文档库 最新最全的文档下载
当前位置:文档库 › SINR &SNR

SINR &SNR

SINR &SNR
SINR &SNR

CINR、CNR、SNR、SINR和Eb/No的区别

CINR: Carrier to Interference plus Noise Ratio(载波与干扰和噪声比)CNR: Carrier to Noise Ratio(载噪比)

SINR: Signal to Interference plus Noise Ratio(信号与干扰和噪声比)SNR: Signal Noise Ratio(信噪比)

CINR:载干噪声功率比

CNR:载噪功率比

以上的定义主要是针对接收机前端的,这时接收信号还没有

很好地解调等等,有用信号部分还没有完全从载波中提取出来

SNR:信噪功率比

SINR:信干噪声功率比

Eb/No:比特能量与噪声功率谱密度之比。

这些定义应该用于接收机后端了,这时信号已经和载波分离了,

而且Eb/No又仅仅用于数字通信中。

其相互间的转换关系以及更加具体的说明可参见:

[Bernard Sklar].Digital Communications Fundamentals and Applications 2nd Ed.

CINR是有用信号功率比(噪声+干扰),SINR是总信号功率比(噪声+干扰).一般将SINR中的S也认为是有用信号功率,则SINR等效于CINR。

SNR是总信号功率比噪声。CNR有用信号功率比噪声。SN与CNR之间的关系同CINR 与SINR之间的关系一样。

Eb/No是比特能量与AWGN的噪声功率谱之比。它和SNR还有以下的关系:SNR=(Eb*Rb)/(No*W)。其中Rb是信息速率,W是信号带宽。SNR表示的是整个带宽内的功率之比。在通信系统中,特别是数字通信系统,在通信链路的任何一个环节,都可以定义信噪比,但是,这些信噪比是依赖于这些定义而常常不相同。那么系统间的性能比较就没有统一的标准。因此在数字通信系统中,经常采用Eb/N0来作为统一的衡量标准。

载波与干扰+噪声比(CINR),用分贝来表达(dBs),是信号效力的测量标准。载波是有效信号,干扰能够是噪声或同频干扰或两者都有。为了使信号接收者可能解码信号,信号必须属于一个可接收的CINR范围,其与使用的技术(例如,CDMA、GSM .wimax等)不一致。

CINR(或SNR或SINR)提供了所需信号与干扰(或噪声或干扰加噪声)相比强度如何的信息。

Noise和Interference也是两个不同的概念.一般,Noise 是指频带很宽的噪声(如AWGN),一般主要由接收机的热性能决定和产生(当然一些特殊频谱接近于noise的干扰信号(interferer),如UWB干扰信号也可以看成是noise)。而interferer,顾名思义,指的是干扰,例如来自其他系统的信号等,其频谱也比noise窄得多。

SINR是针对单Subcarrier来说的,CINR是针对多个Subcarrier来说的,如果每个Subcarrier的底噪声和干扰相同,功率也相同的话,SINR=CINR

我们在信道估计时计算CINR,而在均衡解调后计算SINR

信噪比 S/N 、载噪比 C/N 与 Eb/N0之全方位区别:

Eb的单位是J,定义是接收端的平均比特能量,N0的单位是W/Hz(J),也是在接收端定义的平均功率谱密度。S和N的单位是W。简单的换算,是

(Eb/N0)=(S/N)/f,其中f是系统的频谱效率(Gp=WPR处理增益的倒数),这个值是与编码、调制方式有关的,比如1/2的编码,16QAM,f=1/2*4=2(bits/symbol)。信息论中的定义是(Eb/N0)=(S/N)/(R/W),这与上面是一样的。首先,必须弄清单位!按照信息论中对Eb的定义,应该和信号的调制方式无关。Eb=S/C,其中

C为信道容量。这样若设r为信噪比,则由信道容量的定义有Eb/No=r/log(1+r)。这里是认为C=log(1+r)推出来的。

信噪比( S/N )是指传输信号的平均功率与加性噪声的平均功率之比。载噪比(C/N )指已经调制的信号的平均功率与加性噪声的平均功率之比。它们通常都以对数的方式来计算,单位为dB。

信噪比与载噪比区别在于,载噪比中已调信号的功率包括了传输信号的功率和调制载波的功率,而信噪比中仅包括传输信号的功率,两者之间相差一个载波功率。当然载波功率与传输信号功率相比通常都是很小的,因而载噪比与信噪比在数值上十分接近。对抑制载波的调制方式来说,两者的值相等。信噪比和载噪比可以在接收端直接通过测量得到。在调制传输系统中,一般采用载噪比指标;而在基带传输系统中,一般采用信噪比指标。实际数字通信系统的可靠性性能常以一个载噪比对误码率的关系曲线来描述的,曲线的横坐标为 C/N,纵坐标为BER。

Eb表示信道内单位比特码的功率,N0代表噪声谱密度,Eb/N0实际上就是

一种信噪比,因为通常讲的SNR是信号和噪声功率的比值,是单位时间内的信号和噪声能量的比值,但是在通信中计算单位时间内的SNR是相对笼统的,Eb/NO 取单位比特码的SNR就比较科学,和一般的信噪比一样,用它来表征无线信道的质量是理所当然的。

Eb/N0 SNR之间的关系

在仿真中信号能量绝对是非常非常重要的问题,但是一直有扰于一些概念没有理清楚,现在理一理。

SNR信噪比,信号平均能量与噪声平均能量的比值,将噪声能量设置为1,信号能量可以由信噪比和噪声能量求得,S=10^(SNR/10)*N。

传信率为Rb(比特/秒),带宽W(赫兹),

S/N=Eb*Rb/N0*W=(Eb/N0)*(Rb/W),Rb/W就是频谱效率,所以在这SNR与Eb/N0

就是一个线性的关系,仿真时可以将Eb/N0与S/N统一看待,然后将S/N用db

形式的SNR反映出来。

由于严格意义上讲E是信号能量,而不是信号功率,所以信号能量与时间长度还有关系,一个符号的时间长度是一个比特时间长度的log2(M)的关系,即

Es/N0=log2(M)*Eb/N0.

所以如果信号能量加在比特上用Eb/N0的形式转化,如果能量加在符号级上,就按照Es/N0的形式转化。

Eb/N0 Ec/N0 Es/N0

(一)比特信噪比Eb/ N0:Eb是比特能量, (一般来说,一个Bit是有很N个chip组成的,所以它的能量=N×Ec);

(二)Ec/ N0:Ec是指一个chip的平均能量;

(三)符号信噪比Es/ N0:Es是符号能量;

Es/N0=log2(M)*Eb/N0。

Es/N0=SNR×Tsym/Tsample,其中Tsym表示符号时间,Tsample表示采样点间隔。

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

基本条分法

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs= 抗滑力矩/滑动力矩,即 =M R/M h

图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

二手车交易计算公式(很实用)

汽车的折旧率是很高的。最基本、简便方法是采用重置成本法来计算。即被评估车辆的现在市场价格=重置成本×成新率。 重置成本:购买一辆新的与被评估车辆相同相近的车辆所支付的金额(不含装饰)。 成新率:计算方法以使用年限法比较简单。成新率=1-已使用年限/规定使用年限×100%。计算时时间单位统一为月。汽车的规定使用年限为15年。 举例说明:2002年1月份购买的高尔夫1.6/5VAT舒适型,规定使用年限为15年,即180个月。使用3年后即2005年10月进行估价,那么它的成新率=1-(45个月/180个月)×100%=75%,而高尔夫1.6/5VAT舒适型现在的官方报价为14.5万,即为其重置成本。14.5×75%,即10.875万就是计算出的估价了。 当然,这只是考虑了年限后得出的数据。前面说了,汽车的折旧率非常高,所以,在计算成新率时使用更多的是成新率=1-折旧率,而折旧率就需要通过加权计算以下几项:年限折旧率,里程折旧率,故障折旧率,油耗及排污折旧率的综合数值。所以,我们通常情况下可以在刚才10.985万的基础上再乘75%,然后以此价格作为一个参考,也就8万多。 举此例子。你可以根据上面公式计算喽。

二手车车价格计算法则 发布时间:2009年1月40日访问次数:1220 1.理想状态下的“十年折旧法则”:即以一辆车的 使用年限为10年来计算。前三年每年按价值减少15% 来计算,中间4年(第4、5、6、7年)每年按价值减 少10%来计算,最后三年每年按价值减少5%来计算。 目前评估师在计算二手车价值时一般采用此方法。但是 由于理想状态不是时刻存在的,因此也有弊端。 2.设备残值的“54321法则”:假如一部车有效寿 命30万公里,将其分为5段,每段6万公里,每段价 值依序为新车价的5/15、4/15、3/15、2/15、1/15。 假设新车价10万元,已行驶12万公里,那么该车的 价值大体是:10×(3+2+1)÷15=4万元。例如:某 车买入价为10万,行驶2万公里,那么该车的价格可 计算为(4+3+2+1)×10/15=6.7万 然而这种方法也存在不足:二手车交易中,经常出 现里程表人为调低的情况。 如果怀疑里程表不准,还可以这样估算二手车的行驶里程数:非营运车每年2.5万公里左右;营运车(例如出租车)大概在18万公里/年。

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

瑞典条分法毕肖普条分法基本假设

条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理。 瑞典条分法基本假设: 滑面为圆弧面; 垂直条分; 所有土条的侧面上无作用力; 所有土条安全系数相同。 毕肖普条分法基本假设:(双重叠代可解) 滑弧为圆弧面;垂直条分;所有土条安全系数相同;考虑土条的侧向受力。 影响基底压力因素主要有: 荷载大小和分布基础刚度基础埋置深度土体性质 地基土中附加应力假设: 地基连续、均匀、各向同性、是完全弹性体、基底压力是柔性荷载。 应力分布: 空间问题——应力是x,y,z 三个坐标轴的函数。 平面问题——应力是x,z 两个坐标的函数。 库仑(C. A.Coulomb)1773年建立了库仑土压力理论,其基本假定为: (1)挡土墙后土体为均匀各向同性无粘性土(c=0); (2)挡土墙后产生主动或被动土压力时墙后土体形成滑动土楔,其滑裂面为通过墙踵的平面; (3)滑动土楔可视为刚体。 库仑土压力理论根据滑动土楔处于极限平衡状态时的静力平衡条件来求解主动土压力和被动土压力。 朗肯土压力理论是朗肯(W.J.M.Rankine)于1857年提出的。它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。 临塑荷载及临界荷载计算公式的适用条件 (1)计算公式适用于条形基础。这些计算公式是从平面问题的条形均布荷载情况下导得的,若将它近似地用于矩形基础,其结果是偏于安全的。 (2)计算土中由自重产生的主应力时,假定土的侧压力系数K0=1,这与土的实际情况不符,但这样可使计算公式简化。 (3)在计算临界荷载时,土中已出现塑性区,但这时仍按弹性理论计算土中应力,这在理论上是相互矛盾的,其所引起的误差随着塑性区范围的扩大而扩大。

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因 素并经过很多次试验得出的较经 济合理的车内平均温度。因为对 微型车来说,如果计算温度定得 过高了,乘员就会明显感觉制冷 不足;而如果定得过低,势必需 要加大压缩机排量才能满足,这 样功耗必然增加,并影响到整车 的动力性,否则又很可能无法实 现。 2 计算方法 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=~,这里取k= Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表:

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1长 ①载货汽车w 12m ②半挂汽车列车w 16.5m 1.1.2宽W 2.5m (不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性 挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3高W4m (汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2基本计算公式 A 已知条件 a)底盘整备质量G i b)底盘前轴负荷g i c)底盘后轴负荷Z i d)上装部分质心位置L2 e)上装部分质量G2 f)整车装载质量G3 (含驾驶室乘员) g)装载货物质心位置L3 (水平质心位置) h)轴距 l(h I2) B上装部分轴荷分配计算(力矩方程式) 例图1 1 g2 (前轴负荷)X(I -l i )(例图1)=G2 (上装部分质量)X L2 (质心位置)

基本条分法

基本条分法

————————————————————————————————作者: ————————————————————————————————日期: ?

基本条分法 基本条分法是基于均质粘性土,当出现滑动时,其滑动面接近圆柱面和圆锥面的空间组合,简化为平面问题时接近圆弧面并作为实际的滑动(滑裂)面。将圆弧滑动面与坡面的交线沿组合的滑体部分,进行竖向分条,按不考虑条间力的作用效果并进行简化,将各个分条诸多力效果作用到的滑动圆弧上,以抗滑因素和滑动因素分析,用抗滑力矩比滑动力矩的极限平衡分析的方法建立整个坡体安全系数的评价方法。 基本条分法的计算过程通常是基于可能产生滑动(滑裂)圆弧面条件下,经过假定不同的滑动中心、再假定不同的滑动半径,确定对应的滑动圆弧,通过分条计算所对应的滑体安全系数,依此循环反复计算,最终求出最小的安全系数和对应的滑弧、滑动中心,作为对整个土坡的安全评价的度量。计算研究表明,坡体的安全系数所对应的滑动中心区域随土层条件和土坡条件及强度所变化。如图 9.2.1所示可见一斑。 圆弧基本条分法安全系数的定义为:Fs=抗滑力矩/滑动力矩,即=M R/Mh

O 1 O 2 F smin An A 土层2 土层1 B 图 9.2.1不同土层的 Fs 极小值区 1 瑞典条分法 如图9.2.2所实示,瑞典条分法的安全系数Fs 的一般计算公式表达为: (cos ) sin i i i i i s i i c l W tg F W θ?θ += ∑∑ (9.2.1) 式中,Wi 为土条重力;θi 为土条底部中点与滑弧中心连线垂直夹角;抗剪强度指标c 、?值是为总应力指标,也可采用有效应力指标。工程中常用的替代重度法进行计算,即公式中分子的容重在浸润线以上部分采用天然容重,以下采用浮容重;分母中浸润线以上部分采用天然容重,以下采用饱和容重,这种方法既考虑了稳定渗流对土坡稳定性的影响,又方便了计算,其精度也能较好地满足工程需要,因此在实际工程中得到广泛应用。应该指出,容重替代法只是一个经验公式,,可参见图9.2.3所示,h 2i wi h ≠。

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公 式汇集 Prepared on 24 November 2020

第一章专用汽车的总体设计 1 总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡 泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2 基本计算公式 A 已知条件 a ) 底盘整备质量G 1 b ) 底盘前轴负荷g 1 c ) 底盘后轴负荷Z 1 d ) 上装部分质心位置L 2 e ) 上装部分质量G 2 f ) 整车装载质量G 3(含驾驶室乘员) g ) 装载货物质心位置L 3(水平质心位置) h ) 轴距)(21l l l + B 上装部分轴荷分配计算(力矩方程式) g 2(前轴负荷)×(12 1l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置) g 2(前轴负荷)=1222 1)()(l l L G +?上装部分质心位置上装部分质量 则后轴负荷222g G Z -= C 载质量轴荷分配计算 g 3(前轴负荷)×)2 1(1l l +=G 3×L 3(载质量水平质心位置) g 3(载质量前轴负荷)= 1332 1)()(l l L G +?装载货物水平质心位置整车装载质量 例图1

护坡计算正式

土钉墙支护计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑基坑支护技术规程》 JGJ120-99 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。 一、参数信息: 1、基本参数: 侧壁安全级别:二级 基坑开挖深度h(m):8.000; 土钉墙计算宽度b'(m):13.00; 土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角; 条分块数:20; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):5.000; 基坑内侧水位到坑顶的距离(m):8.000; 2、荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b 0(m) 宽度b 1 (m) 1 满布 10.00 -- --3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C 极限 摩擦阻力饱和重度 (m) (kN/m3) (°) (kPa) (kPa) (kN/m3) 1 填土 8.00 18.00 30.00 15.00 112.00 20.00 4、土钉墙布置数据: 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 1 8.00 3.80 7.00 土钉数据: 序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m) 1 100.00 5.00 20.00 2.00 1.50 2 100.00 5.00 20.00 1.50 1.50 3 100.00 5.00 20.00 1.50 1.50 4 100.00 5.00 20.00 2.00 1.50 二、土钉(含锚杆)抗拉承载力的计算: 单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99, R=1.25γ 0T jk 1、其中土钉受拉承载力标准值T jk 按以下公式计算: T jk =ζe ajk s xj s zj /cosα j 其中ζ--荷载折减系数 e ajk --土钉的水平荷载 s xj 、s zj --土钉之间的水平与垂直距离 α j --土钉与水平面的夹角ζ按下式计算: ζ=tan[(β-φ k )/2](1/(tan((β+φ k )/2))-1/tanβ)/tan2(45°-φ/2)

汽车设计计算

3 计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: ( km/h) (1) 其中:为车轮滚动半径,m; 由经验公式: (m) d----轮辋直径,in b----轮胎断面宽度,in ---轮胎变形系数 为发动机转速,r/min;为后桥主减速速比; 为变速箱各档速比,,为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: ( N ) (2) 其中:为对应不同转速(或车速)下发动机输出使用扭矩,N?m;为传动效率。 汽车的空气阻力: ( N ) .. (3) 其中:为空气阻力系数,A为汽车迎风面积,m2。 汽车的滚动阻力: ( N ) (4) 其中:=mg 为满载或空载汽车总重(N),为滚动阻尼系数汽车的行驶阻力之和:

( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: (kw) ... (6) 其中:为第档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: (kw) (7) 3.1.4 各档动力因子计算 .... ..(8) 各档额定车速按下式计算 (km/h) ...... (9) 其中:为发动机的最高转速; 为第档对应不同转速(或车速)下的动力因子。 对各档在[0,]内寻找使得达到最大,即为各档的最大动力因子 注:可画出各档动力因子随车速变化的曲线 3.1.5 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 3.1.5.1 根据最高档驱动力与行驶阻力平衡方程 ,

求解。舍去中的负值或非实数值和超过额定车速的值;若还有剩余的 值,则选择它们中最大的一个为最高车速,否则以最高档额定车速作为最高车速。 额定车速按下式计算 (km/h) (10) 其中:为发动机的最高转速 为最高档传动比 3.1.5.2 附着条件校验 根据驱动形式计算驱动轮的法向反力 驱动形式 4*4全驱: 4*2前驱: 4*2后驱: 其中:为轴距,为满载或空载质心距前轴的距离 若满足下式 其中:——道路附着系数 则表示“超出路面附着能力,达不到计算得出的最高车速值!” 3.1.6 爬坡能力计算 (11) 其中:为第档对应不同转速(或车速)下的爬坡度 3.1.6.1 各档爬坡度在[0,]中对寻优,找到最大值 3.1.6.2 附着条件校验 计算道路附着系数提供的极限爬坡能力 驱动形式 4*4:,计算 4*2 前驱:,计算

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1 总布置参数的确定 1.1 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠 性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》) 1.3.2 基本计算公式 A 已知条件 a)底盘整备质量G 1 b)底盘前轴负荷g 1

c)底盘后轴负荷Z 1 d)上装部分质心位置L 2 e)上装部分质量G 2 f)整车装载质量G 3 (含驾驶室乘员) g)装载货物质心位置L 3 (水平质心位置) h)轴距) ( 2 1 l l l+ B 上装部分轴荷分配计算(力矩方程式) g 2 (前轴负荷)×( 1 2 1 l l+)(例图1)=G2(上装部分质量)×L2(质心位置) g 2 (前轴负荷)= 1 2 2 2 1 ) ( ) ( l l L G + ?上装部分质心位置 上装部分质量 则后轴负荷 2 2 2 g G Z- = C 载质量轴荷分配计算 g 3 (前轴负荷)×) 2 1 ( 1 l l+=G3×L3(载质量水平质心位置) g 3 (载质量前轴负荷)= 1 3 3 2 1 ) ( ) ( l l L G + ?装载货物水平质心位置 整车装载质量 则后轴负 3 3 3 g G Z- = D 空车轴荷分配计算 例图1

汽车的行驶阻力计算

创作编号:BG7531400019813488897SX 创作者: 别如克* 汽车行驶阻力模拟(包括惯量模拟) 一、 汽车在平坦路面行驶阻力的计算: 汽车在平坦路面行驶时受到滚动阻力、空气阻力和加速阻力,如下式所示: j w f F F F F ++= 1.滚动阻力:f G F a f ?= 其中a G 为汽车总重力,从驱G G G a +=,f 为滚动阻力系数,f 为速度的函数,对于轿车,f 的值可用下式计算 f=0.0116+0.000142V 对于货车,f 的值可用下式计算 f=0.0076+0.000056V 2.空气阻力:15 .212 a D w AV C F = 其中,D C 为空气阻力系数 轿车取 0.4-0.6;货车取 0.8-1.0;大客车取 0.6-0.7; Α为汽车迎风面积:H B A ?=1 Β为汽车的前轮距 Η为汽车的高度

a V 为汽车行驶速度 3. 加速阻力:dt dv g G F a j δ = 其中,δ为汽车旋转质量系数,2 2 022 1r i i I G g r I G g T g f a w a ηδ++ =∑ w I 为车轮的转动惯量,Kg.m 2 f I 为发动机飞轮的转动惯量,Kg.m 2 g i 变速器速比 0i 主减速器速比 T η汽车传动系的机械效率 r 为汽车轮胎的滚动半径 二、 测功机所需加的模拟力: 测功机所需加的模拟力有汽车的从动轮所受到的滚动阻力、汽车所受到的空气阻力以及部分加速阻力(除去滚筒和飞轮的惯量所产生的加速阻力和测功机的摩擦阻力),如下式所示: dt dv r I r I g G F AV C f G F c c w a c tr a D PAU )(15.2122 121-++-+?= 其中, a G 汽车总重 g 重力加速度 1G 汽车从动轮上的载苛 c tr F 测功机损耗 1w I 汽车从动轮转动惯量 c I 滚筒和测功器转子的转动惯量 r 汽车车轮滚动半径

汽车的动力性设计计算公式

汽车动力性设计计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: 377.0i i n r u gi e k ai ??= ( km/h ) (1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力:

f G F a f ?= ( N ) ......(4) 其中:a G =m g 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 3.1.4 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线

边坡稳定性计算方法

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪 度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 -3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。 假定边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC的安全系数F s 用作用在AC面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

圆弧滑动简单条分法中土条宽度对基坑稳定计算影响的研究

圆弧滑动简单条分法中土条宽度对基坑稳定计算影响的研究 [摘要] 分析土条宽度对圆弧滑动简单条分法基坑稳定计算的影响,并提出计算中值得注意的几个问题。 [关键词] 圆弧滑动简单条分法土条宽度基坑稳定 在中华人民共和国行业标准《建筑基坑支护技术规程》(JGJ120-99)中对基坑支护的定义为“为保证地下结构施工及基坑周边环境的安全,对基坑侧壁及周边环境采用的支挡、加固与保护措施。”显然,基坑支护是建筑行业常见的结构体系,在设计中需要满足稳定和变形的要求。在现有规范和研究中,基坑稳定计算多采用圆弧滑动简单条分法进行[1][2]。而在计算中土条宽度的选取对计算结果有较大的影响,因此分析圆弧滑动简单条分法中土条宽度的影响可为促进基坑稳定计算提供理论基础。 1 .基于圆弧滑动简单条分法的基坑稳定计算 基坑稳定计算采用圆弧滑动简单条分法如图1所示,其中h0为支护的嵌固深度。在进行稳定计算时,首先将滑动体视为若干土条组合成,每个土条的宽度为bi,一般情况下认为每个土条宽度相等,根据假设的滑动面可以确定滑动的圆心和半径,从而得到每个土条在滑动面上的中心点的切线与水平线的夹角θi,根据规范,将与土条宽度无关系的系数视为常数,基坑稳定计算的公式为: (1) 其中A、Bi、C与土条宽度无关,q0表示地面超载,wi表示第i个土条的重量。而基坑稳定的条件就是公式大于0,即固定力矩大于滑动力矩。(见图1) 2. 土条宽度的影响 显然,对于公式(1)采用不同的bi相同情况下可能有不一样的结果。令 另外,以bi/2为土条宽度,在相同情况下,计算基坑稳定性为: 其中α、β分别为原来土条一分为二后两个新土条在滑动面上的中心点的切线与水平线的夹角与原来土条θi的角度差。 由此可得到 显然M-N一般不等于0,而且由于sin和cos函数的特点,该公式正负也不存在必定规律,所以土条宽度与基坑稳定计算无单调联系,即随着土条宽度减少或增大所得到的计算结果中基坑的稳定程度不一定持续增加或降低。

车辆折旧计算方法

车辆属于投资比较大的耐用消费品,折旧方法主要分为两大类,一类是采用平均计算的方法,包含“平均年限法”和“工作量法”;另一类是加速折旧法,包含“双倍余额递减法”和“年数总和法”。 平均年限法 每年折旧额=原值/预计使用年限 例如10万元的汽车预计使用10年,则每年应计算1万元的折旧。也就是说在第一年末,汽车的价值是九万元;第二年末,汽车的价值是八万元;以此类推。工作量法 按照行驶的里程计算折旧,折旧额=原值(已经行驶的里程/预计使用里程) 例如10万元的汽车预计行驶里程为10万公里,则每行驶1公里提取1元的折旧。也就是说在行驶1万公里后,汽车的价值是九万元;在行驶2万公里后,汽车的价值是八万元;以此类推。 双倍余额递减法 计算公式是:折旧的百分比=2/预计使用年限 每年的折旧额=年初时的价值(折旧的百分比) 在预计使用年限的最后两年平均分摊剩余的价值 例如10万元的汽车预计使用10年,折旧的百分比为20% 第一年末汽车的剩余价值是8万元。(10万-10万的20%) 第二年末汽车的剩余价值是6.4万元。(8万-8万的20%) 第三年末汽车的剩余价值是5.12万元。(6.4万-6.4万的20%) 第四年末汽车的剩余价值是4.096万元。 第五年末汽车的剩余价值是3.277万元。 第六年末汽车的剩余价值是2.6214万元。 第七年末汽车的剩余价值是2.097万元。 第八年末汽车的剩余价值是1.678万元。 第九年末汽车的剩余价值是0.839万元。 第十年末汽车报废。 年数总和法 公式是:折旧额=原值(还可以使用的年限/使用年限总和) 例如10万元的汽车预计使用10年,使用年限总和=10+9+8+7+6+5+4+3+2+1=55第一年末汽车的剩余价值是8.182万元。(10万-10万(10/55) 第二年末汽车的剩余价值是6.546万元。(8.182万-10万(9/55) 第三年末汽车的剩余价值是5.091万元。(6.546万-10万(8/55) 第四年末汽车的剩余价值是3.818万元。 第五年末汽车的剩余价值是2.727万元。 第六年末汽车的剩余价值是1.818万元。 第七年末汽车的剩余价值是1.091万元。 第八年末汽车的剩余价值是0.546万元。 第九年末汽车的剩余价值是0.182万元。 第十年末汽车报废。

圆弧滑动计算方法

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因素 并经过很多次试验得出的较经济 合理的车内平均温度。因为对微 型车来说,如果计算温度定得过 高了,乘员就会明显感觉制冷不 足;而如果定得过低,势必需要 加大压缩机排量才能满足,这样 功耗必然增加,并影响到整车的 动力性,否则又很可能无法实现。 2 计算方法 2.1 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 2.2 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=1.05~1.15,这里取k=1.1 Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表: (2)查文献[2],取水平面和垂直面的太

相关文档