文档库 最新最全的文档下载
当前位置:文档库 › MSTN基因的研究进展及其应用

MSTN基因的研究进展及其应用

MSTN基因的研究进展及其应用
MSTN基因的研究进展及其应用

Gas6系统研究进展

通信作者:吴俊 Email:wujunpostbox@https://www.wendangku.net/doc/8813682550.html, Gas6(growth arrest specific gene 6)是人类发现的一类新的生长因子,它作用于细胞受体,它的受体属于受体酪氨酸激酶家族,它们包括Sky (Tyro3)、Axl 、Mer ,也统称TAMreceptor (Tyro3,Axl ,Mer )。随着研究的深入,人们发现,Gas6系统具有广泛的生物学作用。1 Gas6及其受体结构,细胞表达情况(图1) Gas6属维生素K 依赖的蛋白质,广泛表达于各类细胞。它和protein S 具有42%同源性[1]。Axl 普遍表达于各类细胞,Tyro3主要表达于中枢神经系统,而Mer 在单核转化的巨噬细胞较丰富。Axl 、Mer 、Tyro3可以在金属蛋白酶作用下切割,成为可溶性受体(soluble Axl ,sAxl ;soluble Mer ,sMer ;soluble T yro3,sT yro3),血浆中可检测到游离受体。2 Gas6与细胞凋亡 Gas6是一种细胞因子,与细胞生长相关。 Gas6系统研究进展 吴俊(北京大学人民医院 检验科,北京 100037) Gas6具有抗血管内皮细胞、平滑肌细胞凋亡的作用,通过Gas6-Axl-PI3K-Akt 起抗凋亡作用。它可介导凋亡细胞吞噬。目前已知,Gas6对于凋亡细胞的吞噬主要是通过受体Mer 来实现的[2],Mer 表达于巨噬细胞和树突状细胞[2],凋亡细胞表达磷脂酰丝氨酸,Gas6或protein S 通过维生素K 依赖的Gla domain 结合凋亡细胞表面磷脂酰丝氨酸[3],通过吞噬细胞表面的Mer 受体,介导吞噬作用。Gas6调节巨噬细胞的成熟、转移[4],促进内皮细胞生长并抗凋亡[5]。Mer 受体缺陷导致视网膜色素上皮细胞清除障碍[6,7],可导致色素性视网膜炎甚至失明。精子细胞的成熟和凋亡也需要通过Gas6系统的调控[8]。 凋亡细胞的稳定清除,避免了进一步的坏死而引发的进一步炎性反应和自身免疫的发生。而可溶性的受体sMer 等可以与细胞表面受体竞争配体,因而起到抑制凋亡细胞清除的作用[9]。Mer 受体对于凋亡细胞诱导的T 细胞耐受有促进作用[10],调节免疫耐受。 3 Gas6在炎症和自身免疫中的作用 Gas6与多种炎症相关,包括感染性炎症、血栓性炎症、自身免疫性炎症等。Gas6促进炎症状态下细胞间相互作用[11],促进炎性反应,扩大血栓形成,促进白细胞穿出[12]。Gas6与C-反应蛋白(CRP )相独立,是炎症相关独立危险因素。败血症休克患者Gas6浓度升高[13]。Ekman C 等[14]证实Gas6/Axl 在血栓性炎症严重肢端缺血患者体内升高,且与疾病预后相关。急性胰腺炎患者Gas6,protein S 升高[15]。对于多重硬化(multiple sclerosis ,MS )的患者,增加的可溶性受体Axl ,Mer 和金属蛋白酶ADAM17,ADAM10 正相关,与 图1 Gas6,protein S及其作用的受体结构简图 酪氨酸激酶 抗凋亡(神经保护)生存,抗凋亡增生 迂移 黏附 细胞吞噬 抗凋亡 淋巴细胞增生

生物芯片研究进展分子生物学论文

生物芯片研究进展 摘要 生物芯片是切采用生物技术制备或应用于生物技术的微处理器是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文主要阐述了生物芯片技术种类和应用方面的近期研究进展。 关键词 生物芯片,疾病诊断,研究运用,基因表达 基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。 一、光引导原位合成技术生产寡聚核苷酸微阵列 开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。 原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

基因芯片发展史

基因芯片的制备及应用摘要基因芯片技术是90年代中期以来快速发展起来的分子生物学高新技术是各学科交叉综合的崭新科学。其原理是采用光导原位合成或显微印刷等方法将大量DNA探针片段有序地固化予支持物的表面然后与已标记的生物样品中DNA分子杂交再对杂交信号进行检测分析就可得出该样品的遗传信息。基因芯片技术目前国内外都取得了较大的进展该技术可用于DNA测序基因表达及基因组图的研究基因诊断新基因的发现药物筛选给药个性化等等所以为二十一世纪生物医药铺平道路将为整个人类社会带来深刻广泛的变革促进人类早日进入生物信息时代。关键词基因芯片微阵列基因诊断药物筛选一、基因芯片的制备基本过程1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物并作相应处理然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针或者通过液相化学合成寡核苷酸链探针或PCR技术扩增基因序列再纯化、定量分析由阵列复制器或阵列机及电脑控制的机器人准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上再由紫外线交联固定后即得到DNA微阵列或芯片。2 样品DNA或mRNA的准备。从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统好于传统PCR 技术他们在靶DNA上设计一对双向引物将其排列在丙烯酰胺薄膜上这种方法无交叉污染且省去液相处理的繁锁Lynx Therapeutics公司提出另一个革新的方法即大规模平行固相克隆这个方法可以对一个样品中数以万计的DNA片段同时进行克隆且不必分离和单独处理每个克隆使样品扩增更为有效快速。在PCR扩增过程中必须同时进行样品标记标记方法有荧光标记法、生物素标记法、同位素标记法等。3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测杂交的严格性较低、低温、时间长、盐浓度高若用于突变检测则杂交条件相反。芯片分子杂交的特点是探针固化样品荧光标记一次可以对大量生物样品进行检测分析杂交过程只要30min。美国Nangon公司采用控制电场的方式使分子杂交速度缩到1min甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸为探针效果更好。4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光严格配对的杂交分子其热力学稳定性较高荧光强不完全杂交的双键分子热力学稳定性低荧光信号弱不到前者的1/351/52不杂交的无荧光。不同位点信号被激光共焦显微镜或落射荧光显微镜等检测到由计算机软件处理分析得到有关基因图谱。目前如质谱法、化学发光法、光导纤维法等更灵敏、快速有取代荧光法的趋势。二、基因芯片的应用 1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列准确率达99。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1 基因序列差异结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2到83.5之间示了二者在进化上的高度相似。2基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列其中14个为完全序列31个为EST检测该植物的根、叶组织内这些基因的表达水平用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交经激光共聚焦显微扫描发现该植物根和叶组织中存在26个基因的表达差异而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena 等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列来检测体外培养的T细胞对热休克反应后不同基因表达的差异发现有5个基因在处理后存在非常明显的高表达11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。 3 基因诊断从正常人的基因组中分离出DNA 与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可

生物芯片技术研究进展

生物芯片技术研究进展 张智梁 摘要:随着DNA测序技术的发展和几种同时监测大量基因表达的新技术出现,人类基因组DNA序列分析可能很快完成,并由此产生了生物信息学,而DNA芯片技术应运而生。生物芯片主要是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,是近些年来发展迅速的一项高新技术。生物芯片主要包括基因芯片、蛋白质芯片、组织芯片等。 关键词:生物芯片;研究进展;应用 生物芯片是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,其实质就是在面积不大的基片(玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)表面上有序地点阵排列一系列已知的识别分子,在一定条件下,使之与被测物质(样品)结合或反应,再以一定的方法(同位素法、化学荧光法、化学发光法、酶标法等)进行显示和分析,最后得出被测物质的化学分子结构等信息。因常用玻片/硅片等材料作为固相支持物,且制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。这项技术是由美国旧金山以南的的一个新兴生物公司首先发展起来的。S.P.AForder及其同事于90年代初发明了一种利用光刻技术在固相支持物上光导合成多肽的方法,并在此基础上于l993年设计了一种寡核苷酸生物芯片,直至l996年制造出世界上第一块商业化的DNA芯片。在此期间国际上掀起了一片DNA芯片设计的热潮,出现了多种类型的DNA芯片技术。DNA芯片在产生的短短几年时间内技术不断,现已经显现出在基因诊断、基因表达分析和新基因的发现、蛋白组学方面的应用、基因组文库作图等生物医学领域中的应用价值。 l、生物芯片的分类 目前常见的生物芯片分为3类:第1类为微阵列芯片,包括基因芯片、蛋白芯片、细胞芯片和组织芯片;第2类为微流控芯片(属于主动式芯片),包括各类样品制备芯片、聚合酶链反应(PCR)芯片、毛细管电泳芯片和色谱芯片等;第3类为以生物芯片为基础的集成化分析系统(也叫“芯片实验室”,是生物芯片技术的最高境界)。“芯片实验室”可以完成如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。 2、生物芯片的应用 2.1基因测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速,具有十分诱人的前景。芯片技术能辨别单核苷酸多态性(SNPs),当基因组序列中的单个核苷酸发生突变,就会引起基因组DNA序列变异。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCAl基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性为83.5%~98.2%,提示了二者在进化上的高度相似性。Check 等通过运用DNA微集阵列分析研究与早期心血管疾病相关的候选基冈一丁SP基冈家族,结果发现TSP-1和TSP-4基因错义变异与早期冠状动脉疾病相关,它们在m液凝固和动脉修复中起重要作用,而丁SP一2基冈非编码区的突变却在心脏病的发生过程有一定的保护作用。在卵巢癌发展过程中,基因TP53起到临界

CHO细胞表达系统研究进展

CHO细胞表达系统研究进展 影响外源基因在哺乳动物细胞中表达水平的因素很多,层次也很广泛,涉及复制、转录和转录后、翻译和翻译后等各级水平,其中mRNA的转录是真核基因表达谓节的基本控制点,它的翻译对表达水平也有一定作用。研究表明,所有提高转录水平的策略均与蛋白质编码序列无关,主要是通过载体构建基因转染方法和选择不同标记来调控。而提高翻译水平则主要是通过增强与核糖体结合能力和改造编码基因的结构来实现。 转录水平的调控可以概括为顺式作用元件(cis acting element)与反式作用因子(trans-acting factor)的相互作用。它们分别由表达载体和宿主细胞提供。因此,表达载体的元件组成及结构是ClIO细胞高效表达外源基因的关键因素之一。借助真核基因表达调控的理论,可以将较强的顺式作用元件集中到一个载体中,使其方便而高效地用于外源基因的表达。目前在这一理论指导下,已经构建了许多来源于细菌质粒的表达载体,它们包含着适当的顺式作用元件和选择标记。顺式作用元件主要有启动子一增强子元件、转录剪切和Poly A信号等。 1、启动子 启动于是影响外源基因表达效率的关键因素因为细菌的主要启动子和增强子在动物细胞中不起作用,所以这些调控元件大多从启动效率高而且生物背景清楚的病毒基因组中分离。各种启动子效率可用报告基因在细胞中测定。SV40、AdMLP、LTR和CMV启动子在CHO细胞中效果良好。刘文军等比较了SV40、L TR和CMV在ClIO细胞中的表达活性,认为三种启动子的转录活性依次为CMV启动子>SV40启动子> LTR启动子,前者分别是后两者的l0倍和30倍左右。 来源于噬菌体的一些启动子,如17启动子也可用于动物细胞。17启动子能被T7RNA聚合酶特异识别,依此建立起来的偶联系统具有常规表达系统不能实现的高效表达特性。除了这些常用的启动子之外,还有多种强的启动子被用于CHO细胞表达载体中。如肽链延长因子基因的启动子,金属硫蛋白(MT)基因的启动子等。在启动子周围其它核苷酸序列对其转录活性也有影响。改变CMV和AdMLP之后EPO基因的前

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.wendangku.net/doc/8813682550.html,/geo/)和ArryExpress (http:// ;https://www.wendangku.net/doc/8813682550.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

乳酸杆菌基因表达系统的研究进展

乳酸杆菌基因表达系统的研究进展 徐义刚1,2,崔丽春1 (1.东北林业大学,黑龙江哈尔滨150040; 2.东北农业大学动物医学院,黑龙江哈尔滨150030) 摘要乳酸杆菌是人及动物肠道中重要的益生菌,被公认为安全级(generall y recognized as safe,GRA S)微生物。乳酸杆菌表达系统是近几年发展起来的一种表达系统,随着乳酸杆菌分子生物学的发展、各类表达调控元件的分离,相继发展了乳酸杆菌的克隆载体、表达载体和整合载体。乳酸杆菌具有免疫佐剂、吸附黏膜、抗胆汁酸能力,以乳酸杆菌为载体,作为外源基因的传递和表达系统,研制口服疫苗,刺激黏膜免疫系统产生有效的免疫应答,具有重要开发前景。 关键词乳酸杆菌;外源基因;表达系统 中图分类号Q939.11+7文献标识码A文章编号1005-7021(2007)03-0087-05 Progress on G ene E xpressi on Syste m of Lact obacill us XU Y-i gang1,2,C U I L-i chun1 (1.N ort h e a stF orest ry Univ.H arbin150040;2.C oll.of Veteri nary M e d.N ort h e a st Agric.Un i v.H arbi n150030) A bstrac t Lactobacill us is a k i nd o f i m portant prob i o ti c i n gastro-i ntesti nal tracts o f hu m an and most an i m a l s,and t hey are conside red to be safe bacter i a w it h a GRA S(generall y regarded as safe)status.T he express i on syste m s o f Lactobacillus is a k i nd of expression sy stem tha t have been deve l oped i n recent yea rs,and as t he deve l op m en t of mo-lecu l ar b i o l ogy o f Lactobacillus,and the sepa ration o f var i ous expressi on regu l a t o ry ele m ents,t he c l on i ng vector,the expressi on vector,and the i ntegrati on v ector have been deve loped one a fter ano t https://www.wendangku.net/doc/8813682550.html,ctobacillus possesses many properties such as i m mune ad j uvant,adsorpti on mucosa,ant-i b ile ac i d capab ili ty;take Lactobacillus as a vector trans-fero r and expressi on syste m s o f exogenous gene to study ora l vacc i ne,sti m u l ate mucosa i m m une syste m to produce e-f fecti ve i m mune responses,a ll o f these possess i m portant deve l op m ent prospect. K eywords Lact obacillus;exogenous gene;expressi on syste m 乳酸菌(Lactic ac i d bacteria,LAB)是人及动物肠道中极为重要的益生菌群之一,该菌为兼性厌氧的革兰氏阳性菌,是乳品工业发酵的重要菌类,是在食品、医药工程领域具有重要应用前景的食品级微生物,包括乳酸球菌、乳酸杆菌、双歧杆菌等十几个属。20世纪80年代,人们开始致力于乳酸菌生物学性质和分子机制的研究,乳酸杆菌在农业、食品领域所具有的重大经济意义及对人体和动物健康的重要性,越来越引起人们的关注。随着乳酸杆菌分子生物学的发展和电转基因技术的建立,以及各类表达调控元件的分离和克隆,已经建立和发展了一系列乳酸杆菌基因表达载体和传递系统,为探索其新的应用潜力提供了基础,其中利用乳酸杆菌作为抗原传递载体进行粘膜疫苗免疫的研究,是该领域研究的前沿和热点。本文主要对乳酸杆菌表达系统方面的进展作一综述。 1乳酸杆菌作为外源基因表达宿主菌的优势 乳酸杆菌作为主要的益生菌广泛应用于食品及饲料加工业,在功能食品、医疗保健、微生态制剂等领域的应用具有诱人的前景[1]。目前,乳酸杆菌制剂已被应用于肠道的微生态治疗[2]。乳酸 收稿日期:2006-09-19 作者简介:徐义刚男,博士。从事病原微生物与免疫学研究。87 微生物学杂志2007年5月第27卷3期J OURNAL OF M ICROBIOLOGY M ay2007V o.l27N o.3

汽车热管理系统及其研究进展

136 北京,2009年10月 A P C 联合学术年会论文集 基金项目:国家“八六三”计划节能与新能源汽车重大专项项目(2008AA11A121) 作者简介:邓义斌,男,1979.10,广西壮族自治区鹿寨县人,华中科技大学博士生,主要研究方向为热流控制与管理;dengyb_whut@https://www.wendangku.net/doc/8813682550.html, 汽车热管理系统及其研究进展 邓义斌1,2 ,黄荣华1 ,王兆文1 ,程 伟3 (1. 华中科技大学能源与动力工程学院 湖北武汉 430074,2.武汉理工大学能源与动力工程学院 湖北武汉 430063,3.东风商用车研发中心 湖北武汉 430056 ) 摘 要:汽车热管理技术是汽车提高经济性和动力性、保证关键部件安全运行和车辆行驶安全的重要途径。介绍了汽车热管理的内涵和研究内容;报告了汽车热管理的发展现状与相应的仿真和试验研究方法;阐述了进行汽车热管理集成研究的重要性;指出只有深入研究系统的流动与传热机理,综合利用废热,从整车热管理集成的高度来进行优化匹配设计,才能发挥汽车热管理系统的最大优势。 关键词:汽车 热管理 节能 传热 发动机 中图法分类号:TK407 文献标识码:A Development in the Study of Vehicle Thermal Management System Deng Yibin 1,2 Huang Ronghua 1 Wang Zhaowen 1 Cheng Wei 31. School of Energy & Power Engineering, Huazhong University of Science & Technology, Wuhan 430070, China 2. School of Energy & Power Engineering, Wuhan University of Technology, Wuhan 430063, China 3. Dongfeng Motor Corporation, Wuhan 430056, China Abstract: Thermal management has become a significant approach to improve the economy and dynamic of vehicle, to ensure the safety of vital assembly and automobile driving. This paper, firstly, introduced concepts and the main research contents of vehicle thermal management, then summarized the development of vehicle thermal management and simulation and experimental research methods corresponding to it. Finally, it pointed out that by the investigation on thermal management system integration with vehicle body, the actual performance of vehicle can be advanced. Key words: vehicle; thermal manageme nt; energy conservation; energy conservation; engine 1 汽车热管理的内涵 运用热力学原理提高整个系统或装置的能量利 用率,减少废热损失、提高系统的稳定性和可靠性的相关技术,从整体的角度来管理热量称为热管理。热管理是从被动地控制温度到主动地管理能量的思想转变,是提高热力系统设计整体性的重要研究方法。热管理的概念提出多年,已在汽车、集成电路、高能激光器、飞机、大型航天器和空间站中应用。 汽车热管理是在能源危机的出现、日益严格的汽车排放法规以及人们对汽车舒适性高要求的背景下应运而生的[1-5]。汽车热管理是从系统集成和整体角度,统筹热管理系统与热管理对象、整车的关系,采用综合控制和系统管理的方法,将各个系统或部件如冷却系统、润滑系统、空调系统等集成一个有效的热管理系统,控制和优化汽车的热量传递过程, 保证各关键部件和系统安全高效运行,完善的管理 并合理利用热能,降低废热排放,提高能源利用效率,减少环境污染。热管理在汽车节能、环保和安全等方面具有突出的战略地位,热管理技术成为汽车节能、提高经济性和保障安全性的重要措施。 2 汽车热管理的研究内容与研究现状 汽车热管理的主要研究内容包括热管理对象热特性研究、热管理系统集成以及热能综合利用等;广泛意义上包括对所有车载热源系统进行综合管理与优化,其中车载热源系统包括发动机的冷却系统、润滑系统、进排气系统和发动机机舱空气流动系统以及驾驶室的空调暖风系统等等,综合考虑空气侧与车载热源系统之间热量传递过程。涉及到冷却介质、热交换器、风扇、泵、底盘空气流动、传感器与执行机构、材料与加工、整车空气动力学、安全

基因芯片技术的应用现状及展望

基因芯片技术的应用现状及展望 1基因芯片 1.1基本概念和原理 又称DNA 微阵列、DNA 芯片, 通过微加工技术和微电子技术在固体芯片表面构建成的微型生物化学分析系统,能够通过检测 基因的丰度来确定基因的表达模式和表达水平。由于常用硅芯片或玻片作为固相支持物, 并且在制备过程中运用了计算机芯片的制备技术, 所以称为基因芯片技术。基因芯片的工作原理与核酸分子杂交的方法是一致的, 都是运用已知核酸序列作为探针与互补的靶核苷酸序列进行杂交, 然后通过信号检测进行定性和定量分析。与传统的核酸杂交不同的是基因芯片是在一微小的片基如硅片、玻片和塑料片等表面上集成了大量的核酸分子识别探针, 能够在同一时间内平行分析大量的基因, 进行大量信息的筛选与检测, 实现对生物样品快速、并行、高效地进行检测或医学诊断。 1.2研究背景 80 年代初, 科学家提出了固相核酸杂交的设想, Bains等首 先对固相杂交DNA 测序进行了有益的探索; 其后, 俄罗斯、美国及英国的科学家分别报道了用杂交测定核酸序列的方法。1991 年, Affymetrix公司Fodor 等建立了原位光刻合成技术, 为寡核苷酸在片原位合成制作高密度基因芯片奠定了基础, 标志着核酸检测技术已发展到了一个新的阶段。1994年, 俄美科学家共同研制了用于B- 地中海贫血基因突变筛查的基因芯片, 测序的速度提高

了近1 000 倍, 被认为是一种全新的快速测序方法。鉴于基因芯片潜在的巨大商业价值, 90年代中期开始, 国外更多的商业公司加入了芯片开发的行列。1996 年底, Affymetr ix 公司推出可应用的基因芯片和较完整的芯片制造、杂交、扫描及数据分析系统, 其它如GeneralScanningInc、Telechem、Cartesian 等公司亦相继研制出芯片用激光共聚焦扫描仪及分析软件。到目前为止, 芯片技术在基础研究, 尤其是在基因表达方面已得到应用, 而在医学应用方面也已开发出少数基因诊断等相关芯片。但由于芯片和检测系统价格昂贵、专利及许多技术问题还有待解决, 因此目前尚未大规模的应用。在我国, 较早从事基因芯片研究的机构有清华大学、复旦大学、东南大学等。其中, 清华大学处于领先地位, 并得到国家重点支持。其它如东南大学在分子印章法制备高密度基因芯片、复旦大学在硅导电玻璃介质生物芯片制备、西安超群公司在三维立体基因芯片制造等方面也都取得了一定成果。 1.3基因芯片的分型 视分类方法不同可以分为以下几种主要类型: a.无机片基和有机合成物片基的基因芯片 b.原位合成和预先合成然后点样的基因芯片 c.基因表达芯片和DNA测序芯片 另外根据所用探针的类型不同分为cDNA微阵列(或cDNA微阵列芯片)和寡核苷酸阵列(或芯片),根据应用领域不同而制备的专用芯片如毒理学芯片(Toxchip)、病毒检测芯片(如肝炎病

大肠杆菌表达系统的研究进展综述

基因工程制药综述 班级:生技132 姓名: 学号:

大肠杆菌表达系统的研究进展综述 自上世纪 70 年代以来, 大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统, 但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来, 有关蛋白结构以及功能研究的开展 ,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。 1 表达载体 1. 1 表达调控 构建有效的表达载体是表达目的基因的基本要求, 同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌表达载体的主要组成: 启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达 ,然而目的基因在宿主体内过分表达(选用较强的启动子等)会对宿主造成压力, 引起相关的细胞应答反应, 影响蛋白的活性等。基因组、 RNA 转录组、蛋白质组、代谢调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息[ 1]。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如 Lee 等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了 cAMPCRP 调节蛋白的应答, 其中重组子的影响更为强烈;另外, 还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降 , 而使细胞呼吸活力上升[ 2]。目前应用的表达载体主要问题是表达过程中出现的全或无的情况, 通常表达的培养物都是非纯种的细胞群, 其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。 Deborahat 提出在芯片上排列具有不同强度级别启动子的载体进行互补分析, 可能有助于筛选最为适合的启动子[3]。开发非 IPTG 或阿拉伯糖诱导的载体也可以提高基因表达水平, Qing 等利用 cspA 基因的独特性开发了一系列冷休克表达载体 pCold, 使目的基因在低温下(<15℃) 诱导表达,提高了产物的溶解性和稳定性[4]。 1. 2 融合表达载体 除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等 ,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、Om pA 、MalE、PhoA 等)表达可以使融合蛋白通过经典的 Sec 途径分泌到周质或胞外表达, 有利于形成二硫键以及避免胞质蛋白酶的水解和 N 端甲硫氨酸的延伸。另外,最近开发的双

基因芯片技术论文

生物技术导论 ——基因芯片技术

基因芯片技术 摘要:基因芯片技术具有无可比拟的高效、快速和多参量特点,使其进行基因研究、法医鉴定、疾病检测和药物筛选等方面远远超过了传统方式方法在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。 关键字:基因芯片简介、基因芯片的种类、基因芯片技术、基因芯片的应用技术举例及其应用领域 一、基因芯片简介 基因芯片(Gene Chip)通常指DNA芯片,其基本原理是将指大量寡核苷酸分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强弱进而判断样品中靶分子的数量,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。 二、基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,以下是主要的三类基因芯片。 (1)光引导原位合成技术生产寡聚核苷酸微阵列 它采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子,为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 (2)微电子芯片 微电子基因芯片,其基质全部以硅、锗与基础的半导体材料,在其上构建25-400个微铂电极位点,各位点可由计算机独立或组合控制。它通过相似微电极的电场变化来使核酸结合,由于引入“电子严谨度”参数使芯片检测通过靶、探针序列特征和使用者要求来控制杂交过程中的严格性。 (3)微量点样技术 使用这种方法生产的芯片上探针不受探针分子大小种类的限制,能够灵活机动地根据使用者的要求制作出符合目的的芯片。由于对检测仪的要求很高,其使用范围受到很大限制

相关文档