文档库 最新最全的文档下载
当前位置:文档库 › PCie 驱动

PCie 驱动

PCie 驱动
PCie 驱动

PCie 驱动

Pcie设备上有三种地址空间:PCI的I/O空间、PCI的存储空间和PCI的配置空间。

Pce的配置空间:

PCI有三个相互独立的物理地址空间:设备存储器地址空间、I/O地址空间和配置空间。配置空间是PCI所特有的一个物理空间。由于PCI支持设备即插即用,所以PCI设备不占用固定的内存地址空间或I/O地址空间,而是由操作系统决定其映射的基址。

系统加电时,BIOS检测PCI总线,确定所有连接在PCI总线上的设备以及它们的配置要求,并进行系统配置。所以,所有的PCI设备必须实现配置空间,从而能够实现参数的自动配置,实现真正的即插即用。

PCI总线规范定义的配置空间总长度为256个字节,配置信息按一定的顺序和大小依次存放。前64个字节的配置空间称为配置头,对于所有的设备都一样,配置头的主要功能是用来识别设备、定义主机访问PCI卡的方式(I/O访问或者存储器访问,还有中断信息)。其余的192个字节称为本地配置空间,主要定义卡上局部总线的特性、本地空间基地址及范围等。

一般来说,基于pcie总线的驱动,需要涉及到pci_driver pci_dev pci_device_id .

pci_device_id : 用于标识pcie设备,通过上图的厂商Id 设备Id 功能号等唯一确定一个pcie 设备,内核通过这个结构体确认驱动与设备是否匹配。

pci_dev : 一般pcie 设备都具有热拔插功能,当内核检测到有pcie设备插入时,会与相应的Pci_driver : 当有相应的设备匹配会调用驱动的相关方法,驱动中通常要做的是读出Base Adrress Register1-6 的值,这是pcies设备6个内存空间的基地址,然后通过ioremap方法映射成虚拟地址,至于6个内存空间的具体含义需要依赖于设备。

在用模块方式实现PCI设备驱动程序时,通常至少要实现以下几个部分:初始化设备模块、

设备打开模块、数据读写和控制模块、中断处理模块、设备释放模块、设备卸载模块。例如

/* 指明该驱动程序适用于哪一些PCI设备*/

static struct pci_device_id demo_ids[] = {

{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810_IG1) },

{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810_IG3) },

{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82810E_IG) },

{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82815_CGC) },

{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82845G_IG) },

{ 0, },

};

这个 pci_device_id 结构需要被输出到用户空间, 来允许热插拔和模块加载系统知道什么模块使用什么硬件设备. 宏 MODULE_DEVICE_TABLE 完成这个. 例如:

MODULE_DEVICE_TABLE(pci, demo_ids);

struct demo_card {

unsigned int magic;

/* 使用链表保存所有同类的PCI设备*/

struct demo_card *next;

/* ... */

}

/* 中断处理模块*/

static void demo_interrupt(int irq, void *dev_id, struct pt_regs *regs)

{

/* ... */

}

/* 设备文件操作接口*/

static struct file_operations demo_fops = {

owner: THIS_MODULE, /* demo_fops所属的设备模块*/

read: demo_read, /* 读设备操作*/

write: demo_write, /* 写设备操作*/

ioctl: demo_ioctl, /* 控制设备操作*/

mmap: demo_mmap, /* 内存重映射操作*/

open: demo_open, /* 打开设备操作*/

release: demo_release /* 释放设备操作*/

/* ... */

};

/* 设备模块信息*/

static struct pci_driver demo_pci_driver = {

name: demo_MODULE_NAME, /* 设备模块名称*/

id_table: demo_idsl, /* 能够驱动的设备列表*/

probe: demo_probe, /* 设备与驱动匹配时调用

remove: demo_remove /* 卸载设备模块*/

/* ... */

};

3. 初始化设备模块

在Linux系统下,想要完成对一个PCI设备的初始化,需要完成以下工作:

检查PCI总线是否被Linux内核支持;

检查设备是否插在总线插槽上,如果在的话则保存它所占用的插槽的位置等信息。

读出配置头中的信息提供给驱动程序使用。

当Linux内核启动并完成对所有PCI设备进行扫描、登录和分配资源等初始化操作的同时,会建立起系统中所有PCI设备的拓扑结构,此后当PCI驱动程序需要对设备进行初始化时,一般都会调用如下的代码:

static int __init demo_init_module (void)

{

/* 检查系统是否支持PCI总线*/

if (!pci_present())

return -ENODEV;

/* 注册硬件驱动程序*/

if (!pci_register_driver(&demo_pci_driver)) {

pci_unregister_driver(&demo_pci_driver);

return -ENODEV;

}

/* ... */

return 0;

}

驱动程序首先调用函数pci_present( )检查PCI总线是否已经被Linux内核支持,如果系统支持PCI总线结构,这个函数的返回值为0,如果驱动程序在调用这个函数时得到了一个非0的返回值,那么驱动程序就必须得中止自己的任务了。调用pci_register_driver( )函数来注册PCI设备的驱动程序,此时需要提供一个pci_driver结构,在该结构中给出的probe探测例程将负责完成对硬件的检测工作。

static int __init demo_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_id)

{

struct demo_card *card;

/* 启动PCI设备*/

if (pci_enable_device(pci_dev))

return -EIO;

/* 设备DMA标识*/

if (pci_set_dma_mask(pci_dev, DEMO_DMA_MASK)) {

return -ENODEV;

}

/* 在内核空间中动态申请内存*/

if ((card = kmalloc(sizeof(struct demo_card), GFP_KERNEL)) == NULL) {

printk(KERN_ERR "pci_demo: out of memory\n");

return -ENOMEM;

}

memset(card, 0, sizeof(*card));

/* 读取PCI配置信息*/

card->iobase = pci_resource_start (pci_dev, 1);

card->pci_dev = pci_dev;

card->pci_id = pci_id->device;

card->irq = pci_dev->irq;

card->next = devs;

card->magic = DEMO_CARD_MAGIC;

/* 设置成总线主DMA模式*/

pci_set_master(pci_dev);

/* 申请I/O资源*/

request_region(card->iobase, 64, card_names[pci_id->driver_data]);

return 0;

}

4. 打开设备模块

在这个模块里主要实现申请中断、检查读写模式以及申请对设备的控制权等。在申请控制权的时候,非阻塞方式遇忙返回,否则进程主动接受调度,进入睡眠状态,等待其它进程释放对设备的控制权。

static int demo_open(struct inode *inode, struct file *file)

{

/* 申请中断,注册中断处理程序*/

request_irq(card->irq, &demo_interrupt, SA_SHIRQ,

card_names[pci_id->driver_data], card)) {

/* 检查读写模式*/

if(file->f_mode & FMODE_READ) {

/* ... */

}

if(file->f_mode & FMODE_WRITE) {

/* ... */

}

/* 申请对设备的控制权*/

down(&card->open_sem);

while(card->open_mode & file->f_mode) {

if (file->f_flags & O_NONBLOCK) {

/* NONBLOCK模式,返回-EBUSY */

up(&card->open_sem);

return -EBUSY;

} else {

/* 等待调度,获得控制权*/

card->open_mode |= f_mode & (FMODE_READ | FMODE_WRITE);

up(&card->open_sem);

/* 设备打开计数增1 */

MOD_INC_USE_COUNT;

/* ... */

}

}

}

在对资源的访问方式上,除了有I/O指令以外,还有对外设I/O内存的访问。对这些内存的操作一方面可以通过把I/O内存重新映射后作为普通内存进行操作,另一方面也可以通过总线主DMA(Bus Master DMA)的方式让设备把数据通过DMA传送到系统内存中。

释放设备模块主要负责释放对设备的控制权,释放占用的内存和中断等,所做的事情正好与打开设备模块相反:

static int demo_release(struct inode *inode, struct file *file)

{

/* ... */

/* 释放对设备的控制权*/

card->open_mode &= (FMODE_READ | FMODE_WRITE);

/* 唤醒其它等待获取控制权的进程*/

wake_up(&card->open_wait);

up(&card->open_sem);

/* 释放中断*/

free_irq(card->irq, card);

/* 设备打开计数增1 */

MOD_DEC_USE_COUNT;

/* ... */

}

8. 卸载设备模块

卸载设备模块与初始化设备模块是相对应的,实现起来相对比较简单,主要是调用函数pci_unregister_driver( )从Linux内核中注销设备驱动程序:

static void __exit demo_cleanup_module (void)

{

pci_unregister_driver(&pci_driver);

}

虚拟声卡驱动程序VirtualAudioCable使用方法

一:安装软件 点击 选择是(Y) 选择I accept 选择Install 安装成功,点击“确定”按钮即完成安装。 二、软件的设置 点击桌面开始按钮所有程序---Virtual Audio Cable —Control panel 进入软件初始化 设置。 在Cables 中选择1(即首次设置一个虚拟通道),点击旁边的Set 按钮生成通道Cable1. 在参数设置区将Line 、Mic (可选可不选)、S/PDIF (可选可不选)三个选项后面的方框打钩,选中之后点击参数设置区内的设置按钮Set ,即完成了,对虚拟声卡通道1 的设置。 鼠标右键点击桌面右下角的喇叭------ 调整音频属性---- < 或者点击开始—控制面板--- 声音、 语音和音频设备--- 声音和音频设备>弹出: 选择语音 此时语音部分的设置为原系统默认的设备,保持不变。 选择音频: 改变声音播放、录音的选项内容:

如上图将声音播放、录音的默认设备全部改为Virtual Cable 1 。点击应用--- 确定即可。 三、打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风 里的声音) - 即“内录” 开始--- 所有程序—附件--- 娱乐--- 录音机 点击确定即可开始录音(注:此时可在电脑中打开相应的音频文件,开始录音) 此时音频波段显示有声音输入,但是电脑的耳机听不到正在播放的音频文件(属正常现象)。若想同时听到音频文件的内容点击桌面开始按钮所有程序---Virtual Audio Cable —Audio Repeater 。 修改为 点击Start 即可听到正在录制的音频文件。此时的录音即是通过虚拟声卡通道录制电脑里的声音的。 四、同时录电脑里播放的声音和麦克风收集的外部声音----- 即混录 <通过这种方法解决现有笔记本无“立体声混音”或“波形音”选项的问题> 在《三打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风里的声音)------------ 即“内录”》的同时,在打开一个irtual Audio Cable —Audio Repeater 窗口将其设置为: 即将外部麦克风收集的声音转移到虚拟声卡通道Cable1 中,同电脑里播放的声音一起被录音软件收录为音频文件。

编译hello设备驱动程序详细过程

编译hello world设备驱动程序详细过程 1、安装与你的开发板相同的内核版本的虚拟机,我的板子内核是2.6.8.1,虚拟机是2.6.9, 一般是虚拟机的内核只能比板子内核新,不能旧 #uanme –a [1](在任何目录下,输入此命令,查看虚拟机的内核版本,我的内核版本是2.6.9) 2、在虚拟机上设置共享目录,我的共享目录在linux下的/mnt/hgfs/share [2]share是自己命名的,我的物理机上,即Windows下的目录是G:/share, 3、在Windows下,把开发板的的交叉开发工具链[3],内核源码包[4],复制到物理机的共享目录下[5] 即Windows下的目录是G:/share, 4、#cp /mnt/hgfs/share/cross-3.3.2.tar.bz2 /usr/local/arm [6] 在Linux下,把交叉工具链,复制到/usr/local/arm目录下 5、#cd /usr/local/arm 6、#tar jxvf cross-3.3.2.tar.bz2 [7] 并在当前目录/usr/local/arm下解压它cross-2.95.3.tar.bz2和gec2410-linux-2.6.8.tar.bz2也是用同样的命令去解压 7、#export PATH=/usr/local/arm/3.3.2/bin:$PATH [8] 安装交叉工具链,在需要使用交叉编译时,只要在终端输入如下命令 #export PATH=/usr/local/arm/版本/bin:$PATH 即可,在需要更改不同版本的工具链时,重新启动一个终端,然后再一次输入上面的命令即可,使用哪个版本的交叉工具链,视你要编译的内核版本决定,编译2.4版本的内核,则用2.95.3版本的交叉工具链,而2.6版本内核的,则要用3.3.2版本的交叉工具链。 8、#cp gec2410-linux-2.6.8.tar.bz2 /root [9]把内核拷贝到/root目录下, 9、#cd /root 10、#tar gec2410-linux-2.6.8.tar.bz2 [10] 在/root解压开发板的内核源码压缩包gec2410-linux-2.6.8.tar.bz2,得到gec2410-linux-2.6.8.1文件夹 11、#cd /root/ gec2410-linux-2.6.8.1 12、#cp gec2410.cfg .config [11] gec2410.cfg文件是广嵌开发板提供的默认内核配置文件,在这里首先把内核配置成默认配置,然后在此基础上用make menuconfig进一步配置,但在这里,不进行进一步的配置,对于内核配置,还需要看更多的知识,在这里先存疑。 13、#make [12]在内核源代码的根目录gec2410-linux-2.6.8.1下用make命令编译内核,注意,先安装交叉工具链,再编译内核,因为这里编译的hello.ko驱动模块最终是下载到开发板上运行的,而不是在虚拟机的Linux系统运行的,如果是为了在虚拟机的Linux系统运行的,则不用安装交叉编译工具链arm-linux-gcc,而直接用gcc,用命令#arm-linux-gcc –v 可以查看当前已经安装的交叉编译工具链的版本。这里编译内核不是为了得到内核的映象文件zImage(虽然会得到内核的映象文件zImage),而是为了得到编译hello.o模块需要相关联,相依赖(depends on)的模块。 14、#cd /root 12、#mkdir hello [13]在/root目录下建立hello文件夹, 13、#cd hel 14 、#vi hello.c [12]编辑hello.c文件,内容是《Linux设备驱动程序》第三版22页的hello world程序。 15、#vi Makefile [13]在hello文件夹下编辑Makefile文件, 16、obj-m := module.o [14] 这是Makefile的内容,为obj-m := module.omodule.o视你编辑的.c文件而定,这里则要写成hello.o,写完后,保存退出。 17、cd /root/hello

双机容错系统方案

双机容错系统方案 1.前言 对现代企业来说,利用计算机系统来提供及时可靠的信息和服务是必不可少的,另一方面,计算机硬件和软件都不可避免地会发生故障,这些故障有可能给企业带来极大的损失,甚至整个服务的终止,网络的瘫痪。可见,对一些行业,如:金融(银行、信用合作社、证券公司)等,系统的容错性和不间断性尤其显得重要。因此,必须采取适当的措施来确保计算机系统的容错性和不间断性,以维护系统的高可用性和高安全性,提高企业形象,争取更多的客户,保证对客户的承诺,减少人工操作错误、达到系统可用性和可靠性为99.999%。 2.双机容错系统简介 根据用户提出的系统高可用性和高安全性的需求,推出基于Cluster集群技术的双机容错解决方案,包括用于对双服务器实时监控的Lifekeeper容错软件和作为数据存储设备的系列磁盘阵列柜。通过软硬件两部分的紧密配合,提供给客户一套具有单点故障容错能力,且性价比优越的用户应用系统运行平台。 3.Cluster集群技术 Cluster集群技术可如下定义:一组相互独立的服务器在网络中表现为单一的系统,并以单一系统的模式加以管理。此单一系统为客户工作站提供高可靠性的服务。 Cluster大多数模式下,集群中所有的计算机拥有一个共同的名称,集群内任一系统上运行的服务可被所有的网络客户所使用。Cluster必须可以协调管理各分离的组件的错误和失败,并可透明的向Cluster中加入组件。 一个Cluster包含多台(至少二台)拥有共享数据储存空间的服务器。任何一台服务器运行一个应用时,应用数据被存储在共享的数据空间内。每台服务器的操作系统和应用程序文件存储在其各自的本地储存空间上。 Cluster内各节点服务器通过一内部局域网相互通讯。当一台节点服务器发生故障时,这台服务器上所运行的应用程序将在另一节点服务器上被自动接管。当一个应用服务发生故障时,应用服务将被重新启动或被另一台服务器接管。当以上任一故障发生时,客户将能很快连接到新的应用服务上。 4.工作拓扑图

虚拟设备驱动程序的设计与实现

虚拟设备驱动程序的设计与实现 由于Windows对系统底层操作采取了屏蔽的策略,因而对用户而言,系统变得 更为安全,但这却给众多的硬件或者系统软件开发人员带来了不小的困难,因为只要应用中涉及到底层的操作,开发人员就不得不深入到Windows的内核去编写属 于系统级的虚拟设备驱动程序。Win 98与Win 95设备驱动程序的机理不尽相同,Win 98不仅支持与Windows NT 5.0兼容的WDM(Win32 Driver Mode)模式驱动程序 ,而且还支持与Win 95兼容的虚拟设备驱动程序VxD(Virtual Device Driver)。下面介绍了基于Windows 9x平台的虚拟环境、虚拟设备驱动程序VxD的基本原理和 设计方法,并结合开发工具VToolsD给出了一个为可视电话音频卡配套的虚拟设备 驱动程序VxD的设计实例。 1.Windows 9x的虚拟环境 Windows 9x作为一个完整的32位多任务操作系统,它不像Window 3.x那样依 赖于MS-DOS,但为了保证软件的兼容性,Windows 9x除了支持Win16应用程序和 Win32应用程序之外,还得支持MS-DOS应用程序的运行。Windows 9x是通过虚拟机 VM(Virtual Machine)环境来确保其兼容和多任务特性的。 所谓Windows虚拟机(通常简称为Windows VM)就是指执行应用程序的虚拟环 境,它包括MS-DOS VM和System VM两种虚拟机环境。在每一个MS-DOS VM中都只运 行一个MS-DOS进程,而System VM能为所有的Windows应用程序和动态链接库DLL(Dynamic Link Libraries)提供运行环境。每个虚拟机都有独立的地址空间、寄存器状态、堆栈、局部描述符表、中断表状态和执行优先权。虽然Win16、Win32应用程序都运行在System VM环境下,但Win16应用程序共享同一地址空间, 而Win32应用程序却有自己独立的地址空间。 在编写应用程序时,编程人员经常忽略虚拟环境和实环境之间的差异,一般认为虚拟环境也就是实环境。但是,在编写虚拟设备驱动程序VxD时却不能这样做 ,因为VxD的工作是向应用程序代码提供一个与硬件接口的环境,为每一个客户虚 拟机管理虚设备的状态,透明地仲裁多个应用程序,同时对底层硬件进行访问。这就是所谓虚拟化的概念。 VxD在虚拟机管理器VMM(Virtual Machine Manager)的监控下运行,而VMM 实 际上是一个特殊的VxD。VMM执行与系统资源有关的工作,提供虚拟机环境(能产

容错控制简介

1.2容错技术简介 容错控制及其系统组成 容错控制的发展及研究现状 1.2.1容错控制的概念和任务 容错概念最初来源于计算机系统设计领域,是指系统内部环节发生局部故障或失效情况下,计算机系统仍能继续正常运行的一种特性。后来人们逐渐把容错的概念引入到控制系统,这样人们虽然无法保证控制系统每个环节的绝对可靠,但是构成容错控制系统后,可以使系统中的各个故障因素对控制性能的影响被显著削弱,从而间接地提高了控制系统的可靠性。特别是控制系统的重要部件的可靠度未知时,容错技术更是在系统设计阶段保证系统可靠性的必要手段。 容错控制的指导思想是在基于一个控制系统迟早会发生故障的前提下,在设计控制系统初期时就将可能发生的故障对系统的稳定性及静态和动态性能影响考虑在内。最简单的情况,如果传感器或执行器发生故障,在故障后不改变控制律的情况下,如何来维持系统的稳定性就是控制器设计过程中值得注意的问题。在容错控制技术中,这种问题属于完整性控制的范畴。 在某种程度上,容错控制系统是指具有内部冗余(硬件冗余、解析冗余、功能冗余和参数冗余等)能力的控制系统,即在某些部件(执行器、传感器或元部件)发生故障的情况下,闭环系统仍然能保持稳定,并在原定性能指标或性能指标有所降低但可接受的条件下,安全地完成控制任务,并具有较理想的特性。动态系统的容错控制是伴随着基于解析冗余的故障诊断技术的发展而发展起来的。 1.2.2容错控制的现状研究 容错控制系统的基本结构为:传感器、故障检测与诊断子系统、执行器和控制器。其中,故障检测与诊断子系统能够对控制系统进行实时故障监测与辨识等;控制器则根据故障诊断信息作出相应的处理,实施新的容错控制策略,保证系统在故障状态下仍能获得良好的控制效果。在实际控制系统中,各个基本环节都有可能发生故障。 容错控制系统有多种分类方法,如按系统分为线性系统容错控制和非线性系统容错控制,确定性系统容错控制和随机系统容错控制等;按克服故障部件分类为执行器故障容错控制,传感器故障容错控制,控制器故障容错控制和部件故障容错控制等;按控制对象不同分为基于硬件冗余和解析冗余的容错控制分类。一般,为了全面反映容错控制系统的特性,常将上述各种分类方法组合运用。 1.硬件冗余方法 硬件冗余是指对系统的重要部件及易发生故障部件设置各种备份,当系统内某部件发生故障时,对故障部分进行隔离或自动更换,使系统正常工作不受故障元器件的影响,保证系统的容错性能。硬件冗余方法根据备份部件是否参与系统工作可分为静态硬件冗余和动态硬件冗余。 l)静态硬件冗余:并联多个相同的组件,当其中某几个发生故障时并不影响其它组件的正常工作。 2)动态硬件冗余:在系统中不接入备份组件,只有在原组件发生故障后,才把输入和输出端转接到备份组件上来,同时切断故障组件的输入和输出端,即运行模块的失效,备用模块代替运行模块工作。系统应该具有自动发现故障的能力与自动转接设备。 硬件冗余方法可以用于任何硬件环节失效的容错控制,建立起来的控制系统将具有较强

计算机数据库以及系统容错性处理

龙源期刊网 https://www.wendangku.net/doc/8812693823.html, 计算机数据库以及系统容错性处理 作者:洪雄 来源:《科教导刊·电子版》2018年第07期 摘要计算机在现在的生活中是非常普遍存在的事物,也是我们的生活工作所必需的,计算机是一个多种先进技术结合的产物,计算机中的很多应用对于其他领域来说,会有很大的借鉴意义。计算机的图形处理技术是一种很复杂的技术应用,在数据计算领域的应用,是此技术的一种有效利用,同时对于数据计算来说,也是一种有益的借鉴来源,二者在一定程度上,可以说是有效的结合使用,相互促进,相互提高。本文通过对计算机交互式的图形技术的分析,引出可视化技术在数据的挖掘中所起到的重要作用,进而阐述交互式技术在计算机的图形处理中的重要作用。 关键词计算机算法数据计算可视化 中图分类号:TP302 文献标识码:A 0引言 几年来,计算机的图形处理技术越来越频繁的被人们应用于其他的领域,也是现在这个科学技术非常发达的社会的一种形势所在。现代一种相对比较常见的数据的可视化技术,指的就是运用计算机的图形学和图像处理的技术,把数据转化为可以被识别的图像或者图形,进而可以在显示器的屏幕上显示出来,被看见的使用者所理解和接受,同时还要进行交互处理的技术。这样一种技术涉及的技术和领域比较广泛,计算机的图形学、图像处理技术、计算机设计、计算机视觉技术、人机交互技术等,多个领域的结合才是一种比较实用的技术。今年以来,随着网络科学技术和网上电子商务技术的发展,在以往科学计算可视化的基础之上,出现了信息可视化的概念,并且逐渐在吸引人们的眼球,成为科学技术领域研究的焦点问题。我们都知道,“可视化”就是使之可见,可以被看见,就是可视化的最基本的含义,那么,数据在挖掘过程中,很多活动都可以被认为是可视化,利用可视化的技术进行信息的传递、知识的发现等。 1计算机服务器系统容错系统的概述 我们所说的计算机故障,指的是由于计算机不见的物理实现、操作错误或者是设计错误等原因引起的计算机系统硬件或者是软件错误的状态。故障的诊断、检测和恢复技术主要是作为计算机容错技术的重要组成部分,如果计算机系统要进行故障恢复的操作,首先就要进行检测、诊断的技术来对故障所处的位置进行定位。作为恢复的前提,我们还应该在恢复技术的作用下使得计算机系统能够恢复到无故障时候的状态并且开始正常工作。当前运用的计算机容错技术最基本的方法是冗余技术,而硬件冗余、软件冗余、信息冗余以及时间冗余技术是作为冗余技术的四个主要组成部分。

《设备驱动程序开发技术》大作业

《设备驱动程序开发技术》 大作业 WDM驱动程序的开发流程和要点班级:计算机科学与技术1004

摘要 DWDM(Windows Driver Model)是Microsoft公司推出的一种符合Windows2k/XP下的内核模式驱动程序的分层体系结构的驱动程序模式。它源于 Windows NT的分层32位设备驱动程序模型,它支持更多的特性,如即插即用( PnP ,Plug and Play )、电源管理( PM ,Power Management )、Windows管理诊断( WMI ,Windows Management Instrumentation )和 NT 事件。它为Windows操作系统的设备驱动程序提供了统一的框架,在Windows平台上,WDM将成为主流的驱动模式。WDM是Windows98和Windows2000使用的新的驱动程序设计规范。使用WDM使得硬件驱动程序更加稳定,让操作系统对硬件更加有效地控制硬件。除了定义一个驱动程序与操作系统连接的标准接口以外,WDM也指明了驱动程序应该采用的更加模块化的设计。 关键词: WDM、驱动程序、操作系统

1 概述 WDM(Windows Driver Model)是Microsoft公司推出的一种符合Windows2k/XP下的内核模式驱动程序的分层体系结构的驱动程序模式。相对于以前的KDM、VXD来说,它的性能更高、系统之间移植更加方便。随着Microsoft的操作系统的不断升级,WDM已逐步取代了KDM、VXD,成为了Microsoft系统下驱动程序开发的主流。 WDM是通过一个128位的全局唯一标识符(GUID)实现驱动程序的识别。应用程序与WDM 驱动程序通信时,应用程序将每个用户请求形成I/O请求包(IRP)发送到驱动程序。驱动程序识别出IRP请求后指挥硬件执行相应操作。 2 WDM驱动模型 WDM模型为存在于Windows 98和Windows 2000操作系统中的设备驱动程序提供了一个参考框架。尽管对于最终用户来说这两个操作系统非常相似,但它们的内部工作却有很大不同。 Windows 2000概述 图1是以我的视点所看到的Windows 2000操作系统,该图着重了驱动程序开发者所关心的特征。软件要么执行在用户模式中,要么执行在内核模式中。当用户模式程序需要读取设备数据时,它就调用Win32 API函数,如ReadFile。Win32子系统模块(如KERNEL32.DLL)通过调用平台相关的系统服务接口实现该API,而平台相关的系统服务将调用内核模式支持例程。在ReadFile调用中,调用首先到达系统DLL(NTDLL.DLL)中的一个入口点,NtReadFile 函数。然后这个用户模式的NtReadFile函数接着调用系统服务接口,最后由系统服务接口调用内核模式中的服务例程,该例程同样名为NtReadFile。

虚拟块设备驱动程序设计与分析

如果只是为了应付考试,这个文档就太啰嗦了,不用看,不过还是可以帮助记忆,考试只会考其中加粗字体的几个函数中的一个,至于是哪个我不能断定,因此要记的还是比较多的,要是能理解就更好了,结合课本和下面的解释应该能大体上弄明白这个虚拟块设备驱动的 实现过程,毕竟设备驱动是内核的一部分,光看下面的解释也是还是很头晕的,不过坚持看下去还是有收获的,我也差不多花了半天时间,不过,要是打算……的话就可以直接跳过了。 #define MAJOR_NR 70 //我们创造的虚拟块设备的主设备号 #define DEVICE_NAME “bdemo”//我们创造的虚拟块设备的名字,当设备加载成功后可用lsmod命令查看到该设备模块名 #define blkdemo_devs 2 //虚拟块设备的个数 #define blkdemo_rahead 2 //读取块设备时预读的扇区个数 #define blkdemo_size 4 //每个虚拟块设备的大小,单位为KB #define blkdemo_blksize 1024 //设备每个数据块的大小,即block,单位为字节 #define blkdemo_hardsect 512 //设备每个扇区的大小,单位为字节 struct blkdemo_device { // 这里定义了我们将要创造的虚拟块设备的数据结构 int size; // 用来记录真实块设备的容量,即下面data指针所指向数据存储区的大小 int use_cnt; // 用来记录正在使用该块设备的程序的个数 int hardsect; // 用来保存该块设备每个扇区的大小,单位为字节,即设备的使用计数 u8 *data; // 该指针所指向的内存区域就是该块设备真正用来存储数据的区域,在该设备还未被加载函数初始化时,该指针为// 空,即系统还没有为该设备分配内存区域。 }; static int blkdemo_sizes[blkdemo_devs]; //用来保存我们创建的所有虚拟块设备的大小,单位为KB static int blkdemo_blksizes[blkdemo_devs]; //用来保存我们创建的所有虚拟块设备中每个数据块的大小,单位为字节static int blkdemo_hardsects[blkdemo_devs];//用来保存我们创建的所有虚拟块设备中每个扇区的大小,单位为字节 //上面的这三个数组将会在我们加载这些设备时被注册到内核的数据结构中(即让内核中与之相关的一些指针指向它们,让内核能够读取我们所创建的设备的一些重要信息 //对于一个新的设备,内核肯定不知道他为何物,要想让内核识别我们自己创造的设备,则必须将该设备的一些信息、使用这个设备的方//法等告诉内核,由于内核早已编译成型,至于如何去告诉内核就早已模式化。内核中有几个指针数组(书本page81)专门用来完成上面的部分任务: // blk_size[]; // blksize_size[]; // hardsect_size[]; // read_ahead[]; //这几个数组都为每一个主设备号留有一个位置,对于2.4的内核,主设备号和次设备号均用8位二进制来表示(即短整型的高八位和//低八位),因此这几个数组都包含有256个元素,每个元素都是与主设备号对应的一个指针,如果主设备号所对应的设备不存在,则该//指针置为空(NULL),其实其中很多指针都为空,因为一般电脑上都没有那么多不同类型的块设备,当然,对于我们所创造的这个块设//备而言,它与系统中所存在的其他块设备的类型都不同,要为其确定一个主设备号,这个没什么硬性的规定,只要找一个没被使用的主//设备号就可以了,这个程序中使用的是70(前面的MOJOR_NR宏)。上面我们定义了保存有虚拟块设备信息的数组,现在只要将他们的//首地址赋给这几个数组中下标70(主设备号)所对应的指针元素即可。这一过程是在后面的加载函数中完成的。 static int blksize = blkdemo_blksize; struct blkdemo_device blkdemo_dev[blkdemo_devs];//这里才真正创建了我们虚拟块设备对应的结构体变量(一个全局数组),//每个元素为对应一个虚拟块设备 虚拟块设备的打开函数(open()): int blkdemo_open(struct inode *inode, strcut file *filp) { //设备文件对应的节点(inode)结构中包含有对应的设备号 int num; num = DEVICE_NR(inode->i_rdev);//用DEVICE_NR宏可求出该节点所对应设备的次设备号,所以num即为次设备号if (!blkdemo_dev[num].use_cnt) { //如果该设备的使用计数为0,则说该设备没有被任何程序使用,当虚拟块设备没有被//任何程序使用时,内核先前为该设备所分配的存储区很可能已经被释放掉了,甚至对于可移动设备而言,有可能该设备都被拔掉了(当//然,我们的虚拟块设备是不可能的),因此,在打开该设备时要进行严格的检查,不然会导致设备打开出错而造成系统崩溃。 check_disk_change(inode->i_rdev);//首先检查该块设备是否发生了变化,比如已经被移除了(该设备不可能,所以//此处没有用if来判断,只是形式的调用了一下该函数。 if (!blkdemo_dev[num].data)//然后判断该设备的数据存储区域是否已经被释放掉了 return –ENOMEM; //如果是,则返回,告知系统该设备无法打开,-ENOMEM是一个内核中定义的宏,它代表的意思是//“error,no memory”。 }//如果上述情况均未发生,一切正常,则打开设备,对于这个虚拟的块设备,其实没有什么好打开的,不过还是意思一下:blkdemo_dev[num].use_cnt++; //将设备的使用计数加1,表示又多了个程序使用该设备。 MOD_INC_USE_COUNT; //并且将内核所管理的模块使用计数也加1,好让内核也知道多了一个程序使用该虚拟设备模块。模块使//用计数是内核管理模块时要用的,只有当一个设备的模块使用计数为0时才能卸载该模块,这个值也可以通过lsmod命令查看到return(0);//返回0,表示设备已成功打开 } 虚拟块设备的释放函数(release()): int blkdemo_release(struct inode *inode, struct file *filp) {//释放并不代表将此设备从内核中移除了,他是对调用它的程序而言的,只表示这个程序不再使用该设备了int num;

容错控制系统

容错控制系统培训 2011年8月

3.1 容错控制系统 3.1.1 容错控制概述 容错原是计算机系统设计技术中的一个概念,指当系统在遭受到内部环节的局部故障或失效后,仍然可以继续正常运行的特性。将此概念引入到控制系统中,产生了容错控制的概念。 容错技术是指系统对故障的容忍技术,也就是指处于工作状态的系统中一个或多个关键部分发生故障时,能自动检测与诊断,并能采取相应措施保证系统维持其规定功能或保持其功能在可接受的范围内的技术。如果在执行器、传感器、元部件或分系统发生故障时,闭环控制系统仍然是稳定的,仍具有完成基本功能的能力,并仍然具有较理想的动态特性,就称此闭环控制系统为容错控制系统。 3.1.2 容错控制分类 根据不同的产品和客户需求,容错控制系统分类方式有多种,重点介绍两种: ?按设计分类:被动容错控制、主动容错控制; ?按实现分类:硬件容错、功能容错和软件容错。 3.1.2.1按设计分类的容错控制 1 被动容错控制介绍 被动容错控制是设计适当固定结构的控制器,该控制器除了考虑正常工作状态的参数值以外,还要考虑在故障情况下的参数值。被动容错控制是在故障发生前和发生后使用同样的控制策略,不进行调节。被动容错控制包括:同时镇定,完整性控制,鲁棒性容错控制,即可靠控制等几种类型。 2 主动容错控制介绍 主动容错控制是在故障发生后需要重新调整控制器参数,也可能改变控制器结构。主动容错控制包括:控制器重构,基于自适应控制的主动容错控制,智能容错控制器设计的方法。 3.1.2.2按实现分类的容错控制 1 硬件容错技术 容错控制系统中通常采用的余度技术,主要涉及硬件方面,是指对计算机、传感器和执行机构进行硬件备份,如图3所示。在系统的一个或多个关键部件失效时,通过监控系统检测及监控隔离故障元件,并采用完全相同的备用元件来替代它们以维持系统的性能不变或略有降级(但在允许范

Linux设备驱动程序的概念、作用以及模块

Linux设备驱动程序的概念、作用以及模块 我们首先对linux系统整个框架要有个了解。Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地址空间也为0~4G。 Linux 内核将这4G字节的空间分为两部分,分别是用户空间(0~3G)和内核空间(3G~4G)。其中,用户空间存放的是应用程序,而内核空间存放的是内核,设备驱动和硬件。 为什么需要存在设备驱动呢?我们知道,内核是操作系统基本的部分,而操作系统是不能够直接控制硬件的,这样我们就需要设备驱动作为操作系统和硬件设备间的粘合剂,相当于一个中间人吧,负责上下两边的沟通。驱动负责将操作系统的请求传输,转化为特定物理设备控制器能够理解的命令。 这样我们就知道,驱动需要完成两大功能: 1、为linux内核提供调用接口。 2、控制硬件。因为寄存器是控制硬件的操作,所以驱动程序控制硬件,也就是要通过读写硬件寄存器达到控制硬件的目的。 内核是为应用程序服务的,其本质其实是函数的集合,内核要实现的功能我们可以分为两部门:基本功能和扩展功能。其中,基本功能包括进程管理,线程管理等等,而扩展功能,可以根据用户的需求自行添加。 下面我们就来探讨一下怎样向内核添加一项功能呢? 1、我们首先想到,肯定需要写一个功能函数,假如我们命名为fun.c,那么函数写好后,必须要和linux源码一起编译,生成zImage内核镜像文件。 2、重新编译内核。 这样就得到了新的内核,这种添加的方式我们称为静态添加。大家发现,每次修改一次fun.c,都要重新编译一次内核,灰常的麻烦,所以引进了内核模块机制,只需要加载或卸载模块,就可以动态的增加或者删除内核的功能,不用每次都重新编译,是不是很方便?那么接下来我们会想到,这个模块怎么就能和内核连接在一起呢?其实很简单,fun.c文件除了要实现功能呢,还需要包含和内核的接口,内核也提供了模块的接口,只要这两个接口一致,模块就可以融入内核,成为内核的一部分。Linux驱动程序都是以模块的形式存在的,所以我们称之为驱动模块。 所以我们总结出添加模块的步骤是: 1、写功能函数fun.c。 怎么样编写模块的源码文件,我们以一个Hello模块实例分析。 #include #include //①模块的头文件,在对应内核下 的include目录中{ … //②功能函数hello.c(同普通} 的.c文件) Static int __int hellomudule_init(void) //③模块初始化函数 { Printk(“Hello world!\n”); Return 0; }

(完整word版)系统容错和安全机制

网络系统的容错和安全设计 第一章网络系统的容错设计 一. 网络容错概述 采用用友网络财务软件NC(基金Web版)Web系统后,基金管理公司及托管行的所有数据都存放在数据库服务器中,服务器的宕机,会给企业带来巨大的损失;这就要求一旦生产用服务器产生任何形式的宕机或失效,网络上备用的服务器能够立即接管宕机的服务器使整个系统不至于崩溃,从而保证整个企业的业务连续运作。保证系统高可用性,应从以下几方面着手设计: 1、数据镜像 数据镜像是一种有效、高性能的高可用性解决方案,它不需要昂贵的RAID磁盘子系统,也无需考虑SCSI接口对缆线长度的限制。可扩展的磁盘镜像运行在两台相互独立又有备份逻辑的服务器之间。通过不断检测主系统磁盘或文件(源)的状态,而实时地将改动的信息镜像到目标机器的相应磁盘上或文件中。 为了保证数据的完整性,扩展镜像限制了用户对目标磁盘或文件的写操作。通过使用可扩展的磁盘镜像,源系统的任何数据更新将通过LANs和W ANs镜像到用户指定的目标系统上,当源系统发生数据丢失或硬盘损坏时在目标系统上将保留一份镜像数据。有些可扩展的磁盘镜像软件可以实现一对一、一对多、多对一及多对多的数据镜像而不需要任何附加的硬件设备。 2、故障切换 从系统确信不能收到来自主系统的”alive”心跳信号后,就开始启动从系统上的自动恢复功能,将主系统上的需要保护的资源自动转移到从系统上,并开始向客户提供服务。一个比较好的机制在于如果从系统感觉不到主系统的心跳后,试图通过其他途径做进一步地检测(例如检测其他客户机是否不能获得主系统的服务)。 故障切换的时间是指从系统自确信主系统“死掉”后,到完全接管主系统并向客户提供服务止所经历的时间,时间越短,热备份程度越高。当从服务器发生故障时,不应对主系统有任何影响。 3、失效切换 源要转移到从系统上去,这就不但要求系统中的核心数据能转移过来,还要求将其他资源转移过来。与客户关系比较密切的资源主要是:LAN局部网名,IP地址、应用程序、以及应用程序所依赖的数据。 4、自动恢复 要求在主服务器失效后,修复好后,IP地址、局部网名字、数据应用与服务应该方便地恢复到主服务器上

虚拟声卡驱动程序Virtual Audio Cable使用方法

一:安装软件 点击setup.exe 选择是(Y) 选择I accept 选择Install 安装成功,点击“确定”按钮即完成安装。

二、软件的设置 点击桌面开始按钮----所有程序---Virtual Audio Cable—Control panel进入软件初始化设置。 在Cables中选择1(即首次设置一个虚拟通道),点击旁边的Set按钮生成通道Cable1. 在参数设置区将Line、Mic(可选可不选)、S/PDIF(可选可不选)三个选项后面的方框打钩,选中之后点击参数设置区内的设置按钮Set,即完成了,对虚拟声卡通道1的设置。

鼠标右键点击桌面右下角的喇叭----调整音频属性----<或者点击开始—控制面板---声音、语音和音频设备---声音和音频设备>弹出: 选择语音 此时语音部分的设置为原系统默认的设备,保持不变。

选择音频: 改变声音播放、录音的选项内容: 如上图将声音播放、录音的默认设备全部改为Virtual Cable 1。点击应用---确定即可。

三、打开录音机录音---录制电脑里播放出来的音频(不包含麦克风里的声音)----即“内录” 开始---所有程序—附件---娱乐---录音机 点击确定即可开始录音(注:此时可在电脑中打开相应的音频文件,开始录音)

此时音频波段显示有声音输入,但是电脑的耳机听不到正在播放的音频文件(属正常现象)。若想同时听到音频文件的内容点击桌面开始按钮----所有程序---Virtual Audio Cable—Audio Repeater。 修改为 点击Start即可听到正在录制的音频文件。 此时的录音即是通过虚拟声卡通道录制电脑里的声音的。

驱动程序的句柄

设备驱动程序通知应用程序的几种方法 1 异步过程调用(APC) Win32应用程序使用CreateFile()函数动态加载设备驱动程序,然后定义一个回调函数backFunc(),并且将回调函数的地址&backFunc()作为参数,通过DeviceIoControl()传送给设备驱动程序。设备驱动程序获得回调函数的地址后,将它保存在一个全局变量(如callback)中,同时调用Get_Cur_Thread_Handle()函数获取它的应用程序线程的句柄,并且将该句柄保存在一个全局变量(如appthread)中。当条件成熟时,设备驱动程序调用_VWIN32_QueueUserApc()函数,向Win32应用程序发送消息。这个函数带有三个参数:第一个参数为回调函数的地址(已经注册);第二个参数为传递给回调函数的消息;第三个参数为调用者的线程句柄(已经注册)。Win32应用程序收到消息后,自动调用回调函数(实际是由设备驱动程序调用)。回调函数的输入参数是由设备驱动程序填入的,回调函数在这里主要是对消息进行处理。 2 事件方式(VxD) 首先,Win32应用程序创建一个事件的句柄,称其为Ring3句柄。由于虚拟设备驱动程序使用事件的Ring0句柄,因此,需要创建Ring0句柄。用LoadLibrary()函数加载未公开的动态链接库Kernel32.dll,获得动态链接库的句柄。然后,调用GetProcAddress(), 找到函数OpenVxDHandle()在动态链接库中的位置。接着,用OpenVxDHandle()函数将Ring3事件句柄转化为Ring0事件句柄。Win32应用程序用CreateFile()函数加载设备驱动程序。如果加载成功,则调用DeviceIoControl()函数将Ring0事件句柄传给VxD;同时,创建一个辅助线程等待信号变成有信号状态,本身则可去干其它的事情。当条件成熟时,VxD置Ring0事件为有信号状态(调用_VWIN32_SetWin32Event()函数),这马上触发对应的Ring3事件为有信号状态。一旦Ring3事件句柄为有信号状态,Win32应用程序的辅助线程就对这个消息进行相应的处理。 3 消息方式 Win32应用程序调用CreateFile()函数动态加载虚拟设备驱动程序。加载成功后,通过调用DeviceIoControl()函数将窗体句柄传送给VxD,VxD利用这个句柄向窗体发消息。当条件满足时,VxD调用SHELL_PostMessage()函数向Win32应用程序发送消息。要让该函数使用成功,必须用#define来自定义一个消息,并且也要照样在应用程序中定义它;还要在消息循环中使用ON_MESSAGE()来定义消息对应的消息处理函数,以便消息产生时,能够调用消息处理函数。SHELL_PostMessage()函数的第一个参数为Win32窗体句柄,第二个参数为消息ID号,第三、四个参数为发送给消息处理函数的参数,第五、六个参数为回调函数和传给它的参数。Win32应用程序收到消息后,对消息进行处理。

字符设备驱动程序课程设计报告

中南大学 字符设备驱动程序 课程设计报告 姓名:王学彬 专业班级:信安1002班 学号:0909103108 课程:操作系统安全课程设计 指导老师:张士庚 一、课程设计目的 1.了解Linux字符设备驱动程序的结构; 2.掌握Linux字符设备驱动程序常用结构体和操作函数的使用方法; 3.初步掌握Linux字符设备驱动程序的编写方法及过程; 4.掌握Linux字符设备驱动程序的加载方法及测试方法。 二、课程设计内容 5.设计Windows XP或者Linux操作系统下的设备驱动程序; 6.掌握虚拟字符设备的设计方法和测试方法; 7.编写测试应用程序,测试对该设备的读写等操作。

三、需求分析 3.1驱动程序介绍 驱动程序负责将应用程序如读、写等操作正确无误的传递给相关的硬件,并使硬件能够做出正确反应的代码。驱动程序像一个黑盒子,它隐藏了硬件的工作细节,应用程序只需要通过一组标准化的接口实现对硬件的操作。 3.2 Linux设备驱动程序分类 Linux设备驱动程序在Linux的内核源代码中占有很大的比例,源代码的长度日益增加,主要是驱动程序的增加。虽然Linux内核的不断升级,但驱动程序的结构还是相对稳定。 Linux系统的设备分为字符设备(char device),块设备(block device)和网络设备(network device)三种。字符设备是指在存取时没有缓存的设备,而块设备的读写都有缓存来支持,并且块设备必须能够随机存取(random access)。典型的字符设备包括鼠标,键盘,串行口等。块设备主要包括硬盘软盘设备,CD-ROM等。 网络设备在Linux里做专门的处理。Linux的网络系统主要是基于BSD unix的socket 机制。在系统和驱动程序之间定义有专门的数据结构(sk_buff)进行数据传递。系统有支持对发送数据和接收数据的缓存,提供流量控制机制,提供对多协议的支持。 3.3驱动程序的结构 驱动程序的结构如图3.1所示,应用程序经过系统调用,进入核心层,内核要控制硬件需要通过驱动程序实现,驱动程序相当于内核与硬件之间的“系统调用”。

linux驱动编写(虚拟字符设备编写)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ linux驱动编写(虚拟字符设备编写) linux 驱动编写(虚拟字符设备编写)昨天我们说了一些简单模块编写方法,但是终归没有涉及到设备的编写内容,今天我们就可以了解一下相关方面的内容,并且用一个实例来说明在 linux 上面设备是如何编写的。 虽然我不是专门做 linux 驱动的,却也经常收到一些朋友们的来信。 在信件中,很多做驱动的朋友对自己的工作不是很满意,认为自己的工作就是把代码拷贝来拷贝去,或者说是改来改去,没有什么技术含量。 有这种想法的朋友不在少数,我想这主要还是因为他们对自己的工作缺少了解导致。 如果有可能,我们可以问问自己这样几个问题: (1 )我真的搞懂设备的开发驱动流程了吗?我是否可以从0开始,编写一个独立的驱动代码呢?(2)我真的了解设备的初始化、关闭、运行的流程吗?(3)当前的设备驱动流程是否合理,有没有可以改进的地方?(4)对于内核开发中涉及的 api 调用,我自己是否真正了解、是否明白它们在使用上有什么区别?(5)如果我要驱动的设备只是在一个前后台系统中运行,在没有框架帮助的情况下,我是否有信心把它启动和运行起来?当然,上面的内容只是我个人的想法, 1 / 6

也不一定都正确。 但是,知其然,更要知其所以然,熟悉了当前开发流程的优缺点才能真正掌握和了解驱动开发的本质。 这听上去有些玄乎,其实也很简单,就是要有一种刨根问底、不断改进的精神,这样才能做好自己的工作。 因为我们是在 pc linux 上学习驱动的,因此暂时没有真实的外接设备可以使用,但是这丝毫不影响我们学习的热情。 通过定时器、进程,我们可以仿真出真实设备的各种需求,所以对于系统来说,它是无所谓真设备、假设备的,基本的处理流程对它来说都是一样的。 只要大家一步一步做下去,肯定可以了解 linux 驱动设备的开发工程的。 下面,为了说明问题,我们可以编写一段简单的 char 设备驱动代码,文件名为 char.c, \n, m

基于Windows操作系统PCI设备驱动程序通用设计方法

08 2009.2011.18ARTIFICIAL INTELLIGENCE AND IDENTIFICATION TECHNIQUES 人工智能及识别技术 在设计和使用PCI 设备时,经常要在计算机的软件中访问和控制硬件设备,但Windows 操作系统(包括Windows95/98、Windows NT 、Windows 2000/XP 等为了保证系统的安全性、稳定性和可移植性,对应用程序访问硬件资源加以限制,这就要求开发设备驱动程序以实现计算机软件对PCI 设备的访问。 在Windows 系统中,驱动程序被分为两大类:用户模式驱动程序和核心模式驱动程序。核心模式驱动程序又分为4种:文件系统驱动、中间级驱动、微驱动以及设备驱动。其中设备驱动程序是指管理某个外围设备的一段代码,其通过硬件抽象层( HAL )与硬件接口。设备驱动程作为操作系统的一部分存在。通过设备驱动程序,多个进程可以同时使用这些资源,从而可以实现多进程并行运行。为了简化问题,下面只讨论硬件设备的驱动程序。以在实际工作中编写的PCI9052设备驱动程序为例,探讨Windows 2000/XP 下PCI 设备的驱动程序设计方案。 1开发工具的选择 开发设备驱动采用的主要开发工具是微软为设备开发者 提供的软件包Device Driver Kit (DDK)。这个软件包包括有关设备开发的文档、编译需要的头文件和库文件、调试工具和程序范例。在DDK 中还定义了一些设备驱动可以调用的系统底层服务,像DMA 服务、中断服务、内存管理服务、可安装文件系统服务等等。这些都是编写设备驱动所必须的。驱动程序的编译环境选择的是微软公司的Visual C++6.0集成开发环境。调试工具则使用Compuware 公司出品的softICE 。 2设备硬件分析 在进行驱动程序开发之前,首先要了解所欲控制的硬件 设备,要详细了解硬件设备的特性。硬件设备的特性会对驱动程序设计产生重大的影响。以PCI9052设备为例,图1是一个典型的PCI9052应用,需要了解的最主要的硬件特性包括: 2.1设备的总线结构 设备采用什么总线结构非常关键,因为不同的总线类型(如ISA 和PCI )在许多硬件工作机制上是不同的,所以驱动程序设计也不同。PCI9052是一种PCI 总线设备,提供板卡功能模块与主机PCI 总线接口功能。2.2寄存器 要了解设置的控制寄存器、数据寄存器和状态寄存器,以及这些寄存器工作的特性。PCI9052包括两部分的寄存器,一部分是9052接口芯片自身的配置寄存器,另一部分是通过映射的板卡功能模块的配置寄存器。2.3中断行为 要了解设备产生中断的条件和使用中断的数量,以及中断的处理方式。PCI9052提供了两路本地中断响应,均可以由PCI9052配置寄存器编程是边缘触发或电平触发。2.4数据传输机制 最常见的数据传输机制是通过I/O 端口(port ),也就是通过CPU 的IN/OUT 指令进行数据读写。PC 的另一种重要的传输机制是DMA ,但PCI 规范不包括从属DMA 的说明。2.5设备内存 基于Windows 操作系统PCI 设备驱动程序通用设计方法 王维兴,沈晶 (中国船舶重工集团江苏自动化研究所,江苏连云港222006) 摘要:本文结合开发经验,分析了PCI9052设备驱动开发过程,讨论了PCI 设备驱动程序设计与实现时,面临的主要问题及常用解决方法,并介绍一种封装设备驱动的方法。关键词:驱动程序;PCI ;内存映射;中断处理;封装 PCI Device Driver for Universal Design Method Based on Windows OS WANG Weixing ,SHEN Jing (Jiangsu Automation Research Insititute ,Jiangsu Lianyungang 222006) Abstract :This paper analyzed the development process of PCI9052device driver,combined with their own development ex - perience,The paper discussed the PCI device driver design and implementation of the main problems faced by and common solutionsmethod,and introduces a method of packaging the device driver.Key words :Driver ;PCI ;Memory map ;Interrupt process ;Packaging 收稿日期:2011-07-10 图1典型的PCI9052应用 PCI 总线 PCI9052 数据总线地址总线 LRYi#(外设准备完成) RD#(读控制)WR#(写控制) 板卡功能模块 109

相关文档
相关文档 最新文档