文档库 最新最全的文档下载
当前位置:文档库 › 椭圆的标准方程(含答案)

椭圆的标准方程(含答案)

椭圆的标准方程(含答案)
椭圆的标准方程(含答案)

一 椭圆的标准方程习题

一、选择题

1.设定点F 1(0,-3),F 2(0,3),动点P (x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是( )

A .椭圆

B .线段

C .椭圆、线段或不存在

D .不存在

2.椭圆2x 2+3y 2=12的两焦点之间的距离是( )

A .210 B.10 C. 2 D .2 2

3.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( )

A .-1

B .1 C. 5 D .- 5

4.已知方程x 225-m +y 2

m +9

=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-9

D .m >8

5.椭圆mx 2+ny 2+mn =0(m

A .(0,±m -n )

B .(±m -n ,0)

C .(0,±n -m )

D .(±n -m ,0)

6.若△ABC 的两个顶点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( ) A.x 225+y 29=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 7.点P 为椭圆x 25+y 24

=1上一点,以点P 以及焦点F 1、F 2为顶点的三角形的面积为1, 则P 点的坐标为( )

A.????±152,1

B.????152,±1

C.????152,1

D.???

?±152,±1 8.已知椭圆过点P ????35,-4和点Q ???

?-45,3,则此椭圆的标准方程是( ) A.y 225+x 2=1 B.x 225+y 2=1或x 2+y 225=1 C.x 225

+y 2=1 D .以上都不对 9.AB 为过椭圆x 2a 2+y 2

b

2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( ) A .b 2

B .bc

C .ab

D .ac

二、填空题

10.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的交点到两焦点的距离分别为3和1, 则椭圆的标准方程为________.

11.过点(-3,2)且与x 29+y 2

4

=1有相同焦点的椭圆方程是________. 三、解答题

12.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3

,求△F 1PF 2的面积.

13.求以椭圆9x 2+5y 2=45的焦点为焦点,且经过点M (2,6)的椭圆的标准方程.

二 椭圆的标准方程(答案)

1、[答案] C [解析] 当a >|F 1F 2|=6时,动点P 的轨迹为椭圆;

当a =|F 1F 2|=6时,动点P 的轨迹为线段;当a <|F 1F 2|=6时,动点P 的轨迹不存在

2、[答案] D [解析] 椭圆方程2x 2+3y 2=12

可化为:x 26+y 24

=1,a 2=6,b 2=4,c 2=6-4=2,∴2c =2 2. 3、[答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2

+y 2

5k =1, 又∵焦点是(0,2),∴a 2=5k ,b 2=1,c 2=5k

-1=4,∴k =1. 4、[答案] B

[解析] 由题意得????? m +9>025-m >0

m +9>25-m ,解得8

5、[答案] C [解析] 椭圆方程mx 2+ny 2

+mn =0可化为x 2-n +y 2

-m =1, ∵m -n ,椭圆的焦点在y 轴上,排除B 、D ,

又n >m ,∴m -n 无意义,排除A ,故选C.

6、[答案] D

[解析] |AB |=8,|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.

7、[答案] D [解析] S △PF 1F 2=12×|F 1F 2|·|y P |=12

×2×|y P |=1, ∴|y P |=1,y P =±1,代入椭圆方程得,x P =±152

. 8、[答案] A [解析] 设椭圆方程为:Ax 2+By 2=1(A >0,B >0)

由题意得??? 925A +16B =11625A +9B =1,解得?????

A =1

B =125. 9、[答案] B [解析] S △ABF =S △AOF +S △BOF =12

|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b .

∴△ABF 面积的最大值为bc .

10、[答案] x 24+y 2

3

=1 [解析] 由题意可得????? a +c =3a -c =1,∴?????

a =2c =1

三 故b 2=a 2-c 2

=3,所以椭圆方程为x 24+y 23=1. 11、[答案] x 215+y 210

=1 [解析] 因为焦点坐标为(±5,0),设方程为x 2a 2+y 2a 2-5=1,将(-3,2)代入方程可得9a 2+4a

2-5

=1,解得a 2=15,故方程为x 215+y 210=1.

12、[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,

又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,

∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,

∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2

=12×2563×32=643

3.

13、[解析] 由9x 2+5y 2=45,得y 29+x 2

5=1.

其焦点F 1(0,2)、F 2(0,-2).

设所求椭圆方程为y 2a 2+x 2

b 2=1.

又∵点M (2,6)在椭圆上,∴6a 2+4

b 2=1①

又a 2-b 2=4②

解①②得a 2=12,b 2=8.

故所求椭圆方程为y 212+x 2

8=1.

【精品】高中数学选修1-1 椭圆及其标准方程 知识讲解 讲义+巩固练习

椭圆及其标准方程 【学习目标】 1. 知识与技能目标: 掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导. 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力. 3. 情感态度与价值观目标: 通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神. 【要点梳理】 要点一:椭圆的定义 平面内到两个定点1F 、2F 的距离之和等于常数(大于12F F )的点的集合叫椭圆.这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距. 要点诠释: (1)1F 、2F 是椭圆上不同的两个顶点; (2)若P 是椭圆上任意一点,则12PF PF +=常数; (3)当 常数12F F > 时,轨迹为椭圆; 当 常数=12F F ,则轨迹为线段12F F ; 当 常数12F F <,则轨迹不存在. 要点二:椭圆的标准方程 1. 椭圆的标准方程

要点诠释: 1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2. 在椭圆的两种标准方程中,都有0a b >>和222c a b =-; 3. 椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -; 4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 2. 标准方程的推导: 由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程. 如何建立椭圆的方程?根据求曲线方程的一般步骤:建系、设点、列式、化简. 以焦点在x 轴上的方程22 221x y a b +=(0)a b >>为例. (1)建系 建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的. 以两个定点1F ,2F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系(如图). (2)设点 设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).

第12讲(椭圆的定义、标准方程及简单性质)

第12讲 解析几何初步(1) 模块一、椭圆的定义及标准方程 考点1椭圆的定义 1.平面内到两个定点的距离的和等于常数2a (大于12F F )的点的轨迹叫椭圆.定点1F ,2F 叫做椭圆的焦点,两焦点之间的距离叫做焦距(2c ). 2.已知B ,C 是两个定点,6BC =,且ABC ?的周长等于16,则顶点A 在 上运动. A.椭圆 B.直线 C.线段 D.圆 3.设M 是圆2F :22(1)16x y -+=上的任意一点,点1F (1,0)-是一定点,作1MF 的垂直平分线,交2MF 于P ,则点P 的轨迹为 . 4.设圆22(1)16x y -+=的圆心为A ,直线l 过点(1,0)B -且与x 轴不重合,交圆A 于C 、D 两点,过B 作AC 的平行线交AD 于M ,则点M 的轨迹为 . 考点2椭圆的标准方程 考法1焦点在x 轴上的椭圆的标准方程:122 22=+b y a x (0a b >>),(222c a b =-). 1.椭圆C :164 1002 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.已知4a =,3b =,焦点在x 轴上,则椭圆的标准方程为 . 3.已知4a =,3c =,焦点在x 轴上,则椭圆的标准方程为 . 4.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -, 则m = A .9 B .4 C .3 D .2 5.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -,

则m = A .9 B .4 C .3 D .2 6.(2020·北京卷)已知椭圆C :22 221x y a b +=过点(2,1)A --,且2a b =.则椭圆 C 的方程为 . 考法2焦点在y 轴上的椭圆的标准方程:方程为22 221y x a b +=(0a b >>). 1.椭圆C :125 92 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.(2002·全国卷)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k . 3.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,)+∞ B.(0,2) C.(1,)+∞ D.(0,1) 4.(2009·陕西卷·文理科)“0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 考点3 椭圆定义的应用 1.椭圆C : 136 1002 2=+y x 上一点P 到焦点1F 的距离等于6,则点P 到另一焦点2F 的距离是 . 2.已知椭圆C :22 16410 x y + =的焦点为1F 、2F ,直线l 过椭圆的焦点1F ,且与椭圆交于A B 、两点,则2ABF ?的周长为 . 3.已知椭圆C :22 192 x y + =的焦点分别为1F 、2F ,点M 在椭圆上,若14MF =,则2MF = ,21F MF ∠= . 6.(2009·上海卷)已知椭圆C :22 221x y a b +=(0a b >>)的焦点为1F 、2F ,P 是椭圆上的一点,且120PF PF ?=,若三角形12PF F ?的面积为9,则b = A.3 B.6 C.9 D.12 模块二、椭圆的简单性质

椭圆及其标准方程教学设计

《椭圆及其标准方程》教学设计 胥娟 一、教材及学情分析 1.《椭圆及其标准方程》是高中数学选修1-1(人教版)2.1.1中的内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。本节是第一课时. 2.本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法学习曲线。椭圆的学习可以为后面学习双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一。 3.运用多媒体形象地给出椭圆,通过让学生自已动手作图,“定性”地画出椭圆,再通过坐标法“定量”地描述椭圆,使之从感性到理性抽象概括,形式概念,推出方程。 二、教学目标分析 1. 知识与技能目标: 掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导。 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力。 3. 情感态度与价值观目标: 通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神。 三、学习者特征分析 1.在此之前,学生已学过坐标法解决几何问题,学过圆的定义与标准方程,但掌握不够,2.从研究圆到研究椭圆,跨度较大,学生思维上存在障碍. 3.在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。 4.该班学生是高二文科生,数学基础整体较差。 5.经过近一学期的引导、鼓励,学生学习数学的积极性较高。 点评:对学习者知识基础、运算能力、学习兴趣和认知特征分析较到位,能和相应的教学方法激发学生的兴趣、锻炼提高运算能力和学生学习过程的积极性。 四、教学策略选择与设计 1、教法设计:采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。 2、学法设计:自主探究,合作交流 要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。 3、教学手段:多媒体辅助教学. 通过动态演示,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量. 点评:本节课的引入采用神州7号围绕地球旋转的壮观图片,一下子就把学生的注意力吸引住了,在创设情境,引发动机方面起到很好的效果。 五、教学资源与工具设计 1.多媒体教室

2021年椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质 欧阳光明(2021.03.07) 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数 |)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的 焦点. 当21212F F a PF PF >=+时,P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时,P 的轨迹不存在; 当2 12 12F F a PF PF ==+时,P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系:

当12222 >+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当1 2 2 22=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离 0

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

椭圆的简单几何性质练习题

. 课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5 的椭圆的标准方程是( ) +y 236=1 + y 2 64 =1 +y 2 16 =1 +y 2 9 =1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2 =a 2 -c 2 =16,又e =c a =3 5 ,解得c =3,a =5,又 焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16 =1,故选C. $ 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2 . 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 ) B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k + y 2 25-k =1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且 与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) B .-513 D .-21313 # 【解析】 由题意,a 2=4,b 2=3, 故c =a 2-b 2=4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3 =1, 解得y 0=±3 2 , 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=132. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

椭圆及其标准方程教案

椭圆及其标准方程 一、教学目标 (一)知识目标 1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导; 2、掌握焦点、焦点位置与方程关系、焦距; (二)能力目标 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力; (三)学科渗透目标 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、教学过程 (一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义 椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? M 2 F 1F

椭圆及其标准方程练习题

椭圆及其标准方程练习题 【基础知识】 一.椭圆的基本概念 1.椭圆的定义:我们把平面内与两个定点的距离的和等于常数 ( )的点 的轨迹叫做椭圆,用符号表示为这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。 椭圆方程的总形式为 [经典例题]: 例1. 根据定义推导椭圆标准方程. 已知B ,C 是两个定点,|BC |=6,且ABC ?的周长等于16,求顶点A 的轨迹方程 已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段

例2.写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5) 例3 求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. 例4 已知椭圆经过两点()5,3()2 5 ,23与-,求椭圆的标准方程 例5 1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆离心率是 ; 2.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 ; 3.若椭圆的两个焦点F 1、F 2与短轴的一个端点B 构成一个正三角形,则椭圆的离心率为 ; [典型练习]: 椭圆 19 252 2=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.10 2.椭圆 1169 252 2=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0) 3.已知椭圆的方程为 182 2 2=+m y x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m 4.1,6==c a ,焦点在y 轴上的椭圆的标准方程是

椭圆定义、标准方程及性质(一)

椭圆的定义、标准方程及性质(一) 一、选择题(本大题共8小题,每小题5分,共40分.) 1、椭圆的焦距() A.2 B. C. D. 2、是定点,,动点M满足,则点M的轨迹是() A.椭圆 B.圆 C.线段 D.直线 3、若椭圆的两个焦点分别为,且椭圆过点则椭圆的方程为()A. B. C. D. 4、方程表示焦点在y轴上的椭圆,则k的取值范围是() A. B. C. D.(0,1) 5、过椭圆的一个焦点的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点构成的周长是() A. B.2 C. D.1 6、已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为() A.或 B. C.或 D. 7、已知,则曲线有() A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴 8、椭圆的焦点,P为椭圆上的一点,已知,则的面积为() A.9 B.12 C.10 D.8 二、填空题(本大题共4小题,每小题5分,共20分.) 9、椭圆的离心率为,则= . 10、设是椭圆上的一点,是椭圆的两个焦点,则*的最大值为 . 11、椭圆的焦点分别是,点在椭圆上.如果线段的中点在轴上,那么是倍. 12、已知圆及点,为圆上一点,的垂直平分线交于于,则点的轨迹方程为 . 三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤) 13、如果点在运动的过程中,总满足关系式,点的轨迹是什么曲线?写出它的方程.

14、点到定点的距离和它到定直线的距离的比是,求点的轨迹方程,并指出轨迹是什么图形. 15、已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于1,求点的坐标.

椭圆教学设计(人教版)教学教材

《椭圆及其标准方程》教学设计龙城高级中学胡宇娟

(一)指导思想与理论依据 1、本节课的设计力图体现“教师为主导,学生为主体”的教学思想。在教 学的过程中始终本着“教师是课堂教学的组织者、引导者、合作者”的原则,让学生通过实验、观察、思考、分析、推理、交流、合作、反思等过程建构新知识,并初步学会从数学的角度去观察事物和思考问题,产生学习数学的浓厚兴趣。 2、在“椭圆的标准方程”的引入与推导中,遵循学生的认识规律,运用“实 验——猜想——推导——应用”的思想方法,逐步由感性到理性地认识定理,揭示知识的发生、发展过程;遵循现代教育理论中的“要把学生学习知识当作认识事物的过程来进行教学”的观点。 3、数学学习的核心是思考,离开思考就没有真正的数学。针对这节课的内 容:教师提问;学生操作、观察、思考、讨论;教师再演示、点评,最大限度地调动学生积极参与教学活动。在教学重难点处适当放慢节奏,给学生充分的时间与空间进行思考与讨论,教师适时给予适当的思维点拨,必要的可进行大面积提问,让学生做课堂的主人,充分发表自己的观点,交流、汇集思想。这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。另外通过学法指导,引导学生思维向更深更广发展,以培养学生良好的思维品质,并为以后进一步学习椭圆的几何性质及双曲线和抛物线作好辅垫。 (二)教学背景分析 A、学情分析 1、能力分析 ①学生已初步掌握用坐标法研究直线和圆的方程; ②对含有两个根式方程的化简能力薄弱。 2、认知分析 ①学生已初步熟悉求曲线方程的基本步骤; 共 8 页第1页

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆标准方程及其性质知识点大全(供参考)

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2.

2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>b a 相交于两点 11(,)A x y 、22(,)B x y , 把AB 所在直线方程y=kx+b ,代入椭圆方程122 22=+b y a x 整理得:Ax 2+Bx+C=0。 ●弦长公式: ① 212212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1(含M N F x y

《椭圆的定义及其标准方程》教学设计

课题:§2.1.1椭圆的定义及其标准方程 鹿城中学田光海 一、教案背景: 1.面向对象:高中二年级学生 2.学科:数学 3.课时:2课时 4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§2.1.1椭圆及其标准方程 二. 教材分析 本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。 1. 教法分析 结合生活经验观察发现、启发引导、探究合作。在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。主要采用探究实践、启发与讲练相结合。 2. 学法分析

从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。 从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。 从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 3.教学目标 知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。 过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。 情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

椭圆及其标准方程教学设计(精)

椭圆及其标准方程教学设计 课题椭圆及其标准方程 一、学情分析 学生在必修Ⅱ中学过圆锥曲线之一,圆。掌握了圆的定义及圆的标准方程的推导,学生可以用类比的方法来研究中一种圆锥曲线椭圆。学生基础差,计算分析问题能力低。地处少数民族区竟争意识淡动手能力差。 二、教学目标 知识技能: 〈1〉掌握随圆的定义,掌握椭圆标准方程的两种形式及其推导过程 〈2〉能根据条件确定椭圆的标准方程,掌握运用定义法,待定系统法求随圆的标准方程。 过程方法: 〈1〉通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。 〈2〉通过对椭圆标准方程的推导,是学生进一步掌握求曲线方程的一般方法,并渗透数结合和等价转化的思想方法,提高运用坐标解决几何问题的能力,情感态度和价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。

三、教学重点,难点分析 重点:椭圆的定义及椭圆标准方程的两种形式。 难点:椭圆标准方程的建立和推导。 关键:掌握建立坐标系统与根式化简的方法。 椭圆及其标准方程这一节教材整体来看是两大块内容,一是椭圆定义,二是椭圆的标准方程,椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中,先要学习的内容,所以教材把对椭圆的研究放在了重点,对双曲线和抛物线的教学中巩固和应用,先讲椭圆也与圆的知识衔接自然,学好椭圆对学生学习圆锥曲线是非常重要的。 四、教法建议 〈1〉安排学生提前预习,动手切割圆锥形的事物,使学习了解圆锥曲线名称的来历及圆锥曲线的样子。 〈2〉对椭圆定义的引入,要注重于借助直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,进而形成正确的概念。 〈3〉将课本提出的问题分解成若干小问题,通过学生、教师动手演示,来体现椭圆定义的实质。 〈4〉注意椭圆的定义与椭圆的标准方程的联系。 〈5〉推导椭圆的标准方程时,教师要注重化解难点,实施的补充根式化简方法。 〈6〉讲解完焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程。然后,鼓励学生探索椭圆的两种标准方程的异同点,进一步加深对椭圆的认识。 〈7〉在学习新知识的基础上要巩固旧知识。

高中数学 2.5第11课时 椭圆标准方程与几何性质复习小结学案 理 新人教A版选修2-1

课题:椭圆标准方程与几何性质复习(1) 课时:11 课型:复习课 一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质及重要结论.二.知识要点: 1、椭圆及标准方程:标准方程有两种,注意焦点在坐标轴上位置的确定;有时标准 方程可以改写为=1;标准方程有时可以用待定系数法求得。 2、椭圆中的四线:两对坐标轴,两对准线;六点:两个焦点,四个顶点; 3、弦长公式:|AB|= 4、椭圆中的点对焦点的张角的变化情况: 5、点代作差结论: 6、焦点三角形的面积:tan 7、特殊的焦点弦:通径= 8、椭圆中的最值问题: (1)、椭圆上的点到椭圆外的直线距离有最大值和最小值;

(2)、椭圆上的点到椭圆内的点及椭圆的焦点的距离之和有最大值和最小值; (3)、A为椭圆内的点,F为椭圆的一个焦点,M是椭圆上动点,则存在M,使得|MA|+|MF|有最小值; (4)、A为椭圆内的点,F为椭圆的一个焦点,M是椭圆上动点,则存在M,使得|MA|-|MF|最大; 9、椭圆的焦半径 左:= a+e = a-e 10、有关椭圆中向量的最值问题P是椭圆上的点,则 (1)、||||=(a+e)( a-e)=. (2)、| |:(| |==++2=+ +2||||()=+4-2()=4+. (3)、+(或+). (4)、=||||()=-()=-+. 三、椭圆精典题型: 1、已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 A.2 B.3 C.4 D.5

2、 椭圆22 12516 x y +=的一个焦点为F,O 是坐标原点,点P 在椭圆上,且||4PF =,M 是线段PF 的中点,则||OM =___________; 3、 在平面直角坐标系中,已知顶点和,顶点在椭圆上,则____. 4、 椭圆22 14 x y m +=的焦距为2,则m 的值等于( ) A.5或 5、 已知方程22 212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是 ( ) A.2m >或1m <- B. 2m >- C.12m -<< D. 2m >或21m -<<- 6、 “0m n >>”是“方程22 1mx ny +=表示焦点在y 轴上的椭圆”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件 7、 椭圆122 22=+n y m x )0,0(>>n m 的一个焦点坐标是(2,0), 且椭圆的离心率2 1=e , 则椭圆的标准方程为 ( ) A.1161222=+y x B.1121622=+y x C.164482 2=+y x D.148 6422=+y x 8、已知椭圆22 221x y a b +=有两个顶点在直线22x y +=上,则此椭圆的焦点坐标是( ) A.(0) B.(0, C.(0) D.(0,

椭圆的标准方程与几何性质

椭圆的标准方程与几何性质 高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线 (1)已知椭圆24x +2 2 y =1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则12PF F △的面积是 A B .2 C . D (2)已知F 1,F 2分别是椭圆E :22x a +221y b =(0a b >>)的左、右焦点,点(1)在椭圆 上,且点(1-,0)到直线PF 2P (1-,4-),则椭圆的标准方程为 A .x 2 +2 4 y =1 B .24x +y 2 =1 C .x 2 +2 2 y =1 D .22 x +y 2 =1 (3)已知椭圆22x a +2 2y b =1(0a b >>)的左、右焦点分别为F 1(c -,0),F 2(c ,0),若椭圆上 存在点P ,使1221 sin sin a c PF F PF F ∠∠=,则该椭圆离心率的取值范围为 A .(01-) B .,1) C .(0) D .1-,1) 【参考答案】(1)A ;(2)D ;(3)D . 【试题解析】(1)由椭圆的方程可知a =2,c ,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2, 所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =|PF 1|2=|PF 2|2+|F 1F 2|2 ,即12PF F △为直

角三角形,所以12122||11 12 |2|PF F S F F PF = =?=△.故选A . (3)根据正弦定理得 2112 21 sin sin PF PF PF F PF F ∠∠= ,又 1221 sin sin a c PF F PF F ∠∠=可得 21 a c PF PF =,即12 PF c PF a = =e , 所 以 |PF 1|=e|PF 2| . 又 |PF 1|+|PF 2|=e|PF 2|+|PF 2|=|PF 2|·(e+1)=2a ,所以|PF 2|= 21 a e +.因为a -c <|PF 2|往往是解决计算问题的关键,椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理. (2)求椭圆的方程有两种方法:①定义法;②待定系数法.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为 221mx ny =+(0,0m n >>且)m n ≠. (3)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.理解顶点、焦点、长轴、短轴等椭圆的基本量之间的关系,深挖出它们之间的联系,求解自然就不难了. (4)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两

相关文档
相关文档 最新文档