文档库 最新最全的文档下载
当前位置:文档库 › 均值不等式的灵活应用-高考文科数学热点专题

均值不等式的灵活应用-高考文科数学热点专题

均值不等式的灵活应用-高考文科数学热点专题
均值不等式的灵活应用-高考文科数学热点专题

专题32 均值不等式的灵活应用

一.【学习目标】

会应用不等式的基础知识通过不等式建模,分析求解与不等式相关的实际应用问题;会运用不等式的工具性探究函数与方程问题;会通过构造函数解决不等式的综合问题,从而提升思维能力. 二.【知识要点】

1.不等式建模应用问题

实际问题中所涉及的变量之间、变量与常量之间存在不等关系,适合应用不等式知识建模求解;有时问题可能是函数建模后转化化归为不等式解模,此类应用问题的求解思路仍然是:理解问题?假设建模?求解模型?检验评价,而关键和切入点是理解问题情境,建立数学模型.

2.不等式综合应用类型

类型1:求函数的定义域、值域、最值及单调性判定问题. 类型2:讨论方程根的存在性、根的分布及根的个数等问题.

类型3:探究直线与圆、圆锥曲线的位置关系,参变量取值范围,最值问题等. 类型4:探究数列的递增(递减)性,前n 项和的最值等问题. 3.基本不等式

(1)a 2

+b 2

≥2ab ;变式:a 2+b 2

2

≥ab ;当且仅当a =b 时等号成立;

(2)如果a ≥0,b ≥0,则a +b 2≥ab ;变式:ab ≤????a +b 22,当且仅当a =b 时,等号成立,其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.

4.(1)若a >0,b >0,且a +b =P (定值),则由ab ≤????a +b 22

=P 2

4可知,当a =b 时,ab 有最大值P

2

4;

(2)若a >0,b >0且ab =S (定值),则由a +b ≥2ab =2S 可知,当a =b 时,a +b 有最小值2S . 三.题型方法规律总结

1.不等式应用大致可分为两类:一类是建立不等式求参数的取值范围或解决一些实际应用问题;另一类是建立函数关系,利用均值不等式求最值等问题.

不等式的综合题主要是不等式与函数、解析几何、数列、三角等相结合,解决这些问题的关键是找出综合题中各部分知识之间的转化化归,注意灵活应用数学思想和数学方法.

2.建立不等式的主要途径有:利用问题的几何意义;利用判别式;利用函数的有界性;利用函数的单调性;利用均值不等式.

3.不等式的实际应用,题源丰富,综合性强,是高考应用题命题的重点内容之一.不等式应用题大都是以函数的面目出现,以最优化的形式展现.在解题过程中涉及均值不等式,常常与集合问题,方程(组)解的讨论,函数定义域、值域的确定,函数单调性的研究,三角、数列、立体几何中的最值问题,解析几何中的直线与圆锥曲线位置关系的讨论等有着密切的关系.

4.解答不等式的实际应用问题,一般可分为四个步骤:

(1)审题:阅读理解材料.应用题所用语言多为“文字语言、符号语言、图形语言”并用,而且文字叙述篇幅较长,阅读理解材料要达到的目的是将实际问题抽象成数学模型.这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题的方法.

(2)建模:建立数学模型,即根据题意找出常量与变量的不等关系.

(3)求解:利用不等式的有关知识解题,即将数学模型转化为数学符号或图形符号.

(4)回验:回到实际问题,作出合理的结论.

四.典例分析

(一)基本不等式比较大小

例1.若,,则下列结论:①,②③

④,其中正确的个数是()

A.1 B.2 C.3 D.4

【答案】D

练习1.若m,n,a,b,c,d均为正数,,则p,q的大小关系为( ) A.p≥q B.p≤q C.p>q D.不确定

【答案】B

【解析】q=≥=+=p,当且仅当=时取等号.练习2.若,,,,则

A.B.C.D.

【答案】B

【解析】∵,

∴,且,

∴,即.

故选B.

练习3.设f(x)=e x,0p D.p=r>q

【答案】C

【解析】由题意得,

∵,∴,

又函数为增函数,∴.

故选C.

(二)利用基本不等式证明

例2.已知,求证:.

【答案】证明见解析

【解析】,,,

上面三式相加,得:,

所以,.

练习1.设a、,原命题“若,则”,则关于其逆命题、否命题、逆否命题的结

论正确的是

A.逆命题与否命题均为真命题B.逆命题为假命题,否命题为真命题

C.逆命题为假命题,逆否命题为真命题D.否命题为假命题,逆否命题为真命题

【答案】A

【解析】原命题:“设a、,原命题“若,则”,是假命题,

原命题的逆否命题是假命题;

原命题的逆命题:“若,则”,是真命题,

原命题的否命题是真命题.

故选:A.

练习2.已知,,为不全相等的正实数,且.求证:.

【答案】见解析

练习3.下列条件:①,②,③,,④,,其中能使成立的条件的序号是________.

【答案】①③④

【解析】要使,只需成立,即,不为且同号即可,故①③④能使成立..

故答案为:①③④.

(三)由基本不等式求积的最值

例3. 4.在中,角A,B,C的对边分别为且.

(1)若,且<,求的值.

(2)求的面积的最大值.

【答案】(1)(2)

【解析】(1)由余弦定理可得,即,

解得,又由,且,

联立方程组,解得.

(2)由余弦定理,得

因为,所以,

又因为,所以三角形的面积为,此时

练习1.已知,且,则的最大值是()

A.B.4C.D.8

【答案】C

【解析】由题意得,,当且仅当时等号成立,

所以的最大值是.

故选C.

【点睛】运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如逆用就是

;逆用就是等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件.

练习2.已知圆C1:(x+a)2+(y﹣2)2=1与圆C2:(x﹣b)2+(y﹣2)2=4相外切,a,b为正实数,则ab 的最大值为()

A.B.C.D.

【答案】B

【解析】由已知,

圆C1:(x+a)2+(y﹣2)2=1的圆心为C1(﹣a,2),半径r1=1.

圆C2:(x﹣b)2+(y﹣2)2=4的圆心为C2(b,2),半径r2=2.

∵圆C1:(x+a)2+(y﹣2)2=1与圆C2:(x﹣b)2+(y﹣2)2=4相外切,

∴|C1C2|=r1+r2.即a+b=3.

由基本不等式,得.

故选:B.

练习3.已知正实数,,满足,则当取得最大值时,的最大值为()

A.B.C.D.

【答案】C

【解析】由正实数,,满足,得,当且仅当,即

时,取最大值,又因为,所以此时,所以

,故最大值为1

(四)基本不等式求和的最值

例4.已知实数,满足,,则的最小值是

A.10B.9C.D.

【答案】B

【解析】,,,,当且仅当时,取等号.

则,

当且仅当时,且,时,的最小值为9,故选B.

【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).

练习1.若正数满足,则的最小值为( )

A.9B.8C.5D.4

【答案】A

【解析】∵x>0,y>0,x+4y=xy,

∴,

∴x+y=(x+y)()=5+≥5+2=9,当且仅当x=2y取等号,结合x+4y=xy,

解得x=6,y=3

∴x+y的最小值为9,

故答案为:A.

练习2.已知,且,则的最小值是()

A.B.C.D.

【答案】A

【解析】由题意,可知,且,则,

则,

当且仅当,即等号成立,即最小值是,故选A.

练习3.已知,且,则的最小值为______.

【答案】15

(五)条件等式求最值

例5.若直线过圆的圆心,则的最小值为( ) A.10B.C.D.

【答案】C

【解析】圆x2+y2+4x﹣4y﹣1=0的圆心(﹣2,2)在直线ax﹣by+2=0上,

所以﹣2a﹣2b+2=0,即1=a+b,

()(a+b)=55+2(a>0,b>0当且仅当a b时取等号)

故选:C.

练习1.已知实数,且,则的最小值为____

【答案】

【解析】由于a+b=2,且a>b>0,则0<b<1<a<2,

所以,,令t=2a﹣1∈(1,3),则2a=t+1,

所以,

当且仅当,即当时,等号成立.

因此,的最小值为.

故答案为:.

练习2.若实数,满足,则的最小值为____.

【答案】4

【解析】∵a>1,b>2满足2a+b﹣6=0,

∴2(a﹣1)+b﹣2=2,a﹣1>0,b﹣2>0,

则()[2(a﹣1)+b﹣2],

(4),

当且仅当且2a+b﹣6=0即a,b=3时取得最小值为4.

故答案为:4.

练习3.已知点在圆上运动,则的最小值为___________.

【答案】1

【解析】∵点在椭圆上运动,即,

,当且仅当时,取等号,即所求的最小值为.

练习4.已知,,,则的最小值为_______.

【答案】3

【解析】因为,,

所以=

(六)基本不等式的恒成立问题

例6.已知函数.

(1)求关于的不等式的解集;

(2),使得成立,求实数的取值范围.

【答案】(1) (2)

【解析】(1)由题意得

不等式可化为或或或

解得.

所以不等式的解集为.

(2),使得成立,等价于.

由(1)知,当时,,

当且仅当,即当时,等号成立.所以,解得,

又,所以.故实数的取值范围为.

【点睛】解绝对值不等式的常用方法

(1)平方法:两边平方去掉绝对值符号.

(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.

(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.

(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.

练习1.已知,且,若恒成立,则实数的取值范围是()A.B.C.D.

【答案】C

【解析】依题意,当等号成立.故

恒成,化简得,解得,故选C.

练习2.已知不等式对任意正实数x,y恒成立,则正实数m的最小值是

A.2B.4C.6D.8

【答案】B

【解析】不等式对任意的正实数x,y恒成立,

则对任意的正实数x,y恒成立,

又,,

解得或不合题意,舍去,,

即正实数m的最小值是4.

故选:B.

练习3.(1)已知x>0,y>0,x+y+xy=8,则x+y的最小值?

(2)已知不等式的解集为{x|a≤x<b},点(a,b)在直线mx+ny+1=0上,其中m,n>0,若对任

意满足条件的m,n,恒有成立,则λ的取值范围?

【答案】(1)4 (2)(﹣∞,9]

【解析】(1)∵x>0,y>0,

∴,当且仅当x=y时取等号

由x+y+xy=8,

可得:8﹣(x+y)≤.令x+y=t.(t>0).得8﹣t≤,(t>0).

解得:t≥4,即x+y≥4.故x+y的最小值为4.

(2)由不等式的解集为{x|a≤x<b},

可得方程(x+2)(x+1)=0的两个根=a=﹣2,=b=﹣1.

∵点(a,b)在直线mx+ny+1=0上,得:﹣2m﹣n+1=0,即2m+n=1.

对任意满足条件的m,n,恒有成立,

则:.当且仅当n=m时取等号.

∴λ≤9.

即λ的取值范围是(﹣∞,9].

练习4.若不等式>0在满足条件a>b>c时恒成立,求实数λ的取值范围.

【答案】(-∞,4)

【解析】原不等式可化为>.

∵a>b>c,∴a-b>0,b-c>0,a-c>0.

∴不等式λ<恒成立.

∵=+=2++≥2+2=4,

∴λ<4.

故实数λ的取值范围是(-∞,4).

(七)对勾函数求最值

例7.已知。

(1)比较,在的大小关系;

(2)若在上恒成立,求实数的取值范围。

【答案】(1);(2)

【解析】(1)

=,

(2)∵在上恒成立,

∴在上恒成立,

即,又在上递增,

∴,即

练习1.已知,则函数的最小值为______.

【答案】4

【解析】已知,根据均值不等式可知:,当且仅当时取等号。

练习2.已知,,则的最大值是.

【答案】

【解析】由题得原式=,设,

所以原式=,

所以原式=.(函数在上单调递减).

故答案为:.

(八)均值不等式的应用

例8.某厂家拟在2019年举行促销活动,经过调查测算,该产品的年销量(即该厂的年产量)(单位:

万件)与年促销费用()(单位:万元)满足(为常数),如果不搞促销活动,则该产品的年销量只能是1万件. 已知2019年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家2019年该产品的利润万元表示为年促销费用万元的函数;

(2)该厂家2019年的年促销费用投入多少万元时,厂家利润最大?

【答案】(1);(2)2019年的年促销费用投入2.5万元时,该厂家利润最大

【解析】(1)由题意有,得

(2)由(1)知:

当且仅当即时,有最大值.

答: 2019年的年促销费用投入2.5万元时,该厂家利润最大.

练习1.某工厂修建一个长方体无盖蓄水池,其容积为6400立方米,深度为4米.池底每平方米的造价为120元,池壁每平方米的造价为100元.设池底长方形的长为x米.

(Ⅰ)求底面积,并用含x的表达式表示池壁面积;

(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?

【答案】(Ⅰ)见解析;(Ⅱ)池底设计为边长米的正方形时,总造价最低,其值为元.【解析】(Ⅰ)设水池的底面积为S1,池壁面积为S2,

则有(平方米).池底长方形宽为米,则

S2=8x+8×=8(x+).

(Ⅱ)设总造价为y,则

y=120×1 600+100×8≥192000+64000=256000.当且仅当x=,即x=40时取等号.

所以x=40时,总造价最低为256000元.

答:当池底设计为边长40米的正方形时,总造价最低,其值为256000元.

练习2.某投资公司计划投资,两种金融产品,根据市场调查与预测,产品的利润与投资金额的函

数关系为,产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)学_科网

(1)该公司已有100万元资金,并全部投入,两种产品中,其中万元资金投入产品,试把,两种产品利润总和表示为的函数,并写出定义域;

(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

【答案】(1);(2)20,28.

练习3.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一

年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且.

写出年利润万元关于年产量(万部)的函数关系式;

当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

【答案】(1), ;(2)当时,y取得最大值57600万元.

【解析】(1)由题意,可得利润关于年产量的函数关系式为

,.

由可得

当且仅当,即时取等号,所以当时,y取得最大值57600万元.

2019高考试题文科数学汇编:不等式

2019高考试题文科数学汇编:不等式 1.【2018高考山东文6】设变量,x y 满足约束条件22,24,41,x y x y x y +≥?? +≤??-≥-? 那么目标函数3z x y =-的取 值范围是 (A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3 [6,]2 - 【答案】A 2.【2018高考安徽文8】假设x ,y 满足约束条件 02323x x y x y ≥?? +≥??+≤? ,那么y x z -=的最 小值是 〔A 〕-3 〔B 〕0 〔C 〕 3 2 〔D 〕3 【答案】A 3.【2018高考新课标文5】正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,假设点〔x ,y 〕在△ABC 内部,那么z=-x+y 的取值范围是 〔A 〕(1-3,2) 〔B 〕(0,2) 〔C 〕(3-1,2) 〔D 〕(0,1+3) 【答案】A 4.【2018高考重庆文2】不等式 1 02 x x -<+ 的解集是为 〔A 〕(1,)+∞ 〔B 〕 (,2)-∞- 〔C 〕〔-2,1〕〔D 〕(,2)-∞-∪(1,)+∞ 【答案】C 5.【2018高考浙江文9】假设正数x ,y 满足x+3y=5xy ,那么3x+4y 的最小值是 A. 245 B. 285 C.5 D.6 【答案】C 6.【2018高考四川文8】假设变量,x y 满足约束条件3, 212,21200 x y x y x y x y -≥-??+≤?? +≤??≥?≥??,那么34z x y =+的最 大值是〔 〕 A 、12 B 、26 C 、28 D 、33 【答案】C 7.【2018高考天津文科2】设变量x,y 满足约束条件?? ? ??≤-≥+-≥-+01042022x y x y x ,那么目标函数z=3x-2y 的最小值为

2020年高考文科数学《不等式》题型归纳与训练

A. a a>b>0,由不等式性质知:->->0,所以< >- 7 2 ∵x-x=4a-(-2a)=6a=15,∴a=15 62 2020年高考文科数学《不等式》题型归纳与训练 【题型归纳】 题型一一元二次不等式解法及其应用 例1若a>b>0,cB.D.< c d c d d c d c 【答案】D 【解析】由c0,又 d c a b a b d c d c 例2关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x,x),且x-x=15,则a=() 1221 A.515 B.C.D.24 15 2 【答案】A 【解析】∵由x2-2ax-8a2<0(a>0),得(x-4a)(x+2a)<0,即-2a0的解集是___________. 【答案】(-3,2)?(3,+∞) 【解析】不等式可化为(x+3)(x-2)(x-3)>0采用穿针引线法解不等式即可. 例4已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 【答案】(-2 2 ,0) 【解析】由题意可得f(x)<0对于x∈[m,m+1]上恒成立,

?f(m+1)=2m2+3m<0 ,则函数y=4x-2+1的最大值. x<,∴5-4x>0,∴y=4x-2+=- 5-4x+?+3≤-2+3=1 1 【解析】因为y=x(8-2x)= 1 . 【答案】9,+∞) ?f(m)=2m2-1<02 即?,解得-0,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x+(8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可. 例3函数y= x2+7x+10 x+1 (x>-1)的值域为。 [ 【解析】 当x>-1,即x+1>0时,y≥2(x+1)? 4 +5=9(当且仅当x=1时取“=”号). x+1 2

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

2016年高考文科数学真题分类汇编:不等式

2016年高考数学文试题分类汇编 不等式 一、选择题 1、(2016年山东高考)若变量x ,y 满足2,239,0,x y x y x +≤??-≤??≥? 则x 2+y 2的最大值是 (A )4(B )9(C )10(D )12 【答案】C 2、(2016年浙江高考)若平面区域30,230,230x y x y x y +-≥??--≤??-+≥? 夹在两条斜率为1的平行直线之间,则这 两条平行直线间的距离的最小值是( ) 【答案】B 3、(2016年浙江高考)已知a ,b >0,且a ≠1,b ≠1,若4log >1b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --< D. (1)()0b b a --> 【答案】D 二、填空题 1、(2016年北京高考)函数()(2)1 x f x x x = ≥-的最大值为_________. 【答案】2 2、(2016江苏省高考) 已知实数x ,y 满足240220330x y x y x y -+≥??+-≥??--≤? ,则x 2+y 2的取值范围是 ▲ . 【答案】4[,13]5 3、(2016年上海高考)设x ∈R ,则不等式31x -<的解集为_______. 【答案】)4,2(

4、(2016上海高考)若,x y 满足0,0,1,x y y x ≥??≥??≥+? 则2x y -的最大值为_______. 【答案】2- 5、(2016全国I 卷高考)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元。该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000 6、(2016全国II 卷高考)若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则2z x y =-的最小值为 __________ 【答案】5- 7、(2016全国III 卷高考)若,x y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则235z x y =+-的最大 值为_____________. 【答案】10- 11、(2016江苏省高考)函数y 的定义域是 ▲ . 【答案】[]3,1- 三、解答题 1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1 车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考文科数学不等式选讲考点精细选

不等式选讲考点精细选 一、知识点整合: 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)?f(x)>a或f(x)<-a; (2)|f(x)|<a(a>0)?-a

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

2018年全国2卷省份高考模拟文科数学分类---选考不等式

2018年全国2卷省份高考模拟文科数学分类---选考不等式 1.(2018陕西汉中模拟)已知,不等式的解集是. (Ⅰ)求a 的值; (II )若存在实数解,求实数的取值范围. 解:(Ⅰ)由, 得,即. 当时,. ………2分 因为不等式的解集是 所以 解得 当时,. …………4分 因为不等式的解集是 所以无解. 所以………5分 (II )因为 所以要使存在实数解,只需. ……8分 解得或. 所以实数的取值范围是. ……10分 2.(2018呼和浩特模拟)已知函数()1f x x =-.

(Ⅰ)解不等式()()246f x f x ++≥; (Ⅱ)若,a b R ∈,1a <,1b <,证明:()()1f ab f a b >-+. (Ⅰ)不等式()()246f x f x ++≥即为2136x x -++≥ 当3x ≤-时,1236x x ---≥解得3x ≤- 当132 x -<< ,1236x x -++≥解得32x -<≤- 当12x ≥时,2136x x -++≥解得43x ≥ 综上,(]4,2,3x ??∈-∞-+∞???? ; (Ⅱ)等价于证明1ab a b ->- 因为,1a b < ,所以1,1a b -<<,1ab <,11ab ab -=- 若a b =,命题成立; 下面不妨设a b >,则原命题等价于证明1ab a b ->- 事实上,由()()()1110ab a b b a ---=+-> 可得1ab a b ->- 综上,1ab a b ->- 3.(2018东北育才中学模拟)定义在R 上的函数x k x x f 22+-=.?∈N k .存在实数0x 使()20m ,2 1>n 且求证()()10=+n f m f ,求证31619≥+n m . .解: 存在实数0x 使()20m ,2 1>n ,

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

高考数学试题分类汇编不等式含文科理科及详细解析

2017年高考数学试题分类汇编:不等式 1(2017北京文)已知,,且x +y =1,则的取值范围是__________. 【考点】3W :二次函数的性质. 【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可. 【解答】解:x ≥0,y ≥0,且x +y=1,则x 2+y 2=x 2+(1﹣x )2=2x 2﹣2x +1,x ∈[0,1], 则令f (x )=2x 2﹣2x +1,x ∈[0,1],函数的对称轴为:x=,开口向上, 所以函数的最小值为:f ()= =. 最大值为:f (1)=2﹣2+1=1. 则x 2+y 2的取值范围是:[,1]. 故答案为:[,1]. 【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力. 2(2017浙江)已知a R ,函数在区间[1,4]上的最大值是5,则的取值范围是___________. 【考点】3H :函数的最值及其几何意义. 【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】通过转化可知|x +﹣a |+a ≤5且a ≤5,进而解绝对值不等式可知2a ﹣5≤x +≤5,进而计算可得结论. 0x ≥0y ≥22x y +∈4()||f x x a a x =+ -+a

【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5, 又因为|x+﹣a|≤5﹣a, 所以a﹣5≤x+﹣a≤5﹣a, 所以2a﹣5≤x+≤5, 又因为1≤x≤4,4≤x+≤5, 所以2a﹣5≤4,解得a≤, 故答案为:(﹣∞,]. 【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题. 3(2017新课标Ⅲ文数)[选修4—5:不等式选讲](10分) f x=│x+1│–│x–2│. 已知函数() f x≥1的解集; (1)求不等式() f x≥x2–x +m的解集非空,求实数m的取值范围. (2)若不等式() 【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法. 【专题】32 :分类讨论;33 :函数思想;4C :分类法;4R:转化法;51 :函数的性质及应用;5T :不等式. 【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1

2020高考数学---均值不等式

第45炼 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >= (1)调和平均数:12 111n n n H a a a = ++ + (2 )几何平均数:n G = (3)代数平均数:12n n a a a A n ++ + = (4)平方平均数: n Q = 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a === 特别的,当2n =时,22G A ≤?2 a b + ≤ 即基本不等式 3、基本不等式的几个变形: (1)),0a b a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 3y x x =+≥,右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两 个 2x ,则22422y x x x x x =+=++≥=

② 乘积的式子→和为定值,例如3 02 x << ,求()()32f x x x =-的最大值。则考虑变积为和后保证x 能够消掉,所以()()()2 112329 322322228 x x f x x x x x +-??=-=?-≤= ???(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点: ① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突) ② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况,如上面所举的两个例子 (2)已知1ax by +=(a 为常数),求 m n x y +的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解。 例如:已知0,0,231x y x y >>+=,求 32 x y +的最小值 解: ()3232942366y x x y x y x y x y ??+=++=+++ ??? 94121224y x x y =+ +≥+= (3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值 解:()2 2 21 1222 228 x y x y xy x y ++??=??≤ = ? ?? 所以()() 2 224248 x y x y xy x y +++=?++ ≥ 即()()2 282320x y x y +++-≥,可解得24x y +≥,即()min 24x y +=

高考数学不等式解题方法技巧

不等式应试技巧总结 1、不等式的性质: (1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则 a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b > >(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b >。 【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若;④b a b a 11,0< <<则若;⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11 ,a b a b >>若,则0,0a b ><。其中正确的命题是______(答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______(答:12,2? ?-- ?? ?) 2. 不等式大小比较的常用方法: (1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。 【例】(1)设0,10>≠>t a a 且,比较 21log log 21+t t a a 和的大小(答:当1a >时,11log log 22 a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或4 3 x >时,1+3log x >2log 2x ;当 413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3log x =2log 2x ) 3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方 针。 【例】(1)下列命题中正确的是A 、1y x x =+的最小值是 2 B 、2y =的最小值是 2 C 、 423(0)y x x x =--> 的最大值是2- D 、4 23(0)y x x x =--> 的最小值是2-(答:C ); (2)若21x y +=,则24x y +的最小值是______ (答:; (3)正数,x y 满足21x y +=,则y x 1 1+的最小值为______ (答:3+; 4.常用不等式有:(1 2211 a b a b +≥≥+(根据目标不等式左右的运算结构选用) ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)

相关文档
相关文档 最新文档