文档库 最新最全的文档下载
当前位置:文档库 › 逆变器基础知识大收罗

逆变器基础知识大收罗

逆变器基础知识大收罗
逆变器基础知识大收罗

逆变器基础知识大收罗

逆变器(Inverter,逆向变压器件)是一种直流到交流(DC to AC)的变压器,可将可变直流输出转换成清洁220V正弦 50Hz 或其他类型交流电,可用于各类设备,最大限度地满足移动供电场所或无电地区用户对交流电源的需要。广泛用在通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。

逆变器的用途

第一,逆变器是商业电网或地方电网的关键组件。

随着经济社会的发展,人类社会对能源的需求量越来越大,石油资源的紧缺及其价格的日益攀升,以及传统能源使用面临污染环境等诸多问题使人们转向对清洁能源(国内资源丰富的太阳能/风能)的发展。逆变器是整个太阳能/风能系统的关键组件,可将由太阳能/风能获得的可变直流输出转换成清洁正弦 50 或60Hz 电流,从而满足我们对在日常环境中不可或缺的220伏交流电,非常适用于为商业电网或地方电网提供电源。

第二,满足“移动”时代的需求

随着现在人们生活方式的改变,高节奏,高快捷的生活需求在日益的扩大,于是现在的3C产品,更多的数码产品都在朝着这样的方向发展着,于是我们处了一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐的生活中。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。

逆变器的工作原理

逆变器的工作原理其实就是一个低压直流转换为高压交流的过程。其直流电压分两路:一给前级IC供电产生一个KHZ级的控制信号,一路到前级功率管。下面是从低压直流转换成高压交流过程中的3个步骤及每个步骤产生的结果电流(压):

步骤1:由控制信号推动功率管不断开关使高频变压器初级产生低压的高频交流电。

产生电压低、频率高的交流电

步骤2:通过高频变压器输出高频交流电再经过快速恢复二极管全桥整流输出一个高频的几百V直流电到后级功率管。本文由电子元件技术网

(https://www.wendangku.net/doc/8814005397.html,)编辑xud,精心收集,希望对你有用!

产生电压高、频率高的交流电

步骤3:由后级IC产生50HZ左右的控制信号来控制后级的功率管工作,输出220V 50HZ的交流电。

产生 220V 50HZ 的交流电。

下面对比较重要的几种逆变器进行说明:

正弦波逆变器:输出的是与日常使用电网一样的正弦波交流电,提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。

方波逆变器:输出的是质量较差的方波交流电,对负载和逆变器本身会造成剧烈的不稳定影响。制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。

准正弦波逆变器(属于方波范畴):输出波形从正向最大值到负向最大值之间有一个时间间隔,波形由折线组成,连续性不好,但可满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。

有源逆变器:使电流电路中的电流,在交流侧与电网连接而不直接接入负载的逆变器

无源逆变器:使电流电路中的电流,在交流侧不与电网连接而直接接入负载(即把直流电逆变为某一频率或可调频率的交流电供给负载)的逆变器。

逆变器关键参数简介,资料来自我爱方案网(https://www.wendangku.net/doc/8814005397.html,),不管是消费者使用还是开发者设计,对于逆变器的以下几个重要参数都需要熟悉:

1、逆变效率。

逆变效率是衡量逆变器性能的一个重要参数,逆变效率值用来表征其自身损耗功率的大小,通常以%来表示。逆变器中逆变效率直接关系到系统效率,如果逆变器逆变效率过低,将严重导致系统效率下降。在太阳能光伏发电系统中,太阳电池方阵的转换效率目前一般不超过18%,且太阳电池的成本较高,如果想提高2%一3 %转换效率非常困难,但提高逆变器逆变效率3%一5%却是完全可能的。逆变器效率的高低是逆变器性能好坏的一个该要标准,对光伏发电系统提高发电量和降低发电成本有着重要影响。

2、额定输出容量

额定输出容最是用来表征逆变器向负级供电的能力。额定输出容最值高,则逆变器带负载能力越强。额定输出容量值只是针对纯电阻性负载的一个参考,如果逆变器所带的负载不为纯限性时,逆变器带负载能力将小于给出的额定输出容量值。

3、输出电压稳定度

输出电压稳定度是指逆变器输出电压的稳定能力。逆变器中一般会给出输入直流电压在允许波动范围内逆变器输出电压的偏差(通常称为电压调整率),高性能的逆变器一般还会给出负载由。0%变化至100%时,逆变器输出电压的电压偏差(通常称为负载调整率)。标称电压通常指的是开路输出电压,也就是不接任何负载,没有电流愉出的电压值。独立太阳能光伏系统中,蓄电池端电压在充放电时电压波动很大,铅酸蓄电池电压波动可达标称电压的30%左右,所以逆变器要有良好的输出电压稳定度,才能保证系统在较大直流输入范围内工作。

4、可靠性

太阳能光伏发电系统运行中,逆变器可靠性是形响系统可靠性的主要因家之一。因为光伏发电系统一般工作在比较偏远的艰苦地方,维护不方便,逆变器必须是可书的。其可书性要求逆变器具有良好的保护功能,包括逆变器中的过流保护和短路保护功能。在光伏发电系统正常运行时,由于负载故障、人为误操作和外界干扰等原因,引起供电系统电流过大或短路等情况是极有可能发生的,要提高可靠性,必须要求逆变器要有相关的保护功能。自动粘贴,原文地址:https://www.wendangku.net/doc/8814005397.html,/public/art/artinfo/id/80016938

5、启动性能

启动性能是指逆变器带负载启动的能力和动态工作的性能。逆变器在额定负级下应能保证其正常启动。一般电阻性负载工作时,逆变器启动性能较好。但如果是电感性负载,如电动机、冰箱、空调或大功率水泵启动时,功率可能是额定功率的几倍以上。通常感性负载启动时,逆变器将承受较大的浪涌功率。故逆变

器的启动性能要求在感性或其他负载启动时,逆变器内部器件能承受多次满负荷启动而不致使功率器件损坏。

6、谐波失真度

当逆变器输出电压波形为正弦波时或修正波时,除了基波外还含有谐波分量,通常将谐波分量在输出电压总波形中的比例称为谐波失真度。高次谐波电流会在电感性负载产生涡流,导致器件严吹发热,严重的会损坏电气设备。一般逆变器会注明其谐波失真度。方波逆变器的谐波失真约为40%,一般只适合于纯阻性负载;修正波逆变器的谐波失真小于20%左右,适合于大部分负载;而正弦波逆变器的谐波失真较小,能适用于所有的交流用电负载。

逆变器未来发展方向

社会日益电气化的现在,各种产品中逆变器的要求也越来越高,需求量也越来越大。那么在逆变器快速发展的同时,它的发展趋势又是怎样的呢?

第一,高频化。

逆变器开关频率的提高能够有效的减少装置的体积和重量,同时还能够消除变压器和电感的音频噪声。在改善输出电压的动态响应能力的时候也减小了装置的体积和质量。

第二,高性能化。

要求它的稳压性能好, 空载及负载时输出电压有效值都要稳定;另外,波形的质量也要求要高。对突加或突减负载时输出电压的瞬态响应着一特性要好。

第三,并联及模块化。

现在的逆变器已经向着大功率和可靠性在发展,所以为了提高系统的可靠性, 就必须要实现模块化。

第四,小型化。

这里的小型化指的就是变压器的小型化。

第五,高输入功率因数化。

第六,数字化。

第七,智能化。

无论什么产品开发到智能状态下,与传统的模式相比那肯定是更上一个层次的。你心目中的理想逆变器设计是怎么样的?请到电子元件技术网论坛发表你的高见!

逆变器的理想设计

理想的逆变器,从直流变到交流的功率总是一定的值而没有脉动,直流电源波形和电流波形中也不应该产生脉动;而在实际的逆变电路中,因为逆变器的脉动数等有限制,因而逆变功率P是脉动的。当逆变器的逆变功率p的脉动波形由直流电流来体现时,称之为电压型逆变器。电压型逆变器的特点是:

1)直流侧有较大的直流滤波电容。

2)当负级功率因致变化时,交流输出电压的波形不变,即交流输出电压波形与负载无关。交流输出电压的波形,通过逆变开关的动作被直流电源电容上的电压钳位成方波。

3)在逆变器中,与逆变开关并联有反馈二极管,所以交流电压与负载无关,是方波。

4)输出电流的相位随负载功率因数的变化而变化,换向是在同桥臂开关管之间进行的。

5)可以通过控制输出电压的幅值和波形来控制其输出电压。

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

逆变器的驱动

逆变器的驱动 1、驱动电路的基本任务 驱动电路是主电路与控制电路之间的接口电路。驱动电路的基本任务是将信息电子电路传来的信号转换为加在器件控制回路中的电压或者电流。 2、驱动电路的要求 ①具有一定的功率,使器件能够可靠地开通或关断。 ②具有尽可能短的开关时间和尽可能小的开关损耗。 ③具有电气隔离环节,一般采用光隔离或磁隔离。 ④工作可靠。 3、驱动电路的分类 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件分为电流驱动型和电压驱动型两类。驱动电路具体形式可为分立元件的,但目前的趋势是采用专用集成驱动电路。驱动电路常称为触发电路。 4、典型全控型器件的驱动电路 输入正负电源VCC; 电气隔离环节:光耦; 电压放大环节:运算放大器A; 功率放大环节:推挽电路V2、V3;

■电压驱动型器件的驱动电路 ◆电力MOSFET和IGBT是电压驱动型器件。 ◆为快速建立驱动电压,要求驱动电路具有较小的输出电阻。 ◆使电力MOSFET开通的栅源极间驱动电压一般取10~15V,使IGBT开通的栅射极间驱动电压一般取15 ~ 20V。 ◆关断时施加一定幅值的负驱动电压(一般取-5 ~ -15V)有利于减小关断时间和关断损耗。 ◆在栅极串入一只低值电阻(数十欧左右)可以减小寄生振荡,该电阻阻值应随被驱动器件电流额定值的增大而减小。 ◆电力MOSFET ?包括电气隔离和晶体管放大电路两部分;当无输入信号时高速放大器A输出负电平,V3导通输出负驱动电压,当有输入信号时A输出正电平,V2导通输出正驱动电压。 5、MOSFET和IGBT的集成驱动芯片 TLP250; IR2110; IR2130HCPL-316; EXB841; 中国落木源电子的系列产品;

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

光伏逆变器安装施工方案计划

20MW太阳能发电项目光伏场区

一、工程概况 1、工程概况 华润安达1号太阳能发电项目位于安达市西南部约18km处,项目所在地北侧为规划高 速公路,东侧与中和砖厂相邻,项目所在地区平坦开阔,地势较低,无不良地质现象,场地布置条件较好。场地为盐碱地。施工时将场地挖填平整、并填土至沟塘形成相对平坦地貌以利于工艺布置及场地排水,即可形成良好的施工场地,场地布置条件较好。 本期光伏厂区内占地面积为633790㎡,共安装18组1MWp太阳能子阵,总容量为 20.16MWp。施工道路与永久道路可结合。通过平整场地,用砂石铺垫,作为施工道路使用。待施工结束后,完善道路二侧边沟系统、路面养护后可作为永久道路使用。 安达市位于黑龙江省西南部,地处大庆市与肇东市之间。属中温带大陆性季风气候,冬季(11月至次年3月)被强大的蒙古高压控制,在其影响下多偏北风,天气干燥严寒;夏季(6月至8月)受副热带海洋气团的影响,降水集中,光照充足气候温热、湿润。春季(4 月至5月)多偏南大风,降水较少,易发生春旱;秋季(9月至10月)天高气爽,降温较快,常有早霜危害。气候基本特点是:冬长雪少,天气寒冷;夏短湿热,降水集中;春季风大,气候干燥;秋凉气爽,时有早霜。全年降水较少,平均气温在3℃左右。年平均无霜期较短,在170d左右。 2、太阳能资源 黑龙江省年太阳总辐射量为4400~5400MJ/ m2(相当于1222~1500kWh/ m2)。太阳 直接辐射年总量为2526~3162 MJ/ m2,直接辐射在总辐射中所占比例较大,在0.57~0.63之间,年日照时数在2242~2842小时。 华润安达光伏发电项目所在地年均太阳辐射量1357.70kWh/m2,年均日照时数2681.97h,日照时间较长,利用太阳能资源的条件较好。场址地区水平面日平均辐照度为3.72 kWh/m2d,项目场址在我国属于太阳能“资源丰富”地区,具备一定开发价值。从太阳能资源利用角度说,此地区适合建设太阳能光伏发电站。 3、气象条件 安达市位于黑龙江省西南部、松嫩平原中部,东经124°53′至125°55′,北纬46°01′至47°01′,地势东部略高,西部略低,平坦开阔,平坦地面下沉积着新老地层,储藏着丰富的水、石油和天然气等资源。安达市地处中纬度寒温带大陆性季风气候,年平均气温为4.2℃,最热月(7月)平均气温为32.1度,最冷月份(1月)平均气温为-18.7度,历年极端气温最高为38.7度,历年极端气温最低为-37.9度;年平均降水量为432.5

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

正弦波逆变器驱动芯片介绍

光伏逆变器600W正弦波逆变器制作详解 自从公布了1KW正弦波逆变器的制作过程后,有不少朋友来信息,提这样那样的问题,很多都是象我这样的初学者。为此,我又花了近一个月的时间,制作了这台600W的正弦波逆变器,该机有如下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB 厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基

础,我老寿包你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。 该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到

逆变电源控制算法哪几种

https://www.wendangku.net/doc/8814005397.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.wendangku.net/doc/8814005397.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

光伏板安装施工方案计划

一般施工方案(措施)报审表

本表一式三份,由施工项目部填报,监理项目部、施工项目部各存一份。 抚宁县20MWp(一期)农业设施光伏发 电项目工程 组件安装施工方案 批准:____________ 审核: 编写:____________

新疆海为新能电力工程有限公司(章) 年月日

组件安装施工方案 一、目的: 用于指导抚宁县20MWP(一期)农业设施光伏发电项目工程光伏厂区组件安装。二、适用范围 本施工技术措施适用于抚宁县20MWP(一期)农业设施光伏发电项目工程光伏厂区组件安装。 三、编制依据: 昆明勘测设计研究院有限公司设计图纸 《建筑结构荷载规范》(GBJ50009-2001) 《钢结构设计规范》(GB50017-2003) 《碳素结构钢》(GB700-88) 《优质碳素结构钢》(GB/T699-1999) 《钢结构工程施工质量验收规范》GB50205-2001 《钢结构工程质量检验评定标准》(GB50221-95) 《网架结构设计与施工规程》(JGJ7-91) 《钢结构高强螺栓连接的设计、施工通用验收规程》(JGJ82-91) 四、施工准备: (一)、作业准备 1.认真审核、熟悉施工图纸,做好图纸会审。 2.对施工班组进行有针对性的技术、安全交底。 3.根据工程实际情况划分施工区域,并以此为依据确定劳动力,具体细化到每道工序的作业部位及作业时间。

4.根据工程的需要选派熟练工人。特殊工种操作人员必须持证上岗。 5. 工作时必须穿工作服、工作鞋,佩戴手套、安全帽,在安装和维修组件时,严禁佩戴金属指环、表环、耳环等其它金属物品; (二)、作业条件: 1. 支架,钢结构已施工完毕、校正,并通过监理、业主验收。 2. 原材料已通过监理、业主审批,允许使用。 3. 业主提供合格、无破损可正常工作的光伏电池; 4. 注意事项: 4.1 搬运组件的时候要用双手抓住边框,严禁拖拽接线盒上的电缆线; 4.2 不要在组件上放置其它物品,禁止站立在组件上; 4.3 破损的光伏组件严禁使用,应及时通知业主或供货商; 4.4 不要尝试分解组件,不要拆除组件上的任何铭牌或者部位; 4.5 不要在组件上喷涂任何燃料或者粘合剂; 4.6 在潮湿或者风力较大的情况下,严禁操作或安装组件; 4.7 光伏组件在安装前,要一直保存在原包装箱里; 4.8 当发生意外情况时,请立即把断路器和逆变器关闭, (三)、作业顺序 1. 总体工艺流程: (四)、施工机械设备准备 施工过程中实行机械化,可以减轻劳动强度,提高劳动生产率,有利于加快施工速度,保证施工质量。在施工过程中,施工方法的选择和施工机具的选择是紧密相连的,所以,在选择施工机具时,我们还要从现场施工的角度考虑到:施工方法的技术先进性与经济合

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

逆变器安装技术交底

施工技术交底 施工单位中易建设有限公司单位工程 中节能孪井滩二期50MWp并网光伏发电项目分部工程逆变器安装分项工程逆变室安装施工 交底内容: 1.基础施工 配电装置基础安装根据施工图的要求,先用合格的材料及定出基础的实际位置,同时对土建的预埋件进行清理,测量埋件的标高,以标高最高的一块埋件作标准,计算出槽钢与埋件之间垫铁的厚度,随后将垫铁及槽钢安放到位置上,校正标高及水平尺寸,用电焊将压脚槽钢、垫铁、及埋件焊接牢固并与接地网接通,提前通知监理方验收。低压盘、柜的基础型钢安装后,其顶部要高出抹平地面10㎜。 2.设备就位 就位及安装按事先确定的顺序领运分站房附近,由液压小车或滚筒滚动到位。将柜体校正、固定,柜间的固定采用螺栓、柜底脚固定采用电焊焊接,固定完毕验收合格。为了不损坏室内地坪,应在拖动或滚动路线上铺一层橡皮,再适当铺层板。开关柜的安装须严格按制造厂及规范的要求,其垂直度和水平度符合规范要求,并做好自检记录。安装就位后定期测量记录绝缘情况并采取针对性的措施。 3.并网逆变器检查 对照并网逆变器的设计原理图、接线图,复查并网逆变器内的接线是否正确。线号是否和图纸上一致,线束是否扎牢。接触器触点应紧密可靠动作灵活。 固定和接线用的紧固件、接线端子,应完好无损。 对并网逆变器接线应编号,端接线进行明确标识。 接地线应连接牢固,不应串联接地。 4.安装 根据并网逆变器安装图纸要求确定并网逆变器基础位置并安装基础槽钢,水平误差度应小于2mm/m 并紧固基础槽钢,将并网逆变器安装在基础槽钢上,调整并网逆变器垂直误差应小于2mm/m,水平度误差应小于2mm/m 并紧固并网逆变器连接螺栓。 5. 接线 按照图纸设计要求将电池板方阵等的电缆连接在并网逆变器相应端子上。检查所有连线正确。 施工单位中易建设有限公司单位工程 中节能孪井滩二期50MWp并网光伏发电项

逆变器原理及电路图

逆变器原理及电路图 2009-09-10 21:52 场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 [img]https://www.wendangku.net/doc/8814005397.html,/UploadFiles/200942618167800.jpg[/img] 1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。 TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力。TL494芯片的内部电路如图2所示。 [img]https://www.wendangku.net/doc/8814005397.html,/UploadFiles/2009426181249965.jpg[/img] 图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路。上电时电容C1两端的电压由0V逐步升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路开始工作。当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作。

逆变器选型知识手册

逆变器选型知识手册 一、逆变器基础知识 目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。 输出电压被脉冲调制的自励逆变器为脉冲逆变器。这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。 交流侧的等效电感决定了电流谐波的含量。因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。 逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。 二、逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 三、逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。。 工频逆变器 工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。

逆变器原理

太阳能光伏并网控制逆变器工作原理及控制方法摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1 引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为“光热”和“光伏”两种,其中光热式热水器在我

国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的“光生伏打现象”。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2 并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分:其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

箱变安装施工方案

目录 一、工程概况和特点 (1) 二、编制依据 (1) 三、主要工程量 (1) 四、开工前准备计划 (1) 五、施工管理目标 (2) 六、光伏场区电气设备安装 (2) 七、危险源分析及针对措施 (3) 八、安全文明施工 (4)

箱式变压器安装施工方案 一、工程概况 由华能阜新风力发电有限责任公司投资建设的华能彰武风光互补(章古台)(20 兆瓦)光伏发电站项目地处辽宁省阜新市彰武县北部的彰古台镇的低丘沙地区域。场地周围地势开阔,但略有起伏,周围基本无大型障碍物,光伏电站站址区域建设条件比较优越。本期光伏电站接入系统规划容量为20MWp。按目前国内较先进的组阵方案,分为20个1MWp 的光伏矩阵单元,每一个1MWp矩阵单元经箱式逆变器逆变后,通过双分裂箱式变压器将逆变器交流输入的电压就地升压至35kV。箱变高压侧采用环接方式,10个逆变升压单元环接成一回出线,20个逆变升压单元以2回35kV架空线路接入华能彰北220kV风电场2期升压站35kV侧,由铁塔16基,线路全长4.119KM 输送至变电站送至电网。 1.1工程规模 20MW光伏并网发电 二、编制依据 (1)《光伏发电站施工规范》(GB50794-2012) (2)《光伏发电站验收规范》(GB50796-2012) (3)有关产品的技术文件 三、主要工程量 箱式变压器:本体安装,箱体接地,试验受电,反受电、配合系统调试 数量:20台 四、开工前准备计划 4.1人员准备计划 光伏场区电气设备安装:技术负责人4名,安装工10名,辅助工30名。

施工主要人员及机械设备配置 4.2工机具准备计划 工机具:工具包、平口螺丝刀、平口小一字螺丝刀、手提式端子压接钳、盒尺5米、开孔器、尖嘴钳、活动扳手4\\、活动扳手10\\、活动扳手8\\ 五、施工管理目标 5.1质量目标 确保工程达到设计及使用要求,工程质量达到国家电网工程质量检验评定标准中的优良标准,一次验收合格率100%。 5.2安全目标 确保无重大安全事故发生,轻伤频率控制在1‰以内。 六、光伏场区电气设备安装 6.1箱式变压器设备安装 (1)箱式变压器检查:首先做好施工准备,作业指导书编制及交底,人力组织安排,现场清理规划,机具布置用工器具准备齐全并登记在册,对附件进行运输清点检查等。(2)根据厂家装箱单清单清点数量做好记录,如有缺失及时上报。检查箱式变压器几何尺寸是否与图纸设计一致,箱式变压器外表油漆是否符合规范及满足厂家设计要求。 (3)箱式变压器吊装: 1)在箱式变压器吊装前办理土建与安装交接手续,清理埋件附着物。 2)箱式变压器安装选择25T汽车吊装,吊装就位后按照图纸要求固定。

车载电源逆变器电路原理图及维修

车载电源逆变器电路原理图及维修 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL4 94或KA7500芯片为主的脉宽调制电路。一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。

1.车载逆变器电路工作原理 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS 功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/5 0kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

【标准】三相逆变器中IGBT的几种驱动电路的分析

三相逆变器中IGBT的几种驱动电路的分析 1 前言 电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。 20世纪 80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT) [1>。在IGBT 中,用一个 MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。在中小功率、低噪音和高性能的电源、逆变器、不间断电源( UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。 功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。图1为一典型的IGBT驱动电路原理示意图。因为IGBT栅极发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。 广告插播信息 维库最新热卖芯片:FX602D4ICM7555LM317D2T-TR TPA1517DWPR BL3207IRFR13N20D SP708REN CY2305SXC-1AD8108AST LXT970QC 对IGBT驱动电路的一般要求 [2>[3>: 1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。在任何情况下,开通时的栅极驱动电压,应该在 12~ 20 V之间。当栅极电压为零时,IGBT处于断态。但是,为了保证IGBT在集电极发射极电压上出现 dv/dt噪声时仍保持关断,必须

光伏电站施工方案(专业)

光伏电站施工方案(专业版) NO TABLE OF CONTENTS ENTRIES FOUND.:检验支架安装合格后,安装光伏板。 1、电池组件倒运布料,准备配件及安装工具 2、先安装最高排光伏版:首先根据图纸位置安装四个已打孔的橡胶垫片,加底部夹片,安装最高排第一个光伏版按设计图纸定位,最高处拉横向、立向基准线,作为光伏版的横向基准;光伏板靠近支架外侧一端穿入顶部盖片,紧固螺栓。内侧盖片在安装第二片光伏板之后安装,并紧固螺栓。依次安装其他光伏板。 3、安装中间一排光伏版,方法同上。 4、安装最下排光伏版,方法同上。 5、复测平整度、边缘高差等,调整至符合质量要求。 6、安装完毕后,安装长、短立柱最后的固定螺栓。 注意事项:轻拿轻放;注意磕碰;光伏版可能已经因日照带电,注意两端线端不要连接,造成触电或者损坏光伏板。 八、接地镀锌扁铁: 九、电器: 1、电池组件安装 1.1安装流程 电池组件安装施工流程框图见图1.1.1。 图1.1.1 电池组件安装施工流程框图 1.2施工方案 (1)电池组件倒运布料及开箱验收

将电池组件倒运至施工子方阵内,并按照事先算好的数量整齐布放在各施工区域内。每个子方阵电池组件安装前要对组件开箱验收。施工队开箱前通知项目部,由项目部通知监理、业主及厂家等进行验收,并做好验收记录。 (2)电池组件安装 电池组件安装前,要对支架进行复查,主要检查横梁的水平等,防止支架水平、高程等变化从而影响组件安装质量。 多晶硅光伏组件的安装宜从下向上安装,具体施工步骤如下: ●根据电池组件安装图纸,用盒尺测量出第一排(最下面一排)电池组件上边缘所在位置,在阵列两端的支架上定点,拉工程线。 ●安装第一块电池组件。以从左向右安装为例,电池板上缘以施工线为基准,左边缘尽量往左侧靠,为右侧所有组件留出一定的调整余量,以防安装右侧最后一块电池组件时因间隔不够导致无法安装。位置调整完毕后,安装四周压块,紧固螺丝。 ●安装第二块及其余电池组件。因压块自身间隙为20mm,所以不需要可以关注电池组件间的间隙大小,只需要紧靠压块安装即可。 ●下方第一排安装完成后,安装第二排。此时可不用施工线,以已安装完成的电池组件上边缘为基准进行安装。安装时注意组件需要对角及边缘平齐。完成后,依次安装剩余两排的电池组件。 每个电池组件背面有一个接线盒及接线盒引出的正负极线,安装时应注意这两条线不要被压在光伏支架与电池组件间。正负极线两端的连接器需要悬空,绝不可以触碰光伏支架或其他金属体。 组件要按照厂家编好的子阵号进行安装,严禁混用。 (3)组件串联及接地 按照设计图纸要求确定串联数量、串联路径。要求光伏组件之间接插件互相连接紧固。接线时应注意勿将正负极接反,保证接线正确。每串电池板连接完毕后,应检查电池板串联开路电压是否正确,连接无误后断开一块电池板的接线,保证后续工序的安全操作。 组件接地通过组件接地孔、导线与接地体良好连接。在需要更多接地孔时候,按照组件生产商要求在相应位置打孔。 (4)电池组件安装验收 组件安装完成,由作业人员自检后,再经各工区施工队技术员复检,最后由项目部质检人员终检。项目部终检合格后报监理验收。

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

相关文档