪90年代初提出的一种新型的智能优化算法,已经被应用到TSP 问题[5,6]、二次分配问题、工 件调度问题、图着色问题等许多经典组合优化问题中,取得了很好的效果。它的优点是:(1)采用一种正反馈机制,通过信息素的不断更新,达到最终收敛于最优路径上的目的;(2)是一种分布式的优化方法,易于并行实现;(3)是一种全局优化的方法,不仅可用于求解单目标优化问题,而且可用于求解多目标优化问题;(4)适合于求解离散优化问题;(5)鲁棒性强。但由于在算法的初始阶段信息素匮乏,所以求解速度较慢。 文章将粒子群算法和蚁群算法有机地结合,提出了PAAA 算法。它利用粒子群算法的较强的全局搜索能力生成信息素分布,再利用蚁群算法的正反馈机制求问题的精确解,汲取各自的优势,以达空间电子技术 SPACE ELECTRONIC TECHNOLOGY !"

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

最优化理论与算法(第三章)

第三章 牛顿法 §3.1 最速下降法 一、最速下降法 在极小化算法中,若每次都以迭代点处的负梯度方向为搜索方向,产生的算法称为最速下降法,它是无约束最优化算法中最简单、最基本的算法。 算法描述: 1) 给出初始点0n x R ∈,允许误差0ε>,0k =; 2) 计算k k d g =-,若k g ε≤,Stop 令 * k x x ≈; 3) 由一维搜索确定步长因子k α,使得 ()min ()k k k k k f x d f x d ααα≥+=+ 4) 令1k k k k x x d α+=+,1k k =+,go to 2). 的每个聚点均为驻点。 令{}1 k K d 有界,且 2 ()(())()0T f x f x f x ?-?=-?= 故有 ()0f x ?=。 定理 3.2 设()f x 二次连续可微,且2()f x M ?≤,则对任何给定的初始点0n x R ∈,最速下降算法或有限终止,或lim ()k k f x →∞ =-∞,或lim ()0k k f x →∞ ?=。

证明:不妨设k ?,()0k f x ?≠。由定理2.5有 2 11()()()2k k k f x f x f x M +-≥ ? 于是 []1 2 010 1 ()()()()()2k k k i i i i i f x f x f x f x f x M -+==-=-≥ ?∑∑ 令k →∞,由{()}k f x 为单调下降序列,则要么 lim ()k k f x →∞ =-∞,要么 lim k →∞ ?定理3.3 设1 f C ∈证明:直接由定理2.14可得。 注:1) 2 1λ,n λ分别为G 的 ≤ ()k k I G x α- 其中k α使 (())(())k k k f I G x f I G x αα-≤-, 0α?≥ 若设 ()1k P t t α=-,()Q t ut λ=- 其中,u R λ∈。则有 ()Q G I uG λ=-,而(0)Q λ=,

最优化理论与算法

最优化理论与算法笔记 在老师的指导下,我学习了最优化理论与算法这门课程。最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多方案中什么样的方案最优以及怎样找出最优方案。 由于生产和科学研究突飞猛进的发展,特别是计算机的广泛应用,使最优化问题的研究不仅成为了一种迫切的需要,而且有了求解的有力工具,因此迅速发展起来形成一个新的学科。至今已出现了线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。 整个学习安排如下,首先介绍线性与非线性规划问题,凸集和凸函数等基本知识及线性规划的基本性质;然后再这个基础上学习各种算法,包括单纯形法、两阶段法、大M 法、最速下降法、牛顿法、共轭梯度法等,以及各种算法相关的定理和结论;最后了解各种算法的实际应用。 主要学习的基础知识: 1、一般线性规划问题的标准形式 1min n j j j c x =∑ 1 .., 1,...,, 0, 1,...,. n ij j i j j s t a x b i m x j n ===≥=∑ 学会引入松弛变量将一般问题化为标准问题;同时掌握基本可行解的存在问题,通过学习容易发现线性规划问题的求解,可归结为求最优基本可行解的问题。 2、熟练掌握单纯形法、两阶段法和大M 法的概念及其计算步骤。 单纯形法是一种是用方便、行之有效的重要算法,它已成为线性规划的中心内容。其计算步骤如下: 1)解,B Bx b =求得1B x B b b -==,令0,N x =计算目标函数值B B f c x =;

2)求单纯形乘子ω,解B B c ω= ,得到1B c B ω-=; 3)解k k By p =,若0k y ≤,即k y 的每个分量均非正数,则停止计算,问 题不存在有限最优解,否则,进行步骤(4); 4)确定下标r ,使min{0}r r rk rk rk b b y y y =>,得到新的基矩阵B ,返回第一 步。 两阶段法:第一阶段是用单纯形法消去人工变量,即把人工变量都变换成非基变量,求出原来问题的一个基本可行解;第二阶段是从得到的基本可行解出发,用单纯形法求线性规划的最优解。 大M 法:在约束中增加人工变量a x ,同时修改目标函数,加上罚项T a Me x ,其中M 是很大的正数,这样,在极小化目标函数的过程中,由于M 的存在,将迫使人工变量离基。 3、掌握最速下降法的概念及其算法,并且能够讨论最速下降算法的收敛性。掌握牛顿法,能够熟练运用牛顿迭代公式:(1) ()2()()()()k k k k x x f x x x +=-?- ,掌 握共轭梯度法及其相关结论,以及其收敛性的讨论,掌握最小二乘法及其基本步骤。 最速下降法:迭代公式为(1) ()()k k k k x x d λ+=-。 计算步骤:1)给定点(1)n x R ∈,允许误差0,ε>臵1k =; 2)计算搜索方向() ()()k k d f x =-?; 3)若() k d ε≤,则停止计算,否则,从()k x 出发,沿()k d 进行一维搜索,求k λ,使()()()() ()min ()k k k k k f x d f x d λλλ≥+=+; 4)令(1) ()()k k k k x x d λ+=-,臵:1k k =+,转步骤(2)。

2011-组合优化问题简约与算法推演

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/849402697.html, Journal of Software,2011,22(9):1985?1993 [doi: 10.3724/SP.J.1001.2011.03948] https://www.wendangku.net/doc/849402697.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 组合优化问题简约与算法推演 郑宇军1,2+, 薛锦云1,2, 凌海风3 1(中国科学院软件研究所计算机科学国家重点实验室,北京 100190) 2(江西师范大学江西省高性能计算重点实验室,江西南昌 330027) 3(南京大学管理工程学院,江苏南京 210093) Combinatorial Optimization Problem Reduction and Algorithm Derivation ZHENG Yu-Jun1,2+, XUE Jin-Yun1,2, LING Hai-Feng3 1(The State Key Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China) 2(Provincial Key Laboratory of High Performance Computing, Jiangxi Normal University, Nanchang 330027, China) 3(School of Management and Engineering, Nanjing University, Nanjing 210093, China) + Corresponding author: E-mail: yujun.zheng@https://www.wendangku.net/doc/849402697.html, Zheng YJ, Xue JY, Ling HF. Combinatorial optimization problem reduction and algorithm derivation. Journal of Software, 2011,22(9):1985?1993. https://www.wendangku.net/doc/849402697.html,/1000-9825/3948.htm Abstract: A unified algebraic model is used to represent optimization problems, which uses a transformational approach that starts from an initial problem specification and reduces it into sub-problems with less complexity. The model then constructs the problem reduction graph (PRG) describing the recurrence relations between the problem, and derives an algorithm with its correctness proof hand-in-hand. A prototype system that implements the formal algorithm development process mechanically is also designed. This approach significantly improves the automation of algorithmic program design and helps to understand inherent characteristics of the algorithms. Key words: combinatorial optimization problem; problem reduction; algorithm derivation; PAR (partition-and- recur); correctness proof 摘要: 针对组合优化类问题定义了代数结构模型,从问题的形式规约出发,通过一阶谓词和量词演算将问题逐 步简约为搜索空间更小、复杂度更低的子问题,根据问题的简约关系推导出求解算法,并在构造算法的同时也证明 了算法的正确性.开发了原型系统以支持上述形式化的开发过程.这种算法推演技术能够显著提高算法程序设计的 自动化水平,而问题简约的思想也更有利于对算法本质特征的理解. 关键词: 组合优化问题;问题简约;算法推演;PAR(partition-and-recur);正确性证明 中图法分类号: TP301文献标识码: A 组合优化问题是指在离散有限的数学结构中和给定的约束条件下寻找目标函数最优值的问题,它是组合 数学、运筹学和理论计算机科学中长期研究的重要问题之一.传统的组合优化算法设计策略(如动态规划、贪 心、回溯等)有着各自不同的适用范围,而且缺乏策略选择的有效标准[1],因而极大地限制了算法开发的形式化 ?基金项目: 国家自然科学基金(61105073, 60773054); 科技部国际科学技术合作项目(2008DFA11940) 收稿时间: 2009-09-25; 定稿时间: 2010-09-06

遗传算法

遗传算法 开放分类:编程、程序、数学、计算机、算法 目录 ? 遗传算法定义 ? 遗传算法特点 ? 遗传算法的应用 ? 遗传算法的现状 ? 遗传算法的一般算法 ? 遗传算法实例 遗传算法定义 [编辑本段] 遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。 遗传算法特点 [编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。 2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。 3、遗传算法使用多个点的搜索信息,具有隐含并行性。 4、遗传算法使用概率搜索技术,而非确定性规则。 遗传算法的应用 [编辑本段] 由于遗传算法的整体搜索策略和优化搜索方法在计算是不依赖于梯度信息或其它辅助知识,而只需要影响

最优化理论与算法

最优化理论与算法(数学专业研究生) 第一章 引论 § 引言 一、历史与现状 最优化理论最早可追溯到古老的极值问题,但成为一门独立的学科则是在20世纪四十年代末至五十年代初。其奠基性工作包括Fritz John 最优性条件(1948),Kuhn-Tucker 最优性条件(1951),和Karush 最优性条件(1939)。近几十年来最优化理论与算法发展十分迅速,应用也越来越广泛。现在已形成一个相当庞大的研究领域。关于最优化理论与方法,狭义的主要指非线性规划的相关内容,而广义的则涵盖:线性规划、非线性规划、动态规划、整数规划、几何规划、多目标规划、随机规划甚至还包括变分、最优控制等动态优化内容。本课程所涉及的内容属于前者。 二、最优化问题的一般形式 1、无约束最优化问题 min ()n x R f x ∈ () 2、约束最优化问题 min () ()0, ..()0, i i f x c x i E s t c x i I =∈?? ≥∈? () 这里E 和I 均为指标集。 §数学基础 一、 范数 1. 向量范数 max i x x ∞= (l ∞范数) () 11n i i x x ==∑ (1l 范数) () 122 21 ()n i i x x ==∑ (2l 范数) ()

11 ()n p p i p i x x ==∑ (p l 范数) () 12 ()T A x x Ax = (A 正定) (椭球范数) () 事实上1-范数、2-范数与∞-范数分别是 p -范数当 p =1、2和p →∞时情形。 2.矩阵范数 定义 方阵A 的范数是指与A 相关联并记做A 的一个非负数,它具有下列性质: ① 对于0A ≠都有0A >,而0A =时0A =; ② 对于任意k R ∈,都有kA k A =; ③ A B A B +≤+; ④ AB A B ≤; 若还进一步满足: ⑤ p p Ax A x ≤ 则称之为与向量范数p g 相协调(相容)的方阵范数。若令 max x Ax A x ≠= (这里x 是某一向量范数) () 可证这样定义的范数是与向量范数g 相协调的,通常称之为由向量范数g 诱导的方阵范数。特别地,对方阵()ij n n A a ?=,有: 11max n ij j i A a ==∑(列和的最大者) () 1 max n ij i j A a ∞ ==∑(行和的最大者) () 1 22()T A A A λ=(T A A λ表示T A A 的特征值的最大者) 称为谱范数(注:方阵A 的特征值的模的最大者称为A 的谱半径,记为()A ρ)。 对于由向量诱导的方阵范数,总有:

组合最优化问题及其求解优化算法

组合最优化问题最基本的特点就是变量是离散的, 由此导致其数学模型中的目标函数和约束函数在其可行域内是也是离散的。在现实世界中,许多的实际问题本质上是离散事件的而不是连续事件,都可归结为组合最优化问题。这类问题在理论上多数都属于NP难问题,NP类问题仍属于可计算问题,即存在算法来求解。求解这类组合最优化问题方法分为精确算法和近似算法两类。 常用的精确算法有动态规划、分支定界和枚举等。精确算法只能解决一些小规模问题,当求解小规模组合优化问题时可以用这类精确算法在较短的时间内得到最优解。当求解大规模组合优化问题时,理论上可以得到问题的最优解,但由于计算量太大,所以使用精确算法并不可行。利用精确算法求解NP-hard组合优化问题时,即使能得到最优解,但所需要的计算时间过长,在实际问题中难以直接应用。 近似算法是指在合理的计算时间内找到一个近似的最优解。近似算法虽然求解速度较快,但并不能保证得到问题的全局最优解。近似算法分为基于数学规划(最优化)的近似算法、启发式算法和基于智能优化的近似算法。 1) 基于数学规划(最优化)的近似算法是根据对问题建立的数学规划模型,运用如拉格朗日松弛、列生成等算法以获得问题的近似解,是以数学模型为基础,采用列生成、拉格朗日松弛和状态空间松弛等求解问题。 拉格朗日松弛(LR)算法求解问题的主要思想是分解和协调。首先对于NP难的优化问题,其数学模型须具有可分离性。通过使用拉格朗日乘子向量将模型中复杂的耦合约束引入目标函数,使耦合约束解除,形成松弛问题,从而分解为一些相互独立的易于求解的子问题,设计有效的算法求得所有子问题的最优解。利用乘子的迭代更新来实现子问题解的协调。列生成(Column generation, CG)算法是一种已经被认可的成功用于求解大规模线性规划、整数规划及混合整数规划问题的算法。 与智能优化算法相比,基于数学规划的近似算法的优点是通过建立问题的数学模型,松弛模型中难解的耦合约束或整数约束,得到的松弛问题的最优解可以为原问题提供一个下界。同时基于数学规划的近似算法还具有很好的自我评价功能,通过算法运行给出的问题的近优解(或最优解)为原问题提供一个上界,上界与下界进行比较,可以衡量算法的性能。 2) 启发式算法根据求解问题的特点,按照人们经验或某种规则设计的。这是一种构造式算法,比较直观、快速,利用问题的知识设计求解的方法步骤,相对比较简单,这种方法的求解速度较快,但所得解的质量不一定好。 3) 基于智能优化的近似算法是基于一定的优化搜索机制,并具有全局优化性能的一类算法。这类智能优化算法常见的有:模拟退火(SA)、遗传算法(GA)、蚁群算法(ACO)、路径重连算法(PR)、迭代局部搜索算法(ILS)、禁忌搜索算法(TS)、分散搜索算法(SS)、粒子群算法(PSO)等,这些算法也称超启发式算法(Meta-heuristic)。 智能优化算法是一种通用的算法框架,只要根据具体问题特点对这种算法框架结构进行局部修改,就可以直接应用它去解决不同的问题。这类算法本身不局限于某个框架,具有实践的通用性,适应于求解工业实际问题,能较快地处理大规模数据的同时得到令人满意的解。基于智能优化的近似算法,采用不同的搜索策略和优化搜索机制,寻找问题的近似最优解,具有很好的求解优势。虽然基于智能优化的近似算法不能保证求得全局最优解,但因其高效的优化性能、无需问题特殊信息、易于实现且速度较快等优点, 受到诸多领域广泛的关注和应用。基于智能优化的近似算法(超启发式算法)成为求解复杂组合最优化问题主要的有效方法。

5遗传算法与组合优化

第五章 遗传算法与组合优化 5.1 背包问题(knapsack problem ) 5.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件 ∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1 C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

最优化理论与算法(第九章)

第九章 二次规划 §9.1 二次规划问题 称形如 1m in ()2 T T Q x x H x g x = + 1,,. 1,,T i i e T i i e a x b i m s t a x b i m m ?==??≥=+?? (9.1) 的非线性规划问题为二次规划问题。对二次规划问题,有如下的最优性条件。 定理9.1 设x *是(9.1)的局部极小点,则必存在乘子(1,,)i i m λ*= ,使得 1 0 1,, 0 1,,m i i i T i i i e i e g H x a a x b i m m i m m λλλ**=*** ?+=? ?? ??-==+????≥=+??? ∑ (9.2) 且对于一切满足于: 0, ()T i d a i E I x * =∈ 的n d R ∈,都有0T d Hd ≥。 注:1)上述定理的前后两部分分别对应于一、二阶的必要条件; 2)满足上述条件的d ,都有(,)d S x λ* * ∈; 3)当约束条件均为线性函数时,容易证明: (,)(,) (,F D x X S F D x X L F D x X * * *= =及(,)(,)S x G x λλ**** = 上面给出的是二次规划的必要性条件,下面给出充分性条件。 定理9.2 设x * 是K-T 点,λ* 是相应的Lagrange 乘子,如果对满足 0 0 () 0 () 0 T i T i T i i d a i E d a i I x d a i I x λ* **?=∈?≥∈??=∈>? 且 (9.3) 的一切非零向量n d R ∈,都有0T d Hd >,则x * 是(9.1)的局部严格极小点。

最优化理论与算法(第十章)

第十章 罚函数法 罚函数是利用目标函数与约束函数一起构成的具有惩罚性质的函数。当约束条件被破坏时,施以惩罚,可以想象,当这种惩罚很大时,将迫使迭代点趋于可行点。 §10.1 外罚函数法 对一般非线性规划问题: 1min ()()01,,. ()0 ,,i e i e f x c x i m s t c x i m m +==?? ≥=? (10.1) 定义违反约束度函数: ()()()1,i i e c x c x i m -== (10.2) ()1()min{0,()} ,m i i e c x c x i m -+== 。 (10.3) 罚函数一般表示为: () ()()(())P x f x h c x -=+ (10.4) 其中() (())h c x -是惩罚项,这个函数一般具有 (0)0h =,lim ()c h c →+∞ =+∞。 较常用的形式为: () ()()() P x f x c x α σ-=+ (0σ>称为罚因子) (10.5) 注:1) 在上式中,范数常取为2 ,若取为∞ 或1 会导致()P x 不光滑。 2) 当取2 和1α>时,()P x 的光滑性可由 ()22(())(min{0,()})i c x c x -= 直接验证。事实上,在“转折点”处,可证得左、右导数均为0,由此可得() 2(())c x -光滑性,从而 ()P x 光滑。 Courant 函数是最早使用的罚函数,也是最方便最重要的一种罚函数。其形式为 2 () 2 (,)()()p x f x c x σσ-=+ 1 2 21` ()()(min{0,()})e e m m i i i m f x c x c x σσ+==++∑∑ (10.6)

相关文档
相关文档 最新文档