文档库 最新最全的文档下载
当前位置:文档库 › 石英晶体正弦波振荡器

石英晶体正弦波振荡器

石英晶体正弦波振荡器
石英晶体正弦波振荡器

目录

课程设计任务书

第一章摘要 (2)

第二章特性简介

【1】物理特性 (2)

【2】晶振符号及等效电路 (2)

【3】电抗特性 (3)

【4】晶振的特点 (3)

【5】晶振的优缺点 (4)

第三章晶体振荡器的类型概述

【1】并联型晶体振荡器 (4)

【2】串联型晶体振荡器 (6)

【3】泛音晶体振荡器 (6)

第四章正弦波晶体振荡器设计电路

【1】晶体振荡器原理图选择依据 (7)

【2】晶体振荡器设计原理图 (7)

【3】工作点及回路参数的确定 (8)

第五章心得体会 (10)

第六章参考文献 (11)

第一章摘要

石英晶体正弦波振荡器简称晶振,是以高稳定度、高Q值的石英谐振器替代LC振荡器中震荡回路的电感、电容元件而构成的自激正弦波振荡器,它利用石英晶体的压电效应实现机械能与电能的相互转化。由于晶体振荡器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

第二章特性简介

【1】物理特性

晶体的基本特性是它具有压电效应。依靠这种效应,可以将机械能转变为电能;反之,也可以将电能转变为机械能。

当晶体受到机械力时,它的表面上就产生了电荷。如果机械力由压力变成张力,则晶体表面的电荷极性就反过来。这种效应成为正压电效应。反之,如果在晶体表面加入一定的电压,则晶体就会产生弹性变形。如果外加电压作交流变化,晶体就产生机械振动,振动的大小基本上正比于外加电压幅度,这种效应称为反压电效应。晶体的压电效应如图1(a)所示。

另外,石英晶体和其他弹性体一样,也具有惯性和弹性,因而存在固有振动频率。当外加电源频率与晶体的固有振动频率相等时,晶体片就产生谐振。这时,机械振动的幅度最大,相应地晶体表面产生的电量亦最大,因而外电路中的电流也最大。因此石英晶体片本身具有谐振回路的特性,如图1(b)所示。

【2】晶振符号及等效电路

石英晶体谐振器的符号及等效电路分别如图2(a)(b)所示。

C0:封装电容。代表石英晶体支架静电容量,一般为几至几百皮法;

L :动态电感。相当于晶体的质量(惯性),很大,一般以几亨至十分之几亨计;

C :动态电容。相当于晶体的等效弹性模数,很小,一般以百分之几皮法计;

R :动态电阻。相当于晶体的的摩擦损耗,一般以几至几百欧计。

因,易知:石英晶体的品质因数很高。

石英晶体谐振器有两个谐振频率:

(1)当L、C、R支路串联谐振时,等效电路的阻抗最小,串联谐振频率为

显然,fs < fp,但由于C << C0,因此fs和fp两个频率非常接近。

【3】电抗特性

石英晶体谐振器的电抗曲线如图2(c)所示。

可以看出,电抗特性曲线分三个区间和两个谐振频率点:

当f < fs或f > fp时,电抗特性呈容性,等效为电容;

当fs < f < fp时,电抗特性呈感性,等效为电感;

当f = fs时,电抗呈纯电阻性,等效阻抗为最小,为串联谐振点;

当f = fp时,电抗呈纯电阻性,等效阻抗为最大,为并联谐振点;

在串联谐振频率点与并联谐振频率点之间极窄的频带内石英晶体谐振器呈感性,用其构成的电容三点式振荡器就是利用了这个区间。

【4】晶振的特点

在振荡频率上,闭合回路的相移为2nπ。

当开始加电时,电路中唯一的信号是噪声。满足振荡相位条件的频率噪声分量以增大的幅度在回路中传输,增大的速率由附加分量,即小信号,回路益增和晶体网络的带宽决定。

幅度继续增大,直到放大器增益因有源器件(自限幅)的非线性而减或者由于某一自动电平控制而被减小。

在稳定状态下,闭合回路的增益为1。

【5】晶振的优缺点

优点:使用石英晶体作为震荡回路元件,能够使振荡器的频率稳定度大大提高,原因有三:

(1)石英晶体的物理特性和化学特性都十分稳定,因此,它的等效谐振回路有很高的标准性。

(2)它具有正、反压电效应,而且在谐振频率附近,晶体的等效参数L很大、C很小、R也不高,因此,晶体的Q值可高达数百万数量级。

(3)在串、并联谐振频率之间很狭窄的工作频率内,具有极陡峭的电抗特性曲线,因而对频率变化具有极灵敏的补偿能力。

缺点:石英晶体谐振器的主要缺点时它的单频性,即每块晶体只能提供一个稳定的振荡频率,因而不能直接用于波段振荡器。

第三章晶体振荡器的类型概述

根据石英晶体谐振器的电抗曲线,在串、并联谐振频率之间很狭窄的工作频带内,它呈电感性。因而石英谐振器或者工作于感性区,或者工作于串联谐振频率上,绝不能使用容性区。因为如果振荡器电路是设计在晶体呈现电容性时产生振荡,那么,由于晶体在静止时就是呈现电容性的,所以无法判断晶体是否已经在工作,从而不能保证频率稳定作用。

因此,根据晶体在振荡器线路中的作用原理,振荡电路可分为两类:一类是石英晶体在电路中作为等效电感元件使用,这类振荡器称为并联谐振型晶体振荡器;另一类是把石英晶体作为串联谐振元件使用,使它工作于串联谐振频率上,称为串联谐振型晶体振荡器。

【1】并联型晶体振荡器

这类晶体振荡器的振荡原理和一般反馈式LC振荡器相同,只是把晶体置于反馈网络的振荡回路之中,作为一个感性元件,并与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据这种原理,常用的有两种基本类型:c-b 型电路和b-e型电路。如图3所示。

图3(a)c-b型电路图3(b)b-e型电路

图3(a)所示相当于电容三端振荡电路。

图3(b)所示相当于电感三端振荡电路。

图4(a)晶振电路图4(b)等效电路图4(a)所示为典型的c-b型晶体振荡器线路。振荡管的基极对高频接地,晶体接在集电极与基极之间,C1与C2为回路的另外两个电抗元件。振荡器回路的等效电路如图4(b)。由于Cq非常小,因此,晶体振荡器的谐振回路与振荡管之间的耦合非常弱,从而使频率稳定性大为提高。

图5(a)b-e型晶振图图5(b)等效回路

图5(a)所示为典型的b-e型晶体振荡器线路。图5(b)所示为它的等效回路。由图可看出,该电路是个双回路振荡器,L1C1回路应呈电感性,因此它的固有谐振频率f0应略高于振荡器的工作频率f,振荡器为哈特莱电路。

【2】串联型晶体振荡器

图6(a)所示为一种正弦波串联晶体振荡器电路,图6(b)所示为它的等效电路。由图可知,该电路与电容三端振荡电路十分相似,只是反馈信号要经过石英晶体JT后,才能送到发射极与基极之间。石英晶体在串联谐振时阻抗近似于零,可以认为时短路,此时正反馈最强,满足振荡条件。因此,这个电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率。

图6(a)串联型晶振电路图6(b)等效电路

使用晶体谐振器时应注意以下几点:

(1)石英晶体谐振器的标称频率是在石英晶体谐振器上并接一定负载电容条件下测定的,在使用时也必须外加负载电容,并经微调后才能获得标称频率;

(2)石英晶谐振器的激励电平应在规定范围内;

(3)在并联型晶体振荡器中,石英晶体起电感的作用;若作为容抗,则在石英晶体片失效时,石英谐振器的支架电容还存在,线路仍可能满足振荡条件而起振,石英晶体谐振器失去了稳频作用;

(4)在晶体振荡器中,一块晶体只能稳定一个频率,当要求得到可选择的许多频率时,就要采取其他电路器件。

【3】泛音晶体振荡器

所谓泛音,是指石英片振动的机械波。它与电气谐波的主要区别是:电气谐波与基波是整数倍关系,且谐波与基波同时并存;泛音则与基频不成整数倍关系,只是在基频奇数倍附近,且两者不能同时存在。图7所示为泛音晶体振荡器的交流等效电路。

图7 泛音晶体振荡器交流等效电路。

第四章正弦波晶体振荡器设计电路

【1】晶体振荡器原理图选择依据

石英晶体谐振器在串并联谐振频率之间很狭窄的工作频带内,它具有极陡峭的电抗特性曲线,因而对频率变化具有极灵敏的补偿能力。依据这个特性,选取石英晶体在电路中作为等效电感原件使用,即选择并联谐振型晶体振荡器。

常用的并联谐振型晶体振荡器有两种基本类型:c-b型电路和b-e型电路。比较这两种电路可知:b-e型电路的输出信号教大,L1C1 回路还可以抑制其他谐波,但频率稳定度不如c-b型电路。因为在b-e型电路中,石英晶体接在输入阻抗低的b-e之间,降低了石英晶体的标准性。c-b型电路中的石英晶体则接在阻抗很高的c-b之间,石英晶体的标准性受影响很小。

因此,综合考虑各项因素,本次设计选择并联谐振晶体c-b型振荡器电路。

【2】晶体振荡器设计原理图

正弦波晶体振荡器设计电路原理图如下图8(a)所示。

图8(a)正弦波晶体振荡器设计电路原理图

振荡管的基极对高频接地,晶体接在集电极与基极之间,C1C2为回路的另外两个电抗元件,C b 为旁路电容,Cq为负载电容。由于晶振的Cq非常小,因此,晶体振荡器的谐振电路与振荡管之间的耦合非常弱,从而使频率稳定性大为提高。。

振荡器回路的交流等效电路如下图8(b)所示。

图8(b)交流等效电路

和一般的LC三端电路相比,石英晶体在稳频方面有一个显著特点,即一旦因外界因素变化而影响到晶体的回路固有频率时,它还具有力图使频率保持不变的电抗电抗补偿能力。这主要是由于石英谐振器的等效电感Le与普通电感不同,Le时频率的函数,并且随着频率w从w q变到w p,Le则从0变到趋于无穷。在这十分狭窄的之间,存在着一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速率,亦即石英晶体在这个频率范围内具有极陡峭的相频特性曲线。因而它具有很高的稳频能力,或者说它具有很高的电感补偿能力。

【3】工作点及回路参数的确定

(1)晶体管和晶振的选择

选择高频管3DG6C型晶体管作为振荡管。查手册其参数如下:

石英谐振器可选用HC-49S系列,其性能参数为:

品牌ZJ 型号HC-49S

种类晶振标称频率12.000MHz(MHz)

调整频差20PPM(MHz)温度频差20PPM(MHz)

总频差20PPM(MHz)负载电容20PF(pF)

负载谐振

40(Ω)

电阻

(2)确定直流工作点并计算偏置电路元件参数

根据3DG6C的静态特性曲线选取工作点为:

射极电流:I E=2mA,

集电极发射极电压:Uce=0.6V,

Vcc=0.6×12=7.2V;

取集电极电压Uc=0.8Vcc=0.8×12=9.6V;

发射极电压Ue=0.2Vcc=0.2×12=2.4V

则有集电极电阻Rc =(Vcc-Uc)/ IE=(12-9.6)/0.002=1.2KΩ

发射极电阻Re = Ue/ IE=2.4/0.002=1.2 KΩ

取基极偏置电阻Rb2=5Re=6 KΩ

基极偏置电阻Rb1={(Vcc-Ue)/Ue}×RB2=24 KΩ

根据实际的标称电阻值,取Rc、Re、RB1、RB2取精度为1%的金属膜电阻: Rc= Re= 1.2KΩ;

Rb1= 24 KΩ,Rb2=6.2 KΩ;

(3)C1、C2、C3的确定

根据振荡器回路的交流等效电路可知:C1、C2、C3串联,

C1、C2串联后的值为C12 = C1*C2/(C1+C2);

C1、C2、C3串联后的值为C = C12*C3/(C12+C3);

依据回路谐振频率f0公式可计算出C

取C3=30pF(一般Ct应略大于负载电容值),

= C3 *C/ (C3- C)=(30×10)/(30-10)=15 pF

则C

12

= C1*C2/(C1+C2)两式联立解,并取F=1/2由反馈系数F=C1/C2和C

12

则C1= C12(1+F)=22.5 pF

C2= C12(1+1/F)=45 pF

根据电容量的标称值,取C1、C2为聚苯乙烯电容,

C1=20pF,C2=40pF

第五章心得体会

经过为期一周的高频电子线路课程设计,我发现了自己能力的不足和知识上的欠缺,同时也学到了很多东西。

接到晶体振荡器的课程设计任务书后,我首先将课本上关于晶体振荡器及其相关内容仔细看了好几遍,然后针对课程设计任务书上的要求认真思考,从图书馆借了与晶体振荡器有关的参考书,也从网上下载了一些别人的设计方案,最后综合课本、参考书及网上资料进行原理设计。在设计原理图时我曾一度迷茫感觉无从下手,感觉书上的图过于简单设计出来的线路不够稳定,而从别处看到的又过于复杂分析不明白,最后通过与其他同学共同讨论终于弄懂了许多东西。通过查阅参考书和阅读网上资料,我学到了很多关于晶体振荡器的新知识,而这些都是课本上没有讲到的,这些都使我对晶体振荡器有了更深入的理解。

这次课程设计,首先使我深刻体会到了自学的重要性,仅仅靠课本和老师上课是讲的东西,很多问题是不能解决的,重要的是学会自学,对问题深入思考并通过各种途径解决,才能得到最大的收获。其次,我也更加认识到团队合作的重要性,许多东西,一个人能想到的往往有限,大家在一起则可以集思广益,发现许多新问题想出许多新解决方法。而且,由于同学之间对所学东西理解的相似性,彼此讨论问题往往更容易理解。再次,在确定器件参数时,看到了许多其他器件的性能参数,不仅拓宽了我的知识面,而且培养了科学严谨的求学态度。最后,通过比较自己的设计方案与参考书上的设计方案,意识到自己知识的欠缺,同时体会到了老师们编书设计的艰难,也不由十分佩服他们的学识。这些都是值得我认真思考好好学习的。

这次课程设计时间虽然不长,但却感觉比以前上课时都累,因为每时每刻都在思考如何搜索更多资料,如何使设计方案更加完善。虽然不轻松,但毕竟学到了许多东西,也锻炼了自己的意志。因此,我感觉这次课程设计很有意义。

第六章参考文献

1、张肃文《高频电子线路》高等教育出版社2009.05

2、刘征宇《电子电路设计与制作》福建科学出版社2003.09

3、康华光《电子技术基础(模拟部分)》高等教育出版社2005.12

4、谢自美《电子线路设计.实验.测试》华中科技大学出版社2003.10

5、李银华《电子线路设计指导》北京航空航天大学出版社2005.6

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

晶体振荡器课程设计

1石英晶体及其特性 (1) 1.1 石英晶体简介............................................... . ... 1.2石英晶体的阻抗频率特性...................................... 1 ... 2晶体管的部工作原理 (3) 3.晶体振荡器电路的类型及其工作原理 (4) 3.1串联型谐振晶体振荡器........................................ 4…??… 3.2并联谐振型晶体振荡器........................................ 6…??… 3.3泛音晶体振荡器................................................ 8 .. 4 确定工作点和回路参数(以皮尔斯电路为例) (10) 4.1主要技术指标 (10) 4.2确定工作点 (10) 4.3交流参数的确定 (11) 5提高振荡器的频率稳定度........................................... 1 2 6.总结 (13) 参考文献:........................................................ 1.4

Word 文档

1石英晶体及其特性 1.1石英晶体简介 石英是矿物质硅石的一种,化学成分是Sio2,形状是呈角锥形的六棱结晶体,具有各向异性的物理特性。按其自然形状有三个对称轴,电轴X,机械轴丫光轴Z。石英谐振器中的各种晶片,就是按与各轴不同角度,切割成正方形、长方形、圆形、或棒型的薄片,如图1的AT、BT、CT、DT 等切型。不同切型的晶片振动型式不,性能不同 1.2石英晶体的阻抗频率特性 石英谐振器的电路符号和等效电路如图121。C0称为静态电容,即晶体不振动时两极板间的等效电容,与晶片尺寸有关,一般约为几到几十pF。晶体作机械振动时的惯性以Lq、弹性用Cq振动时因磨擦造成的损耗用Rq来等效,它们的数值与晶片切割方位、形状和大小有关, 一般Lq为10 3102H,Cq为10 410 1pF,Rq 在几一几百欧之间。它

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师孙颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 姓名 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到 ……………………………………装………………………………………订…………………………………………线………………………………………

高频实验2:LC与晶体振荡器

实验二:LC与晶体振荡器 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统。 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能。 3.熟悉静态工作点IEQ对振荡器振荡幅度和频率的影响。 4.熟悉LC谐振回路的电容变化对振荡器振荡频率的影响。 二.实验预习要求 1.做本实验时应具备的知识点: * 三点式LC振荡器 * 克拉泼电路 * 静态工作点值对振荡器工作的影响 2.做本实验时所用到的仪器: * LC与晶体振荡模块实验板 * 双踪示波器 * 频率计 * 万用表 三.实验电路原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振、平衡条件和相位平衡条件。 3.C振荡器的频率稳定度 频率稳定度表示:在一定时间、或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4、LC振荡器的调整和参数选择 以实验采用的改进型电容三点振荡电路(西勃电路)为例 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路,如实验电路图12-1所示。

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

高频答案第五章

第五章 正弦波振荡器 5-1 把题图5-1所示几个互感反馈振荡器交流等效电路改画成实际电路,并注明变压器的同名端(极性)。 5-9 用相位平衡条件的判断规则说明题5-2所示几个三点振荡器交流等效电路中,哪个电路是正确的(可能振荡),哪个电路是错误的(不可能振荡)。 [解]: (a )、(b )、(c )不能振荡。(d )、(e )、(f )可能振荡,但(e )应满足 11011C L g = >ωω (f )应满足11221 1 C L C L > 使0201ωωω<>; (2)332211C L C L C L <<; (3 ) 332211C L C L C L ==; (4 ) 332211C L C L C L >=; (5 ) <11C L ;3322C L C L = (6 ) ;113322C L C L C L << 试问哪个情况可能振荡?等效为哪种类型的振荡器?其振荡频率与个回路的固有频率之间有什么关系? [解]: (1)、(2)、(4)可能振荡;(3)、(5)、(6)不可能振荡。 (1)321ωωωω<<

电子电路设计实验LAB4正弦波振荡器设计2016

华侨大学电子工程系 电子电路设计实验 模数电技术 Lab # 4 正弦波振荡器设计 实 验 时 间2016 年第 周 机电信息实验大楼A526 文 档 名 称 正弦波振荡器设计 文 档 类 型 实验教学文档 文 档 撰 写 HWW 文 档 版 本 Ver:1.2 更 新 时 间 2014.04.15 更 新 内 容 结构调整,优化已知错误 文 档 更 新 新建文档,配套实验报告 支 持 软 件 NI Multisim 12 适 用 专 业 电子信息工程/集成电路设计专业华侨大学厦门专用集成电路与系统重点实验室

国立华侨大学 信息科学与工程学院电子工程系 电子电路设计实验 模数电技术 #4 正弦波振荡器设计 实验指导教师:HWW 实验时间::2016- - : - : 地点:机电信息实验大楼A526 实验要求说明: 1.完成实验报告内容中的预习部分的内容 2.独立完成实验,实验中不清楚的可以相互讨论或询问指导老师 3.数据严禁抄袭,发现抄袭现象,抄袭者和被抄袭者本次实验都得0分 4.实验需要先打印实验报告第一页,用于实验数据签字确认,实验完成后经实验指导老师签字后方可离开。数据记录中因为存在仿真波形抓取,所以等实验完成后再打印实验报告后几页。 5.本次实验的实验报告(封面+实验内容装订一起)在下次实验课时一起缴交 正弦波振荡器概述 运放振荡器是有意设计成维持不稳定状态的电路,可以用来产生均匀的信号,这种均匀的信号可以在许多运用中作为基准信号:比如可以应用在音频电路、函数发生器、数字系统和通信系统。振荡器可以分为两大类:正弦波振荡器和张弛振荡器、正弦波振荡器由放大器和RC或LC电路构成,这种振荡器的频率是可调的;正弦波振荡器也可以使用晶振构成,但是晶振的振荡频率是固定的。弛张振荡器可以用来产生三角波、锯齿波、方波、脉冲波或指数型波形。本实验讨论的是正弦波振荡器的设计。 运放的正弦波振荡器的工作不需要外加输入信号,这种振荡器利用了正反馈或负反馈的某些组合把运放驱动到不稳定的状态,这样输出就不断的来回翻转。振荡的幅度和频率可以通过围绕中心运放的那些无源和有源器件共同设定。 需要注意的是运放的振荡器被限制在频谱的低频区,因为运放没有足够的带宽以实现高频下的低相移。电压反馈运放被限制在很低的数千赫范围,因为开路的主极点可以低到10Hz。晶振可以拥有高到数百兆赫的高频范围。 图4.1 带有正反馈或负反馈的反馈系统

实训报告正弦波振荡器设计multisim

实训报告正弦波振荡器设计multisim

高频电路(实训)报告 项目:正弦波振荡器仿真设计班级:级应电2班 姓名:周杰 学号: 14052 2 摘要

自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论.................................................................................... 错误!未定义书签。 2、方案的确定 ........................................................................ 错误!未定义书签。 3、工作原理、硬件电路的设计和参数的计算 ..................... 错误!未定义书签。 3.1 反馈振荡器的原理和分析.............................................. 错误!未定义书签。 3.2. 电容三点式振荡单元 .................................................... 错误!未定义书签。 3.3 电路连接及其参数计算 ................................................. 错误!未定义书签。 4、总体电路设计和仿真分析................................................. 错误!未定义书签。 4.1组建仿真电路................................................................. 错误!未定义书签。 4.2仿真的振荡频率和幅度 ................................................. 错误!未定义书签。 5、参数调整对比/结论........................................................... 错误!未定义书签。附录.......................................................................................... 错误!未定义书签。附录Ⅰ元器件清单 .................................................................. 错误!未定义书签。附录Ⅱ电路总图 ...................................................................... 错误!未定义书签。

高频课设报告(高频正弦波振荡器)

课程设计任务书 学生姓名: XXX 专业班级:电信1102 指导教师:刘运苟工作单位:信息工程学院 题目一:高频正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、采用晶体三极管构成一个多功能正弦波振荡器; 2、额定电源电压5.0V ,电流1~3mA; 输出频率 6 MHz (频率具一定的变化范围); 3、通过双变跳线可构成克拉勃和西勒的串、并联晶体振荡器; 4、有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 二十周一周,其中4天硬件设计与制作,3天调试及答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1.正弦波振荡器的基本原理 (2) 1.1自激振荡的平衡 (2) 1.2 振荡的建立和振荡条件 (2) 1.3 振荡器的稳定 (3) 2.三点式LC振荡器 (4) 2.1 电容三点式振荡器 (4) 2.2串联改进型电容三点式振荡器(克拉泼电路) (5) 2.3 并联改进型电容三点式振荡器(西勒电路) (6) 3.石英晶体谐振器 (7) 3.1 压电效应及其等效电路 (7) 3.2石英晶体的阻抗特性 (8) 3.3石英晶体振荡器电路 (8) 3.3.1并联型晶振电路 (8) 3.3.2 串联型晶体振荡器 (9) 4.振荡电路的总体设计及其仿真 (10) 4.1 主要原件参数设计 (11) 4.1.2 振荡电路设计部分 (11) 4.1.3 输出级 (13) 4.2 电路的仿真(multisim) (14) 5. 实物制作图 (18) 6.实践总结和心得 (19) 附录1.元件清单 (20) 参考文献 (21)

高频石英晶体振荡器仿真报告

燕山大学石英晶体振荡器设计报告 题目: 专业:电子信息工程 姓名:李飞虎 指导教师:李英伟 院系站点:信息科学与工程学院 2014年11 月17 日 高频石英晶体振荡器仿真报告

1.振荡器电路属于一种信号发生器类型,即表现为没有外加信号的情况下能自动生成具有一定频率、一定波形、一定振幅的周期性交变振荡信号的电子线路。振荡器起振时是将电路自身噪声或电源跳变中频谱很广的信号进行放大选频。此时振荡器的输出幅值是不断增长的,随着振幅的增大,放大器逐渐由放大区进入饱和区或者截止区,其增益逐渐下降,当放大器增益下降而导致环路增益下降到1时,振幅的增长过程将停止,振荡器达到平衡,进入等幅振荡状态。振荡器进入平衡状态后,直流电源补充的能量刚好抵消整个环路消耗的能量。 2,串联晶体振荡器 在串联型晶体振荡器中,晶体接在振荡器要求低阻抗的两点之间,通常接在反馈电路中。图1-1和图1-2显示出了一串联型振荡器的实际路线和等效电路。可以看出,如果将石英晶体短路,该电路即为电容反馈的振荡器。电路的实际工作原理为:当回路的谐振频率等于晶体的串联谐振频率时,晶体的阻抗最小,近似为一短路线,电路满足相位条件和振幅条件,故能正常工作;当回路的谐振频率距串联谐振频率较远时,晶体阻抗增大,是反馈减弱,从而使电路不能满足振幅条件,电路不能正常工作。串联型晶体振荡器只能适应高

次泛音工作,这是由于晶体只起到控制频率的作用,对回路没有影响,只要电路能正常工作,输出幅度就不受晶体控制。 图1-1 图1-2 设计参数在仿真图上,首先进行静态分析,根据仿真,各元件参数符合要求。对于振荡器,当该电路接为串联型振荡器时,晶体起到选频短路线的作用,(与三端电容振荡器相同)输出频率应为3MHZ. L1,C1,C2组成谐振回路,参数符合要求,即f0=3MHZ。 3.并联晶体振荡器 并联振荡器分为c-b型和b-e型。前者相对稳定。所以我设计的是c-b型。 参数分析与前者类似。交流参数确定时,并联振荡电路中晶振接在谐振回

1KHZ桥式正弦波振荡器电路的设计与制作

目录 摘要 (2) 1.系统基本方案 (2) 1.1 正弦波振荡电路的选择与论证 (2) 1.2. 运算放大器的选择 (3) 1.3最终的方案选择 (3) 2.正弦波发生器的工作原理 (3) 2.1正弦波振荡电路的组成 (3) 2.1.1 RC选频网络 (3) 2.1.2放大电路 (6) 2.1.3正反馈网络 (6) 2.2产生正弦波振荡的条件 (6) 2.3.判断电路是否可能产生正弦波的方法和步骤 (7) 3.系统仿真 (7) 4.结论 (8) 参考文献: (11) 附录 (13)

1KHZ 桥式正弦波震荡器电路的设计与制作 摘要 本设计的主要电路采用文氏电桥振荡电路。如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频 率特性决定。它的起振条件为: ,振荡频率为: 。运算放大 器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RC f π21 0= 以及题目给出的频 率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。 关键词:文氏电桥、振荡频率、LM741CN 1.系统基本方案 1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。

图1 RC 桥式振荡电路 这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。振荡频率由RC 网络的频率特性决定。它的起振条件为: 12R R f > 。它的振荡频率为:RC f π21 0= 。 1.2. 运算放大器的选择 考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。 1.3最终的方案选择 文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。很适合我们题目的要求。故采用文氏电桥振荡电路. RC 文氏电桥振荡电路是以RC 选频网络为负载的振荡器. 这个电路由两部分组成,即放大电路和选频网络。放大电路由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而选频网络则由Z1、Z2组成,同时兼做正反馈网络。 2正弦波发生器的工作原理 2.1正弦波振荡电路的组成 放大电路 选频网络 正反馈网络 2.1.1 RC 选频网络

高频电容三点式正弦波振荡器课程设计报告

课程设计任务书 学生姓名:***专业班级:电子 指导教师:吴皓莹工作单位:信息工程学院 题目:高频电容三点式正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2.额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器; 4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. 错误!未定义书签。Abstract ........................................................................................................... 错误!未定义书签。 1 绪论............................................................................................................. 错误!未定义书签。 2.1 反馈振荡器的原理........................................................................... 错误!未定义书签。 2.1.1 原理分析................................................................................. 错误!未定义书签。 2.1.2 平衡条件................................................................................. 错误!未定义书签。 2.1.3 起振条件................................................................................. 错误!未定义书签。 2.1.4 稳定条件................................................................................. 错误!未定义书签。 2.2 电容三点式振荡器........................................................................... 错误!未定义书签。 3 设计思路及方案......................................................................................... 错误!未定义书签。 3.1 总体思路........................................................................................... 错误!未定义书签。 3.2 设计原理........................................................................................... 错误!未定义书签。 3.3 单元设计........................................................................................... 错误!未定义书签。 3.3.1 电容三点式振荡单元............................................................. 错误!未定义书签。 3.3.2 输出缓冲级单元..................................................................... 错误!未定义书签。 4 电路仿真与实现......................................................................................... 错误!未定义书签。 4.1 基于................................................................................................... 错误!未定义书签。 4.2 硬件调试........................................................................................... 错误!未定义书签。 5 心得体会..................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录Ⅰ总电路图......................................................................................... 错误!未定义书签。附录Ⅱ元件清单......................................................................................... 错误!未定义书签。

高频正弦波振荡器地设计

农林大学学院 课程设计报告 课程名称:数字信号处理课程设计 课程设计题目:高频正弦波振荡器设计与仿真姓名: 系:计算机系 专业:电子信息工程 年级: 学号: 指导教师: 职称: 2015年12月30日

高频正弦波振荡器的设计 目录 目录 (1) 摘要: (2) 一、设计要求 (3) 二、总体方案设计 (3) 三、工作原理说明 (3) 1、振荡器概念 (3) 2、静态工作点的确定 (4) 3、振荡器的起振检查 (4) 4、高频功率放大器 (5) 5、电路设计原理框图如图1所示。 (5) 四、电路设计 (6) 1、正弦波振荡器的设计 (6) 2、高频功率放大器的设计 (9) 五、性能的测试 (11) 1振荡器振荡频率为2MHz (11) 2振荡器振荡频率为4MHz (11) 3高频功率放大器电路 (12) 4输出功率 (13) 六、结论、性价比 (13) 七、课设体会及合理化建议 (14) 八、参考文献 (14)

摘要: 本次课程设计通过对课本知识的运用,简单介绍了高频正弦波振荡器的设计方法,主要应用LC振荡电路产生正弦波,再经高频功率放大器进行功率放大,并用仿真软件进行仿真,以及对其性能进行测试,经过反复的调试最终得到满足课题要求的电路。 关键词:正弦波;振荡器;高频功率放大器。

一、设计要求 设计要求: 1. 选择合适的高频正弦波振荡器形式; 2. 从理论上分析振荡器的各个参数及起振条件; 3. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。 主要技术指标:电源电压12V,工作频率2M-4MHz,输出电压1V,频率稳定度较高。 二、总体方案设计 该课程设计主要涉及了振荡器的相关容还有高频功率放大器的容,正弦波振荡器非常具有实用价值,通过该课题的研究,可以加深对振荡器以及丙类高频功率放大器的了解。 三、工作原理说明 1、振荡器概念 振荡器主要分为RC,LC振荡器和晶体振荡器。其中电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,现在很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。 振荡器的作用主要是将直流电变交流电.它有很多用途.在无线电广播和通信设备中产生电磁波.在微机中产生时钟信号.在稳压电路中产生高频交流电.。 题目要求产生高频正弦波,所以选用电容三点式电路,进一步考虑从而选用并联改进型电容三点式振荡器(西勒电路),因为它具有输出波形不易失

正弦波振荡器的设计

第一章 设计内容 第一节:设计题目:正弦波振荡电路的设计与实现 第二节:设计指标 振荡频率: f=7MHZ ; 频率稳定度:小时/105/30-?≤?f f ; 电源电压:V=12V ; 波形质量 较好; 第三节: 方案设计与选择 LC 振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。 所以选择电容反馈三点式振荡器是不容置疑的,而电容反馈三点式振荡器又分为考毕兹振荡器,克拉波振荡器,西勒振荡器。本次课程设计我们选择考毕兹振荡器,因为此振荡电路适用于较高的工作频率。 第二章 设计原理 第一节 自激振荡的工作原理 正弦波振荡器:一种不需外加信号作用,能够输出不同频率正弦信号的自激振荡电路。 LC 回路中的自由振荡如图1(a)所示。 自由振荡——电容通过电感充放电,电路进行电能和磁能的转换过程。 阻尼振荡——因损耗等效电阻R 将电能转换成热能而消耗的减幅振荡。图1(b)所示。

等幅振荡——利用电源对电容充电,补充电容对电感放电的振荡过程,图1(c) 所示。这种等幅正弦波振荡的频率称为LC 回路的固有频率,即 LC f π= 210 图1 LC 回路中的电振荡 一、自激振荡的条件 振荡电路如图2所示。 振荡条件:相位平衡条件和振幅平衡条件。 1.相位平衡条件 反馈信号的相位与输入信号相位相同,即为正反馈,相位差是180?的偶数倍,即 ?=2n π 。其中,? 为vf 与vi 的相位差,n 是整数。vi 、vo 、vf 的相互关系参见图3。 2.振幅平衡条件 反馈信号幅度与原输入信号幅度相等。即 AVF=1 图2 变调谐放大器为振荡器 图3 自激振荡器方框图 二、自激振荡建立过程 自激振荡器:在图2中,去掉信号源,把开关S 和点“2”相连所组成的电路。

实验六RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:126O f RC 起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到的波形变化情况及相应的Rf值。 实验现象Rf值V o波形 停振 起振 幅值增加 波形失真 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

高频正弦波振荡器

目录 摘要 (1) 1.引言 (3) 2.Multisim 简介 (4) 3.正弦波振荡器的基本原理 (6) 3.1起振过程与起振条件 (6) 3.2平衡过程与平衡条件 (7) 3.3平衡状态的稳定条件 (8) 4.三点式LC振荡器 (9) 4.1电容三点式振荡器 (9) 4.2克拉勃电路 (10) 4.3西勒电路 (11) 5.石英晶体振荡器 (12) 5.1 压电效应及其等效电路 (12) 5.2石英晶体的阻抗特性 (12) 5.3石英晶体振荡器电路 (13) 5.3.1并联型晶体振荡电路 (13) 5.3.2串联型晶体振荡电路 (14) 6.振荡电路的设计及仿真 (14) 6.1 主要原件参数设计 (14)

6.1.1振荡电路部分 (15) 6.1.2输出级部分 (17) 6.2 电路的仿真 (16) 7. 调试波形与实物图 (21) 8.总结 (24) 参考文献 (25) 附录1.元件清单 (26) 摘要: 石英晶体振荡器是一种高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。石英谐振器因具有极高的频率稳定性,故主要用在要求频率十分稳定的振荡电路中作谐振元件,如彩电的色副载波振荡器、电子钟表的时基振荡器及游戏机中的时钟脉冲振荡器等,石英晶体成本较高,故在要求不太高的电路中一般采用陶瓷谐振元件。 本设计对利用石英晶体构成正弦波的振荡器的方法做了较深入的研究,对振荡器的原理及石英晶体振荡器原理做了详细的介绍并通过Multisim 软件设计、仿真出串并联可交换的石英晶体振荡器,最后按照原理图进行实物的连接、调试和参数的计算。 关键词:晶体;振荡器;串并联;Multisim仿真

相关文档
相关文档 最新文档