文档库 最新最全的文档下载
当前位置:文档库 › IR2104_+_IRF540_MOS电机驱动全桥_学习与实践过程

IR2104_+_IRF540_MOS电机驱动全桥_学习与实践过程

IR2104_+_IRF540_MOS电机驱动全桥_学习与实践过程
IR2104_+_IRF540_MOS电机驱动全桥_学习与实践过程

IR2104 + IRF540 MOS电机驱动全桥学习与实践过程

使用L293或L298等全桥芯片来控制直流电机虽然简便而且成本低廉,但由于它们的内阻较大,在控制大电流的马达时芯片常常过热,导致系统的整体效率较低。在电动车上,马达控制芯片的内阻过大会导致车子的加速度变小。

本人设想在暑假制作一个大的轮式或者履带式机器人,并且希望它能跑到公交车那么快,于是开始研究如何使用MOS管来控制更大电流的电机。

首先,本人参考了《大功率直流马达的驱动——ABU ROBOCON 2005比赛之动力方案》一文中的电路图(原文地址 https://www.wendangku.net/doc/8c9632393.html,/article.php?sid=192 )

按照这个原理图,我热转印制作了单个全桥的实验电路。个别的电阻电容值有所变动。

上电并给予有效的持续高电平信号后发现电路不能驱动马达,而2104开始发烫,540没有任何反应。于是更换2104,但仍出现同样的现象。通过示波器检测发现,高端MOS没有被驱动,而低端MOS的G 端信号正常,因而桥没有被导通。更换信号方向,另外半桥仍然出现相同的现象。

本人开始怀疑是BOOTSTRAP电容的问题,于是实验了不同的电容值。但无论怎么变换,问题仍然没有被解决。由于手头没有4148,使用了IN5819作为续流二极管,按道理5819只会比4148更好,不应该成为问题的原因。

由于手头2104只有6片,而所有的都上电并且发热过,于是重新购买了一批2104。在这里感谢周顺同学,那天刚好他毕业考考好,帮我到科技京城买了2104。

更换2104后,电路工作正常。周顺看了看我原来的2104,恍然大悟:原来的芯片是97年前的旧货。

马达欢快地转了起来。由于540的内阻要比298小很多,马达的加速度明显提高,变向时电刷更是发出了闪亮的火星。

回到家后用示波器开始研究高端MOS的G端驱动电压波形。发现在EN端为高的初期,高端MOS的驱动电压突然升至比VCC高10V。此时强推动作用起效。但随着时间的流逝,该电压逐渐衰减为VCC,MOS的导通程度越来越不完全。直到下一个脉冲到来,G端电压又恢复为VCC+10V,但又逐渐衰减。也就是说,用持续的高电平信号来驱动MOS会导致MOS不能被完全导通,致使MOS发热,马达的实际功率低下。使用PWM信号则可以解决这个问题,它使BOOTSTRAP电容反复充电放电,使高端驱动电压始终维持在一个比较高的水平。倘若想让马达全速前进,不能使用持续的高电平,而需要用3%左右占空比的PWM,这是驱动2104与驱动298等全桥芯片的最大差别。

不同的BOOTSTRAP电容值适应于不同频率的PWM信号与不同的MOS。电容值大的充电和放电时间都比较大,电压衰减得也比较慢,因而适合较低频率的PWM;电容值小的充电放电时间比较短,适合于较高频率的PWM。虽然IR给出过一个BOOTSTRAP电容的计算公式,但本人更倾向于通过实验来寻找合适的电容值。这样做既避免了繁杂的计算,又可以通过实验来了解它的工作原理,而且还可以适应板载电容。

通过实验,本人确定了1UF的电容值。该电容采用了旦电容,以减少漏电。但如果没有旦电容,其他漏电较大的电容影响也并非很大。相对于高频的PWM,在如此短的时间内漏电的影响是微乎其微的。但从理论上来说,BOOTSTRAP电容漏电会导致高端MOS的导通电阻变大。

总结了以上经验,本人又制作了一块双电机的MOS驱动电路。电路没有太大的改变,只是把续流二极管改为原图所说的4148,把阻容换成了贴片封装,并且采用了1UF旦电容作为BOOTSTRAP电容。

点击此处下载热转印用PCB文档(DXP)

该电路制作好后成功地驱动了我的机器人小车。小车在全速启动以及突然反向运动时的性能明显比使用298要好。主要原因为突然变向的电流很大,而298的驱动能力有限,导致变向的电流较小,加速度较小。

实验并没有发现该电路有什么问题,于是电路基本定型,转向于研究设计印刷电路板。由于TO-220

封装的MOS管直立很占空间,而且还需要散热器,于是本人决定采用贴片的D2PAK封装的IRF540,其他元件也都改为贴片封状。另外为了散热,本人还在芯片的上面设计了散热器和风扇。降低MOS温度可以大大提高工作效率。

一周后我拿到了印刷电路板,同时我也去购买贴片元件。IRF540S(S是贴片,N是TO-220)并没有买到正品,而是买到了打磨后重新刻字的拆机件,其他元件都买到了正品。回家焊接好后,电路工作正常,绿的散热器很漂亮。

点击此处下载PCB以及SCH

虽然该电路工作正常,但总感觉拆机的MOS管发热很大。于是我决定将TO220的正品540改为D2PAK 封装,以做对比实验。

首先,用凿子将BACK凿到合适的位置

剪去一个脚

用老虎钳弯到合适的位置再剪到合适的长短

改装好的540与D2PAK封装的7805对比

我将这些改装好的正品540焊接到了电路上,而且没有安装散热器。由于急于想看到实验结果,在使用完焊锡膏后我没有洗板就上电了,结果2104突然冒火,被烧成两半。我急忙断电,但为时已晚。更换2104后,电路仍不能正常工作。通过检测发现,问题出在74HC00上。更换74HC00并洗板后,电路工作正常。我突然意识到74HC00的剩余引脚没有接地,而焊锡膏则可能导致漏电。因而我将这次事故的主要原因归结为:CMOS剩余引脚没有接地,而焊锡膏漏电导致惨剧发生。

电路修理好后,通过驱动同一马达,我发现正品540没有任何感觉得到的升温,而拆机540则明显升温。我断定,拆机540并非540,而是其他电流较小的MOS打磨后冒充540。

我来到科技京城,到处寻找IRF540S,但所有的商家都告诉我,只有假的,真的没有。而其他的贴片MOS,电流都比较小。因此我意识到只能采用手工加工540N的办法来获得540S。。。。。真是无奈啊。

回家后我开始实验较大电流的驱动,我将驱动电压和2104工作电压设为同路的12V,由一个2A的稳压电源供电,并且将限流开到最大。驱动信号为97%高电平的PWM,每隔1秒反转马达。当马达反转时,意想不到的事情发生了:马达停了下来,电流却被限制在了2A!此时板上的元件一定开始发热了!我迅速地将电源关闭。摸了下2104,滚烫!不过还好没有烧毁。重新上电驱动小马达一切正常。但一反转大马达,同样的事情再次发生。经过反复思考,我将该问题归结于电源的限流。由于马达反转时电流巨大,拉低了电压,使2104工作电压低于了正常范围(10V-20V),最低甚至到达了3V,而此时外围电路却在继续工作,2104极有可能发生错乱而导致发热。因此本人建议:2104的VCC最好能单独供电,千万不能因为马达而拉低电压,否则后果很可能是毁灭性的!

解决了该问题后,我想到电路的设计电流过小,50MIL的线顶多只能通过5A的电流,而540却能驱动30个安培,该电路对它的驱动能力造成了极大的浪费,因此决定重新设计。

在重新设计的电路板上,我没有改变任何的电路,而是把心思放在了走线以及散热上。我在每个MOS 的正面和反面都采用了长方形的敷铜充当散热片,并且在MOS安装的地方用数量众多的过孔将两片敷铜连接起来,使正面的热量能够迅速传递到反面进行散热。另外在大电流的网络中,我还运用了SOLDER 层去除阻焊层,使之能够镀锡以提供更大的电流。

昨天我拿到了PCB板,迫不及待地进行了焊接,洗板以及上电实验,一切顺利。电路自身的散热性能极佳。

可以看到MOS反面的散热敷铜以及热传导用的过孔

焊接好的板子(正面)

焊接好的板子(反面)

MOS的研究基本上告以段落,因此作该文以分享我研究过程中的经验以及快乐。有一些多余的打印好的热转印纸和5张第一板的PCB可以送给大家,请需要的人跟贴。前提是你在索取之前已经进行过一些相关的学习和实验,并乐意将自己的快乐与大家分享。

直流电机驱动H桥

直流电机驱动H桥 直流电机驱动(H桥)原理研究与设计 学生姓名王俊岭周磊周雪瑞秦淦阿不都.沙拉木 指导教师杨焱青 系(部)创新实验室 论文写作日期 2011 年 12 月 20 日

第1章序论 1.1课题研究的目的 1.2本课题研究的意义 1.3方案论证 第2章基本原理 2.1声光节能灯基本原理 2.2555电路基本原理 2.3声控电路基本原理 2.4光控电路基本原理 第3章电路设计与分析 3.1电源电路 3.2声电转换机放大电路 3.3延时处理电路单稳态电路 3.4光控电路 第4章故障分析 第5章心得体会 第6章致谢 第一章序论 1.1 课题研究的目的 随着社会不断进步,科技发展,声光双控节电灯逐步走进社会各个公共角落,声光双控节电灯不仅适用于住宅区的楼道,而且也适用于工厂、办公楼、教学楼等公共场所,它具有体积小、外形美观、制作容易、工作可靠等优点,适合于各种楼房走廊

的照明设备。用声光控延时开关代替住宅小区的楼道上的开关,在天黑以后,当有人走过楼梯通道,发出脚步声或其它声音时,楼道灯会自动点亮,提供照明,当人们进入家门或走出公寓,楼道灯延时几分钟后会自动熄灭。在白天,即使有声音,楼道灯也不会亮,它解决了“长明灯”浪费电能的问题,延长灯泡的使用寿命,安全性好,可靠性高。该装置省去了能耗大、笨重、极易产生热量的电源变压器,具有结构简单、自耗电轻微、性能稳定、灵敏度高、通用性强,降低能耗、节约能源的目的。 1.2课题研究的意义 通过本课题的研究,加强了自己的动手能力,增强了团队意识,巩固了对所学知识的认知。通过本次试验我们设计了一种简易的直流电机驱动H桥转动的,不仅使自己学习到了知识,而且也为社会做出了贡献。 1.3 方案论证 方案1 主要包含四部分电路,分别为;电源电路,光控电路,声控延时电路,晶体管开 并电路,. 电源电路主要由微控制电路提供工作电压,本设计采用传统的电源电路设计方法, 即降压,整流,滤波,稳压,使电路输出电压6V直流电压供给控制电路. 光控制电路是根据光线强弱来优先决定电灯的亮灭,该电路可以对声控延 时电路进行控制,在白天光线强时,光控制电路输出低电平将声控电路封锁;在晚 上光线较弱时,光控制电路输出高电平,声控功能打开.本设计采用光敏电阻和其 他电阻组成的分压电路来控制555定时器的触发器输入端2脚,并将555定时器 的2脚和6脚连接在一起,通过电容接地,555定时器的输出去控制电路中的定时 器的复位端. 声控延时电路,该电路主要在光线较弱时起作用.这主要是通过光控电路的 输出来控制的.在晚上,光控电路将该电路的功能打开,使用该电路能根据外界声 音信号做出相应的响应.经放大处理后的声音信号控制处于单稳工作模式的555 定时器来实现声控延时功能. 晶体管开关电路,该电路受声控电路555定时器输出端的的控制.当其输 出高电平时,晶体管导通,照明灯点亮.

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

H桥驱动直流电机分析

H 桥驱动直流电机分析 1. H桥PWM变换器驱动电机运行过程 如图1所示,电动机M 两端电压U AB 的极性随开关器件驱动电压的变化而变化,这里分析双极式控制的可逆PWM 变换器。四个驱动电压波形如图2所示,它们的关系是 1423g g g g U U U U ==-=-.在 一个开关周期内,当0on t t ≤<时,1VT 和4VT 导通,2VT 和3 VT 关断,AB s U U =,电枢电流d i 沿 回路1流动;当on t t T ≤<时,1 VT 和4VT 关断, 2VT 和3VT 由于2VD 和3VD 的钳制作用不能马上导通,d i 沿回路2流经二极管续流, AB s U U =-. 当电机需要降速制动 时,先改变控制脉冲的占空比,使驱动电压的平均值d U 减小,但是由于机械惯性,转速和反电势还来不及变化,因而造成d E U >,很快使电流反向,在0on t t ≤<时,反向电流沿回路4向电源充电, 实现再生制动,而1VT 和4VT 被钳制不能导通;在on t t T ≤<时,2VT 和3VT 被打开,负向 电流通过2VT 和3VT ,实现能耗制动。当电机反向转动时,各器件的导通情况与上述情形相反。图3绘出了双极式控制时电机 图1 H 桥可逆PWM 变换器 图2 驱动电压

正转时的输出电压和电流波形。电动机的正反转则体现在驱动电压正负脉冲的宽窄上。当正脉冲较宽时, 2 on T t > ,则AB U 的平均值为正,电动机正转,反之则反转;如果正负脉冲相等,2 on T t = ,平均电压为零,则电动机停止。但电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的,平均值为零,不产 生转矩,电动机损耗陡然增大,但是此时消除了正反向时的静摩擦死区,起“动态润滑”的作用。另外,图3所示的2d i 为轻载状态下的输出电流变化情况。2. 直流电机启动和降速过程 电动机在未启动之前,转速0n =,反电势0E =,而电枢电阻a R 很小,所以将电动 机加上额定电压时,启动电流/st n a I U R =将很大,可能烧坏整流子。所以在电机启动时 都采用限制电流的方法,下面讨论常用的电枢回路串接电阻的方法。图3 输出电压和电流

无刷直流电机驱动电路 dsp

基于 DSP 的无刷直流电机控制系统的设计
2010-1-13 22:24:00 来源:
摘 要:介绍了以高性能 TMS320F2812 DSP 芯片为核心的无刷直流电机控制系统的设 计和实现,主要包括系统硬件电路的主要构成,电机的控制策略及软件结构。 实验 表明,该系统结构简单紧凑,控制精度高,具有良好的静态和动态性能。 关键词:无刷直流电机;TMS320F2812;控制系统 Design of Control System of Brushless DC Motor Based on DSP WANG Chen-yang, ZHANG Qi, XIONG Jiu-long Abstract: The design and implementation of brushless DC motor control system based on high performance DSP TMS320F2812 is introduced in this paper, it is made up of three aspects, the main structure of system hardware, the strategy of motor controlling and software structure。 Experimental results show that the system has a simple and compact structure,high control precision and good dynamic and static characteristics. Key Words:brushless DC motor;TMS320F2812;control system 1. 引言 无刷直流电机利用电子换向器取代了传统直流电机中的机械电刷和机械换向器, 因此不仅保留了直流电动机运行效率高和调速性能好等优点, 又具有交流电动机的结 构简单、运行可靠、维护方便等优点。由于不受机械换向限制,易于做到大容量、高 转速,目前在航天、军工、数控、冶金、医疗器械等领域已得到大量应用。 TMSF2812 DSP 是 TI 公司新推出的基于 TMS320C2xx 内核的定点数字信号处理器。器件上集成了 多种先进的外设,具有灵活、可靠的控制和通信模块,完全可以采用单芯片实现电机 控制系统的控制和通信功能,使得电机控制系统简单化、模块化,为电机及其他运动 控制领域应用的实现提供了良好的平台。 本文设计和实现了基于 TI 公司 TMS320F2812 DSP 芯片的无刷直流电机控制系统,整个系统结构紧凑,功能完善。 2. 系统硬件设计 系统的硬件框图如图 1 所示,可以看出基本上包括一个以 TMS320F2812 DSP 为核 心的 DSP 控制板,一块配套的功率驱动板和一台无刷直流电机。

IR2104 + IRF540 MOS电机驱动全桥

R2104 + IRF540 MOS电机驱动全桥学习与实践过程 https://www.wendangku.net/doc/8c9632393.html,/bbs/article_1012_130178.html 使用L293或L298等全桥芯片来控制直流电机虽然简便而且成本低廉,但由于它们的内阻较大,在控制大电流的马达时芯片常常过热,导致系统的整体效率较低。在电动车上,马达控制芯片的内阻过大会导致车子的加速度变小。 本人设想在暑假制作一个大的轮式或者履带式机器人,并且希望它能跑到公交车那么快,于是开始研究如何使用MOS管来控制更大电流的电机。 首先,本人参考了《大功率直流马达的驱动——ABU ROBOCON 2005比赛之动力方案》一文中的电路图(原文地址 https://www.wendangku.net/doc/8c9632393.html,/article.php?sid=192 ) 按照这个原理图,我热转印制作了单个全桥的实验电路。个别的电阻电容值有所变动。 上电并给予有效的持续高电平信号后发现电路不能驱动马达,而2104开始发烫,540没有任何反应。于是更换2104,但仍出现同样的现象。通过示波器检测发现,高端MOS没有被驱动,而低端MOS的G端信号正常,因而桥没有被导通。更换信号方向,另外半桥仍然出现相同的现象。 本人开始怀疑是BOOTSTRAP电容的问题,于是实验了不同的电容值。但无论怎么变换,问题仍然没有被解决。由于手头没有4148,使用了IN5819作为续流二极管,按道理5819只会比4148更好,不应该成为问题的原因。 由于手头2104只有6片,而所有的都上电并且发热过,于是重新购买了一批2104。在这里感谢周顺同学,那天刚好他毕业考考好,帮我到科技京城买了2104。 更换2104后,电路工作正常。周顺看了看我原来的2104,恍然大悟:原来的芯片是97年前的旧货。 马达欢快地转了起来。由于540的内阻要比298小很多,马达的加速度明显提高,变向时电刷更是发出了闪亮的火星。 回到家后用示波器开始研究高端MOS的G端驱动电压波形。发现在EN端为高的初期,高端MOS的驱动电压突然升至比VCC高10V。此时强推动作用起效。但随着时间的流逝,该电压逐渐衰减为VCC,MOS的导通程度越来越不完全。直到下一个脉冲到来,G端电压又恢复为VCC+10V,但又逐渐衰减。也就是说,用持续的高电平信号来驱动MOS会导致MOS不能被完全导通,致使MOS 发热,马达的实际功率低下。使用PWM信号则可以解决这个问题,它使BOOTSTRAP电容反复充电放电,使高端驱动电压始终维持在一个比较高的水平。倘若想让马达全速前进,不能使用持续的高

电机驱动及控制模块

电机驱动及控制模块

3.3电机驱动及控制模块 331 电机特性 —小车前进的动力是通过直流电机来驱动的,直流电机是最早出现的电动机, 也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的 统治地位。它具有良 图7主、从单片机小系统应用电路 好的线性调速特性,简单的控制性能, 较高的效率,优异的动态特性。系统 选用的大谷基础车的260马达作为驱动电机。其额定电压为 3-12V ,额定功率 0.02KW 额定转速 3000r/min 。 近年来,直流电动机的结构和控制方式都发生了很大变化, 随着计算机进入 控制领域,以及新型的电力电子功率元件的不断出现,使采用全控制型的开关 功率元件进行脉冲调制(Pulse Width Modulation 简称PWM 控制方式已经成 为主流,这种控制方式容易在单片机控制中实现。 BE yr CAPCAP 2+ CAP + CiP I * EP Z CAP b HT-OVTl rr-xrr: T-m TDU rae.-[tfi E-C'UTL 化UT2 H 山习4 F21TF 匸曲 ~IF P22 vcc P22 m 酯T KX1WXI Pi - ? TTCZ'JPJL Pl? YT 11 T m 電 XTALi P14 nffo/pss F13 D1TLJP3J P12 JP34 P1J PLD PA 回■! P 討TCAO PM 时 ow P 禹 PIO Vcc P]1 FOCUADQ P32 POL/ADL E>JJ ! Plfl Pt3(AD3 P]5 P 】6 f :^AD5 P17 P0*'AD6 PB7/AD7 RST Tmjpsi EX LVD^ fiZRST2 AL&FI 5 曲朗 卜⑷PJ 4 wwu TflrP34 ri 郴 PIT PM 廻p 北 F35 FiZiiP]! F24 F33 xrAi.3 P]3 j^TALL P.3L Pin tr 空【 时 LED T 级, 厂:1巧处4打"卜单怜机 VCC 鱼T Z? 1. P ■ ■ ?一 ■■ ■ ■ b w 1 ? 3 *?!>rr ? .1 L I I I I r —PF p p Lp

H桥电路驱动原理(经典)

H桥电路驱动原理 2009年04月08日 星期三 上午 08:43 H桥电路驱动原理 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向 转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电 路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常 要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制 整个电路的开关。而2个非门通过

直流无刷电机驱动原理

直流无刷电机的工作原理 直流无刷电机的优越性 直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电 枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子。碳刷及整流子在电机转动时会 产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制。交流电机没有碳刷及 整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技 术才能达到。现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能。微处 理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制 交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能。 此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器(Analog-to-digital converter,ADC)、脉冲宽度调制(pulse wide modulator,PWM)…等。直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用。 直流无刷电机的控制结构 直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转 子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直 流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子 的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电 机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 直流无刷驱动器包括电源部及控制部如图(1) :电源部提供三相电源给电机,控制部则依需 求转换输入电源频率。

步进电机驱动之全桥驱动与斩波恒流

步进电机驱动之全桥驱动与斩波恒流 先看两相绕组的全桥驱动电路,四路基本相同的驱动电路,抓取一组电路来分析: 全桥驱动电路,其中Q7和Q8基极和发射极短接,相当于一个反向的二极管。 为了便于分析,将原理图简化后如下所示:

查看IM2000S芯片手册,对全桥驱动芯片输入脚的定义如下: 以上四个输入端:B相高低端全桥控制信号,用来控制离散的PN,NN的全桥或者半桥IC. 从上述可以知道,输出的是一个离散量,那么,是怎样控制电机,使电机获得一个sin和cos 的电流信号而驱动电机的呢? 这里要深入理解一个概念:斩波恒流! 斩波恒流的原理是:当环形分配器导通的时候,IC2使得TL和TH导通,电源通过TH和TL 和电机向下有电流输出,此时R左端的电压上升,当电流上升到给定电平时,比较器反转,输出为低,使得IC1截止,此时电感使电流缓慢下降,此时通过TL采样的电压变低,当电压低于给定电平时候,比较器反转,使得IC1再次导通,这样可以快速的波动,而使电感上的电流保持一个恒定的值。当环形分配器给出低电平时,IC1和IC2截止,电流通过D2流入电源,从而实现节能。 此时,再看上图,会发现: 1、BHO和ALO为一个通路,AHO和BLO为一个通路,实现电流的正向和反向。 2、BHO和AHO的开关频率会比BL0,ALO大很多,BL0和ALO只有在正向和负方向反转的时 候出现跳变,而BHO和AHO的频率会很快以实现恒流。

这里值得注意的一点是,上述过程仅仅是在一个细分时候,一个数模转换量上保持的恒流。如果整步为256细分,则在256细分的每一个细分阶段实际上过程就是上文红色字体运行一遍的一个过程,而要使整个电机转动一圈,则需要完成一个SIN和COS的整个过程,如果上面的过程仍然无法理解,请参看步进电机细分方面的内容。 从整个驱动电路的系统上看, 整个闭环是按照如下进行工作的:

Arduino 双H桥直流电机驱动板

从机器人基地淘宝店铺邮寄的Arduino 双H桥直流电机驱动板今天终于到了。 蓝色的板子,金色的印字,做工真的很精美,物有所值,吼吼~刚拿到的驱动板就来编写一个小程序测试一下吧,当务之急就是要了解一下这款驱动板接口说明和参数指南,这里我就“盗用”一下机器人基地的功能图解,敬请见谅啦!

可以看到板子左、右下角分别有两个直流电机控制信号输入接口,我这里准备了一个从玩具小车上拆下来的电机,我就选择左边的接口,将直流电机接入绿色端子,左下角的信号输入接口三个插针分别是EA、I1、I2,EA是区别于右边的EB,是用来接入PWM接口给电机调速的,I1、I2分别接入数字接口就OK了,是用来控制电机转向的。我就将EA接入Arduino的pin11PWM接口,I1、I2分别接8、9数字接口,至于逻辑供电部分,我就直接接入Arduino 板子上的5V输出接口了,这里也可以不接线,因为这款驱动板子是可以板内取电的,如需要板外取电需将控制板内取电的跳线帽取下(这里我只是为了给网友们演示外部取电的使用方法,我并没有取下板内取电的跳线帽,如图接

线实际上仍是板内取电。这里希望没有造成误导),端子左边的VMS接口是驱动部分取电,我接入四节5号电池,按下图连接好电路。

连接好电路就剩编程的工作了,我就让电机先顺时针转两秒,再逆时针转两秒,再让电机停止转动,这样循环进行。

程序如下: int pinI1=8;//定义I1接口 int pinI2=9;//定义I2接口 int speedpin=11;//定义EA(PWM调速)接口 void setup() { pinMode(pinI1,OUTPUT);//定义该接口为输出接口pinMode(pinI2,OUTPUT); pinMode(speedpin,OUTPUT); } void loop() { analogWrite(speedpin,100);//输入模拟值进行设定速度 delay(2000); digitalWrite(pinI1,LOW);//使直流电机顺时针转digitalWrite(pinI2,HIGH); analogWrite(speedpin,100); delay(2000); digitalWrite(pinI1,HIGH);//使直流电机逆时针转digitalWrite(pinI2,LOW);

几种电机驱动的比较

智能车竞赛中直流电机调速系统的设计与比较 王名发,江智军,邹会权 时间:2009年12月04日 字 体: 大中小关键词:直流电机调速系统MC33886VNH3SP30BTS7960BDT340IIRF3205 摘 要:针对大学生智能车竞赛中直流电机的驱动设计了6种方案,经过实验比较分析了各种方案的优缺点,最后确立了一套驱动能力强、体积小、性能稳定的驱动方法,可广泛应用于40 V以下的大功率直流电机驱 动的场合。 关键词:直流电机;调速系统; MC33886; VNH3SP30; BTS7960B; DT340I; IRF3205 目前大电流直流电机多采用达林顿管或MOS管搭制H桥PWM脉宽调制,因此体积较大;另一方面,由于分立器件的特性不同,使得驱动器的特性具有一定的离散性;此外,由于功率管的开关电阻比较大,因此功耗也很大,需要功率的散热片,这无疑进一步加大了驱动器的体积。随着技术的迅猛发展,基于大功率MOS管的H桥驱动芯片逐渐显现出其不可替代的优势。但目前能提供较大电流输出的集成芯片不是很多。例如飞思卡尔半导体公司推出的全桥驱动芯片MC33886和33887、意法半导体公司推出的全桥驱动芯片VNH3SP30、英飞凌公司推出的高电流PN半桥驱动芯片BTS7960。ST微电子公司推出的TD340驱动器芯片是一种用于直流电机的控制器件,可用于驱动N沟道MOSFET管。 本文在第三、四届大学生智能车大赛中分别尝试了上面提到的5块电机驱动芯片设计的驱动电路,通过现场调试发现它们的优缺点,确定了驱动能力强、性能稳定的驱动方案,并得到了很好的应用。 1 直流电机驱动原理 目前直流电机的驱动方式主要有2种形式:线性驱动方式和开关驱动方式。其中线性驱动方式可以看成一个数控电压源。该驱动方式的优点是驱动电机的力矩纹波很小,可应用于对电机转速要求非常高的场合;缺点是该方式通常比较复杂,成本较高,尤其是要提高驱动的功率时,相应的电路成本将提升很多[1]。本文针对H桥驱动电路在智能车竞赛中的应用加以分析。 目前的H桥驱动主要有3种方式。图1(a)中H桥的4个桥臂都使用N沟道增强型MOS管;图1(b)中H 桥的4个桥臂都使用P沟道增强型MOS管;图1(c)中上H桥臂分别使用P沟道增强型MOS管和N沟道增强MOS管。由于P沟道MOS管的品种少、价格较高,导通电阻和开关速度等都不如N沟道MOS管,因此最理想的情况应该是在H桥的4个桥臂都使用N沟道MOS管。但是在如图1(a)中可以看到,为了使电机正转,Q1和Q4应该导通,因此S4电压应该高于Q4的源极电压,S1电压应该高于Q1的源极电压,由于此时Q1的源极电压近似等于Vcc,因此就要求S1必须大于(Vcc+Vgs)。在很多电路中除非作一个升压电路否则是比较困难得到的,因此图1(a)这种连接方式比较少见。同理,图1(b)中为了使电机正转,S4电压就必须低于0V- VGS,在使用时也不方便。因此最常用的是图1(c)的电路,该电路结合了上述2种电路各自的优点,使用方便。本文针对3种形式电路进行设计,并进行实验比较分析。

散热风扇v直流无刷电动机驱动电路完整版

散热风扇v直流无刷电 动机驱动电路 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

散热风扇12V直流无刷电机驱动电路 作者:佚名??文章来源:本站原创??点击数342??更新时间:2009-11-3 9:08:03??文章录入:随影清风??责任编辑:随影清风 电脑机箱内少不了大小几个散热风扇,电源盒里一个散热风扇、CPU一个散热风扇、显卡一个散热风扇,机箱上一般也有散热风扇。下面给出两款12V散热风扇无刷电机驱动电路 电源、机箱散热风扇电机驱动电路(两引线,无检测端口) CPU散热风扇电机驱动电路(三引线,带检测端口) 风冷散热器的工作噪音主要有三个来源:轴承的摩擦与振动、扇叶的振动、风噪。 1.轴承的摩擦与振动:不但产生噪音,而且影响性能,缩短器件寿命,降低能源利用效率,是产品设计中尽量解决的关键技术问题。 2.扇叶的振动:一般采用塑料制作的风扇扇叶具有一定的韧性,可以承受一定程度的物理形变,同样也会在推动空气过程中因受力发生振动,但幅度一般较小。另一种较为严重的振动则是由于扇叶质量分布不均,质心与旋转轴心存在偏心距所致。当扇叶面积(质量)或偏心距较大的情况下,可能会带动风扇甚至散热器整体发生振动,进而波及整个机箱。如果发生此类现象,则应怀疑风扇品质与工作状态。 3.风噪:流动的空气之间互相冲扰,与周围物体发生摩擦,叶片对气流的分离作用,周期性送风的脉动力等,都会产生噪音。空气流速越快,湍流越多,往往风噪也越大,而且会随着风速的提高呈加速度增大。普通的轴流风扇会在扇叶与外框间的空隙处产生反激气流,产生较大风噪的同时,更会对风量造成不利影响,也正因此出现了折缘、侧进风等改良设计。 噪音的主要影响就体现在使用者的身心健康与安全之上,而与噪音相伴的振动则可能导致芯片磨损、接口松动、盘片划伤等危及使用的现象。

H桥式电机驱动电路

本文摘自:《机器人探索》 一、H桥式电机驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥式电机驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。 当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。 当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥电路驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路

上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。 基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.155所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供 (与本节前面的示意图一样,一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。 图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。) 图4.15 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图4.16所示);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。 图4.16 使能信号与方向信号的使用 实际使用的时候,用分立件制作H桥式是很麻烦的,好在现在市面上有很多封装好的H桥集成电路,接上电源、电机和控制信号就可以使用了,在额定的电压和电流内使用非常方便可靠。比如常用的L293D、L298N、TA7257P、SN754410等。 在典型H型驱动电路的基础上,给出了增加两只二极管保护驱动管的改进电路,并对其原理和特点进行了分析和讨论. 驱动电路的性能很大程度上影响整个系统的工作性能。有许多问题需要慎重设计,例如,

散热风扇12v直流无刷电动机驱动电路

散热风扇12V直流无刷电机驱动电路 作者:佚名文章来源:本站原创点击数342 更新时间:2009-11-3 9:08:03 文章录入:随影清风责任编辑:随影清 风 电脑机箱内少不了大小几个散热风扇,电源盒里一个散热风扇、CPU一个散热风扇、显卡一个散热风扇,机箱上一般也有散热风扇。下面给出两款12V散热风扇无刷电机驱动电路 电源、机箱散热风扇电机驱动电路(两引线,无检测端口) CPU散热风扇电机驱动电路(三引线,带检测端口)

风冷散热器的工作噪音主要有三个来源:轴承的摩擦与振动、扇叶的振动、风噪。 1.轴承的摩擦与振动:不但产生噪音,而且影响性能,缩短器件寿命,降低能源利用效率,是产品设计中尽量解决的关键技术问题。 2.扇叶的振动:一般采用塑料制作的风扇扇叶具有一定的韧性,可以承受一定程度的物理形变,同样也会在推动空气过程中因受力发生振动,但幅度一般较小。另一种较为严重的振动则是由于扇叶质量分布不均,质心与旋转轴心存在偏心距所致。当扇叶面积(质量)或偏心距较大的情况下,可能会带动风扇甚至散热器整体发生振动,进而波及整个机箱。如果发生此类现象,则应怀疑风扇品质与工作状态。 3.风噪:流动的空气之间互相冲扰,与周围物体发生摩擦,叶片对气流的分离作用,周期性送风的脉动力等,都会产生噪音。空气流速越快,湍流越多,往往风噪也越大,而且会随着风速的提高呈加速度增大。普通的轴流风扇会在扇叶与外框间的空隙处产生反激气流,产生较大风噪的同时,更会对风量造成不利影响,也正因此出现了折缘、侧进风等改良设计。

噪音的主要影响就体现在使用者的身心健康与安全之上,而与噪音相伴的振动则可能导致芯片磨损、接口松动、盘片划伤等危及使用的现象。 选择风扇时,应当关注风扇的工作噪音,要求自然是越小越好。但厂家在产品参数中所提供的噪音数据,往往与实际使用中的效果存在一定差距,不可直接以之为准,这主要是由于工业标准测试方法与实际使用环境存在差别所致。 1.首先,日常生活中的背景噪音远高于静音室中15dBA的背景噪音。一般城市,非靠近交通干道的居民小区,深夜的背景噪音在30~35dBA之间,而日间则在40~50dBA。 2.其次,静音室内壁材料具有吸音、隔音的效果,于进风侧测量无法反映出风扇送出气流产生的声压,而实际使用中用户无法回避。 3.再者,风扇单独工作与安装到散热片上的工作噪音差别巨大。有经验的用户都知道:风冷散热器的噪音大部分来自气流高速通过散热鳍片时产生的风噪与摩擦音,而风扇本身的工作噪音只占较小的一部分。多数散热器所标注的噪音也仅是所配风扇单独工作噪音,而非整体工作噪音,厂家没有明确说明则略有误导之嫌。 4.此外,实际使用中用户与散热器风扇间的距离一般都在

全桥驱动原理

5.2.1 全桥驱动原理 全桥驱动又称H桥驱动,下面介绍一下H桥的工作原理: H桥一共有四个臂,分别为B1~B4,每个臂由一个开关控制,示例中为三极管Q1~Q4。 如果让Q1、Q2导通Q3、Q4关断,如图5-8所示,此时电流将会流经Q1、负载、Q2组成的回路,电机正转。 图5-8 B1、B2工作时的H桥电路简图图5-9 B3、B4工作时的H桥电路简图如果让Q1、Q2关断Q3、Q4导通,如图5-9所示,此时电流将会流经Q3、负载、Q4组成的回路,电机反转。 如果让Q1、Q2关断Q3、Q4也关断,负载Load两端悬空,如图5-10所示,此时电机停转。这样就实现了电机的正转、反转、停止三态控制。 如果让Q1、Q2导通Q3、Q4也导通,那么电流将会流经Q1、Q4组成的回路以及Q2和Q3组成的回路,如图5-11所示,这时桥臂上会出现很大的短路电流。在实际应用时注意避免出现桥臂短路的情况,这会给电路带来很大的危害,严重会烧毁电路

图5-10 B1~B4全部停止工作时的H桥简图图5-11 B1~B4全部工作时的H桥简图 6.2 程序中需要说明的几个问题 在程序中有几个地方不易理解,需要特别说明一下: 首先,小车有没有被训练过是怎么知道的? 在这里利用了一个特殊的Flash单元,语音模型存储区首单元(该示例程序中为0xe000单元)。当Flash在初始化以后,或者在擦除后为0xffff,在成功训练并存储后为0x0055(该值由辨识器自动生成)。这样就可以根据这个单元的值来判断是否经过训练。 其次,为什么已经训练过的系统在重新运行时还要进行模型装载? 在首次训练完成之后,辨识器中保存着训练的模型,但是系统一旦复位辨识器中的模型就会丢失,所以在重新运行时必须把存储在Flash中的语音模型装载到辨识器(RAM)中去。 第三,在转弯时为什么前轮要先做一个反方向的摆动? 这是为了克服车体的限制,由于前轮电机的驱动能力有限,有时会出现前轮偏转不到位的情况,所以在转弯前首先让前轮朝反方向摆动,然后再朝目标方向摆动。这样前轮的摆动范围更大,惯性更大,摆幅也最大,能更好实现转弯。

直流电机H桥驱动方式

直流电机H桥驱动2013年08月01日

直流电机H 桥驱动方案 H桥原理简述 所谓H 桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下: 从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“H 桥驱动”。4个开关所在位置就称为“桥臂”。

从电路中不难看出,假设开关A、D接通,电机为正向转动,则开关B、C接通时,直流电机将反向转动。从而实现了电机的正反向驱动。 借助这4 个开关还可以产生电机的另外2 个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。 B)惰行——4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反电势,电机将惯性转动较长时间。 以上只是从原理上描述了H 桥驱动,而实际应用中很少用开关构成桥臂,通常使用晶体管,因为控制更为方便,速度寿命都长于有接点的开关(继电器)。 细分下来,晶体管有双极性和MOS管之分,而集成电路只是将它们集成而已,其实质还是这两种晶体管,只是为了设计、使用方便、可靠而做成了一块电路。 双极性晶体管构成的H 桥:

MOS管构成的H 桥: 以下就分析一下这些电路的性能差异。

典型H 桥驱动电路分析 分析之前,首先要确定H 桥要关注那些性能: A)效率——所谓驱动效率高,就是要将输入的能量尽量多的输出给负载,而驱动电路本身最好不消耗或少消耗能量,具体到H 桥上,也就是4个桥臂在导通时最好没有压降,越小越好。 B)安全性——不能同侧桥臂同时导通; C)电压——能够承受的驱动电压; D)电流——能够通过的驱动电流。 大致如此,仔细考量,指标B)似乎不是H桥本身的问题,而是控制部分要考虑的。 而后两个指标通过选择合适参数的器件就可以达到,只要不是那些特别大的负载需求,每种器件通常都能选择到。而且,小车应用中所能遇到的电流、电压更是有限。 只有指标A)是由不同器件的性能所决定的,而且是运行中最应该关注的指标,因为它直接影响了电机驱动的效率。 所以,经分析的重点放在效率上,也就是桥臂的压降上。 为了使分析简单,便于比较,将H 桥的驱动电流定位在2A 水平上,而电压在5 - 12V 之间。 选择三个我所涉及到的器件: A)双极性晶体管—— D772、D882 B)MOS管—— 2301、2302 C)集成电路H桥—— L298

IR2104_+_IRF540_MOS电机驱动全桥_学习与实践过程

IR2104 + IRF540 MOS电机驱动全桥学习与实践过程 使用L293或L298等全桥芯片来控制直流电机虽然简便而且成本低廉,但由于它们的内阻较大,在控制大电流的马达时芯片常常过热,导致系统的整体效率较低。在电动车上,马达控制芯片的内阻过大会导致车子的加速度变小。 本人设想在暑假制作一个大的轮式或者履带式机器人,并且希望它能跑到公交车那么快,于是开始研究如何使用MOS管来控制更大电流的电机。 首先,本人参考了《大功率直流马达的驱动——ABU ROBOCON 2005比赛之动力方案》一文中的电路图(原文地址 https://www.wendangku.net/doc/8c9632393.html,/article.php?sid=192 ) 按照这个原理图,我热转印制作了单个全桥的实验电路。个别的电阻电容值有所变动。

上电并给予有效的持续高电平信号后发现电路不能驱动马达,而2104开始发烫,540没有任何反应。于是更换2104,但仍出现同样的现象。通过示波器检测发现,高端MOS没有被驱动,而低端MOS的G 端信号正常,因而桥没有被导通。更换信号方向,另外半桥仍然出现相同的现象。 本人开始怀疑是BOOTSTRAP电容的问题,于是实验了不同的电容值。但无论怎么变换,问题仍然没有被解决。由于手头没有4148,使用了IN5819作为续流二极管,按道理5819只会比4148更好,不应该成为问题的原因。 由于手头2104只有6片,而所有的都上电并且发热过,于是重新购买了一批2104。在这里感谢周顺同学,那天刚好他毕业考考好,帮我到科技京城买了2104。 更换2104后,电路工作正常。周顺看了看我原来的2104,恍然大悟:原来的芯片是97年前的旧货。 马达欢快地转了起来。由于540的内阻要比298小很多,马达的加速度明显提高,变向时电刷更是发出了闪亮的火星。 回到家后用示波器开始研究高端MOS的G端驱动电压波形。发现在EN端为高的初期,高端MOS的驱动电压突然升至比VCC高10V。此时强推动作用起效。但随着时间的流逝,该电压逐渐衰减为VCC,MOS的导通程度越来越不完全。直到下一个脉冲到来,G端电压又恢复为VCC+10V,但又逐渐衰减。也就是说,用持续的高电平信号来驱动MOS会导致MOS不能被完全导通,致使MOS发热,马达的实际功率低下。使用PWM信号则可以解决这个问题,它使BOOTSTRAP电容反复充电放电,使高端驱动电压始终维持在一个比较高的水平。倘若想让马达全速前进,不能使用持续的高电平,而需要用3%左右占空比的PWM,这是驱动2104与驱动298等全桥芯片的最大差别。 不同的BOOTSTRAP电容值适应于不同频率的PWM信号与不同的MOS。电容值大的充电和放电时间都比较大,电压衰减得也比较慢,因而适合较低频率的PWM;电容值小的充电放电时间比较短,适合于较高频率的PWM。虽然IR给出过一个BOOTSTRAP电容的计算公式,但本人更倾向于通过实验来寻找合适的电容值。这样做既避免了繁杂的计算,又可以通过实验来了解它的工作原理,而且还可以适应板载电容。 通过实验,本人确定了1UF的电容值。该电容采用了旦电容,以减少漏电。但如果没有旦电容,其他漏电较大的电容影响也并非很大。相对于高频的PWM,在如此短的时间内漏电的影响是微乎其微的。但从理论上来说,BOOTSTRAP电容漏电会导致高端MOS的导通电阻变大。 总结了以上经验,本人又制作了一块双电机的MOS驱动电路。电路没有太大的改变,只是把续流二极管改为原图所说的4148,把阻容换成了贴片封装,并且采用了1UF旦电容作为BOOTSTRAP电容。 点击此处下载热转印用PCB文档(DXP)

电机驱动入门简述与应用电路

V1.0 目录 一、电机 (2) 二、PWM (2) 三、电机驱动 (3) 1、原理介绍 (3) 2、H桥 (3) 3、电机驱动保护 (4) 四、场效应管 (4) 五、集成驱动芯片及应用电路 (5) 1、L298 (5) 2、MC33886 (6) 3、BTS/BTN系列 (6) 4、集成驱动芯片的问题 (7) 六、分立元件驱动电路 (8) 1、2PMOS+2NMOS (8) 2、4NMOS (9) 七、PCB注意事项 (11)

一、电机 电机(马达)是指依据电磁感应定律实现电能转换或传递的一种电磁装置(电能转化为机械能)。在电路中用字母M表示。按工作电源种类划分可分为直流电机和交流电机。直流电动机按结构及工作原理可划分无刷直流电动机和有刷直流电动机……等等。分类巨多,用处各不同。智能车用的电机是比较简单的永磁直流电机。对于这样的电机,给其正负端加上正电压,向前转,加上负电压,向后转。 这就像从前玩过的四驱车,打开开关,车就开了,但是问题是这样没法实现调速。智能车控制中加速减速是必须的,所以我们需要一个模块对电机进行加减速甚至正反转的控制,这个模块就是电机驱动。 二、PWM 可以想象,用表1三种方波控制开关闭合时间的效果必定不同,电机速度依次增加。

1、原理介绍(本文档原理全部为帮助理解,并不是准确的电路理论) 由以上的说明我们可以得到这样一个直观认识:电机驱动可以视为一个可以由电路控制的开关。所以理论上一切有开关特性的电子元器件皆可用来构成电机驱动(但是要考虑功率等的问题)。比如继电器、三极管、场效应管等。但其中继电器的控制频率受很大限制,一般三极管的功率达不到要求,所以现在的智能车电机驱动多采用场效应管(不管是分立元件还是集成芯片)。 再回到电机操作上,你可以发现,有一个可控开关(现在姑且这么称呼)的电机驱动的却可以实现对电机速度的控制,但是有时候在急弯前需要刹车,即给车一个反向加速度,制动力让车迅速减速,这时候上述方案就不行了,因为上面的电路电机对车的力反向只是从0到最大,而如果希望倒转,则需要从负值最大到正值最大。实现这个想法的电路叫做H桥,又称为全桥驱动。 2、H桥 状态1 状态2 桥是如何实现控制电机的正转倒转调速的请看表2的状态1与状态2 中,左上角和右下角的可控开关导通,左下角和右上角的开关断开,此时电机正端(规定此图中左端为正)加上正电压,负端接地,电流正向流过,电机正转。 中,左下角和右上角的可控开关导通,左上角和右下角 此时电机正端接地,负端加上正电压,电流负向流过, 这样就实现了控制电机正转倒转。调速的方式和之前一样,输 信号,使之每周期导通的时间受控,实现速度调节。 桥的四个控制臂可以输入多种状态的信号,状态1和状态2 只是其中两种,而有一种特殊的状态需要特别注意:某一边的控制 端同时让开关导通(右图)。这时,很明显,相当于正负极短路了,

相关文档
相关文档 最新文档