文档库 最新最全的文档下载
当前位置:文档库 › 尿素热解制氨工艺的安全运行与节能优化范本

尿素热解制氨工艺的安全运行与节能优化范本

尿素热解制氨工艺的安全运行与节能优化范本
尿素热解制氨工艺的安全运行与节能优化范本

解决方案编号:LX-FS-A45567

尿素热解制氨工艺的安全运行与节

能优化范本

In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or

activity reaches the specified standard

编写:_________________________

审批:_________________________

时间:________年_____月_____日

A4打印/ 新修订/ 完整/ 内容可编辑

尿素热解制氨工艺的安全运行与节

能优化范本

使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。

目前在众多的火力发电厂脱硝技术中,选择性催化还原工艺(SCR)和选择性非催化还原工艺(SNCR),是应用最为广泛的两种技术。脱硝还原剂主要来源有氨水、液氨和尿素三种,又以液氨和尿素应用最为广泛。由于尿素在运输、储存及电厂操作方面具有的安全性优势,越来越多的火力发电厂选用尿素作为脱硝还原剂。尿素热解制氨工艺成为了烟气脱硝装置的核心技术之一。但是,尿素在热解过程中,往往伴随着尿素热解不充分,导致热解系统出现结晶、堵塞等问题,并成为影响烟气脱硝装置长周期安全稳定运行的

隐患。

石景山热电厂20xx年完成了全厂4台670吨燃煤锅炉烟气脱硝环保改造工程。锅炉烟气脱硝工程采用炉内低NOx燃烧器与SCR相结合的技术措施。其中,脱硝还原剂采用尿素热解制氨工艺,将50%尿素溶液使用专用的雾化喷射装置喷入到热解炉中,尿素溶液雾滴在热解炉内350~600℃的环境下迅速完成分解制NH3过程,而尿素热解所需要的热量是通过燃用0#轻柴油得到。

脱销改造工程竣工投产后在尿素热解装置系统中相继出现以下主要问题:

1 、脱硝尿素热解炉在实际运行中,尿素热解炉及喷射系统内均不同程度的出现结晶、堵塞问题,严重时,曾发生过热解炉因大面积结晶堵塞被迫停运的情况。经调研,在北京、上海、深圳、河北、山西

等地,很多电厂使用的尿素热解装置同样存在尿素热解反应不充分、热解炉大量产生沉积物的问题。部分电厂采用提高热解室出口温度的方法消除热解炉中的沉积物,由此增加了尿素热解的能耗与运行费用。尿素热解反应不充分、热解装置产生大量沉积物已是国内较为常见的问题。

2 、尿素热解装置运行费用高。单台热解炉每年的0#轻柴油消耗量432吨,费用达到350余万元,石热电厂4台脱硝热解炉每年消耗柴油的成本支出高达约1500万元。为减少燃油消耗,降低运行成本,石热电厂根据现有热源条件,于20xx年自主完成了尿素热解炉稀释风源的改造:利用锅炉高温热一次风(280~320℃)替代原稀释风系统。但是,由于锅炉使用回转式预热器,锅炉热一次风中含尘量较高,在热解炉改用锅炉热一次风后,热解炉及喷氨

管线出现了粉尘沉积、堵塞的问题。使用锅炉热风做为热解炉稀释风,可以降低运行成本,但由于尿素热解不充分以及热风携带的粉尘均会堵塞喷氨管线。特别是喷氨格栅的喷氨支管堵塞后,会导致SCR喷氨格栅氨气/烟气配比失衡,SCR反应器局部氨逃逸率增大,进而引起脱硝效率降低、脱硝物料消耗增加等负面影响。氨逃逸量增加还会使锅炉烟气系统硫酸氢铵生成量上升,甚至会造成预热器堵塞、除尘器电场极板大量粘灰造成电场封闭等后果。因此,尿素热解不充分以及高含尘量的热风,均会对烟气脱硝装置以及锅炉主要设备的安全稳定运行构成威胁。

针对石热电厂烟气脱销系统运行中发生的问题,我们组织专业技术人员与北京科技大学化学与生物工程学院化学系对对尿素热解系统沉积物的成因及处理对策开展分析和研究。

通过尿素热解过程的研究及尿素热解系统沉积物分析结果得出以下结论:

(1)尿素热解装置的沉积物主要成份为三聚氰酸;

(2)尿素热解装置产生沉积物的原因是局部反应环境温度过低。

脱硝热解及喷氨系统产生结晶的根本原因在于尿素溶液喷射至热解炉内部后,初步分解成NH3和HNCO(异氰酸)后,出现局部温度快速下降,使部分异氰酸进一步分解的反应条件不够强烈,影响其进一步与水反应生成NH3和CO2,而是发生聚合反应形成颗粒并在系统内沉降,即形成结晶。结合石热电厂现场设备运行情况,我们针对“反应区域温度、尿素雾化效果、尿素雾滴在高温区的停留时间”三个影响异氰酸分解的主要原因进行了设备优化改造。

1 提高保温质量

将热解炉出口至喷氨格栅的沿程管道及设备保温厚度由25mm增加50mm,并在加强了局部防风、防雨性能。采取上述措施后,进入喷氨格栅前的热解气体温度普遍提高了15℃,原来露天布置的喷氨格栅应对大风、雨雪等不利环境的能力得到大幅提升,解决了喷氨格栅局部反应环境温度过低出现结晶堵塞的问题。

2 提高尿素溶液雾化质量

(1)稳定雾化风压力。我们一是将尿素雾化风源由杂用压缩空气系统(运行压力0.35-0.6Mpa)改为仪用压缩空气系统(运行压力0.55-

0.6Mpa),改造后雾化风压力稳定性得到大幅提升,解决了因雾化空气压力不稳造成雾化效果降低的问题。

(2)提高雾化压缩空气品质,避免喷嘴堵塞。我们在雾化压缩空气管道上加装了高精度三重(除水、油、杂质)空气过滤器,用于去除压缩空气中的杂质,提高雾化空气品质,并将过滤器至尿素喷枪的管道全部更换为不锈钢材质,彻底解决了压缩空气中携带杂质堵塞喷嘴的问题。

(3)自主完成尿素喷枪改造。在改善、提高雾化空气品质后,虽然尿素喷枪的雾化效果得到明显提高,仍难以将尿素溶液完全雾化,尿素热解不充分的问题虽得到明显缓解但仍未得到根治。为了得到更好的雾化效果,我们自主进行尿素喷枪的改良,并研制出新型的雾化喷嘴。新型喷嘴采用大气液混合室设计,增加了气液两相混合的时间与空间,在混合室内雾化空气对尿素溶液的扰动增强,尿素溶液与雾化空气混合更为均匀。设计更为合理的雾化喷孔内径,

提高混合液初始喷射流速,使气液混合流得到二次雾化,彻底解决了尿素溶液雾化效果差的问题。同时,对雾化喷嘴的喷射夹角进行了优化设计,适当的喷射覆盖面,可以避免尿素溶液直接喷射到热解炉内壁上,解决了热解炉内壁形成“低温区”产生结晶物问题,并避免了多支尿素喷枪喷射面相互重叠形成“交叉覆盖”产生大液滴的问题。

该尿素雾化装置具有以下特点:

(1)超大混合室设计,确保尿素溶液与雾化源充分混合;

(2)优化设计雾化喷射角;

(3)超音速雾化喷射流速。气-液两相流通过雾化喷孔的流速达到655~786m/s,超音速喷射流速使气、液两相流体二次混合更为充分、雾化更彻底。

(4)生产制造成本低。新型雾化喷嘴采用316

L不锈钢材料制造,每只喷嘴制作成本为400元,仅为进口同类产品价格的1/10。

该技术20xx年获首都职工自主创新成果三等奖,20xx年获得国家知识产权局专利。专利编号ZL 2013 2 0800389.9。

石热电厂自20xx年开始应用优化改良的尿素喷枪,历经2年多的时间考验,4台机组热解炉及喷氨管道沿程均未出现三聚氰酸结晶,尿素热解系统结晶堵塞的问题得到了彻底根治。

3、针对20xx年为了节能降耗,将尿素热解炉稀释风源改造为利用锅炉高温热一次风(280~320℃)替代原稀释风系统而导致的热解炉及喷氨管线出现粉尘沉积、堵塞的问题,石景山热电厂成功研制、开发适用于高温环境的多管式旋风除尘器装置,

华能北京热电有限责任公司1-4 号炉尿素热解制氨系统总承包工程初步设计说明书

TX008AC 华能北京热电有限责任公司 1-4号炉尿素热解制氨系统总承包工程 初步设计说明书 检索号:TX008AC-A 北京国电龙源环保工程有限公司 二○○七年一月

总工程师:赵禹 设计总工程师:吴敌 校核:沈滨马汉军 刘科伟徐明磊编写:吴敌马学东 王利左艳峰 王禹 北京国电龙源环保工程有限公司工程设计证书建设部甲级第0175号工程咨询资格证书国家计委工咨甲第9707007号

目录 第1章总则 (1) 1.1 前言 (1) 1.2 工程概述 (1) 1.3 节能、节水、节约用地 (7) 1.4 安全保护及工业卫生 (8) 1.5 设计定员 (9) 1.6 主要技术经技指标 (9) 第2章工艺部分 (11) 2.1 工艺说明 (11) 2.2 工艺系统及主要设备选择 (13) 2.3 系统运行方式 (16) 2.4 设备布置 (17) 2.5 辅助设施 (17) 2.6 检修与起吊设施 (17) 2.7 保温、油漆、防腐 (17) 2.8 物料消耗表 (18) 2.9 存在问题和建议 (18) 第3章总图及土建部分 (19) 3.1 项目场地条件和自然条件 (19) 3.2 建筑、结构 (23) 第4章电气部分 (27) 4.1 概述 (27) 4.2 供配电系统 (27) 4.3 本工程与业主及清华同方的分界 (27) 4.4 其它 (27)

第5章仪表与控制部分 (30) 5.1 概述 (30) 5.2 控制方式 (30) 5.3 设备选型 (30) 5.4 气源和电源 (32) 第6章环保部分 (33) 6.1 采用的环保设计标准 (33) 6.2 主要污染物源及防治措施 (33) 第7章施工组织大纲 (35) 7.1 概述 (35) 7.2 施工总平面 (36) 7.3 主要施工方案与大型机具配备 (37) 7.4 工程文件、资料交付计划 (40) 7.5 工程进度计划 (42) 第8章主要设备材料清册 (49) 8.1 工艺部分设备清册 (49) 8.2 电气部分主要设备材料清册 (52) 8.3 热控设备材料清册 (54)

CO2汽提法尿素工艺中的节能措施

CO2汽提法尿素工艺中的节能措施 发表时间:2019-08-15T14:50:58.243Z 来源:《工程管理前沿》2019年第9期作者:王柄 [导读] 就二氧化碳汽提法尿素工艺中的部分节能措施展开进一步的探讨。 山西晋丰煤化工有限责任公司山西高平 048400 摘要:在尿素生产过程中,尿素混合液需要用蒸汽进行相应的分解,而所产生的气体温度非常高,需要利用循环水进行冷却,并且还应当对物料进行回收利用。二氧化碳汽提法尿素工艺的节能探索已经进行了很长时间,主要阐述了如何更换气提器,提高汽提效率。同时,还简述了CO2汽提法尿素工艺的节能措施。 关键词:汽提塔液体;氨漏损;系统概况 引言 二氧化碳汽提法尿素工艺生产期间有多数热能未得到回收利用,而是按照循环水(冷却)的方式将其带走,导致了大部分热能的浪费。与此同时,大部分热能被循环水带走,进一步提高了冷却水的温度,导致了冷却设备列管发生结垢的情况。本文主要就二氧化碳汽提法尿素工艺中的部分节能措施展开进一步的探讨 1水解解析系统工艺流程 解析给料泵将氨水槽的氨水加压后,含有NH3、尿素和CO2的工艺冷凝液经过解析换热器送至第1解析塔,其流量根据第1解析塔的处理能力和氨水槽的液位高低由调节阀(FC-701)进行调节,温度由解析换热器的副线调节,控制在的117℃,从塔顶第3块塔板上进入第1解析塔。由调节阀(FC-704)进行调节的回流液进第1解析塔第1块塔板,塔板温度控制在115℃左右,尽可能降低第1解析塔气相含水量,提高回流液含量。在第1解析塔中,用水解塔和第2解析塔来的气体把冷凝液中的NH3和CO2汽提出来。出第1解析塔的液体中仍含有尿素以及少量的NH3和CO2,第1解析塔的液位用调节阀(LC-702)进行调节。第1解析塔的液体用水解泵将其加压后经水解换热器再返回水解塔,水解塔塔底的操作压力为1.96MPa(绝压),操作温度为215℃,停留时间保持在40min左右,采用2.50MPa(绝压)高压蒸汽直接加热,蒸汽经流量调节阀(FC-702)送入水解塔底部。水解塔底部出来的液相经水解换热器后,通过液位调节阀(LC-703)排至第2解析塔顶部解析。在第2解析塔底部加入低压蒸汽,使第2解析塔底部温度控制在解析塔压力下水的沸点,使出塔底部的废液中尿素质量分数<5×10-6、氨质量分数<50×10-6,经解析换热器和废水冷却器后排入循环水系统。第1解析塔顶部出来的气体进入回流冷凝器进行冷凝。回流冷凝器的气液混合物进入回流冷凝器液位槽进行分离,气相经调节阀(PC-701)进入常压吸收塔,液相进入回流泵,加压后一部分送到第1解析塔顶部调节解析塔出气温度,其余部分送入低压甲铵冷凝器。回流液中w(NH3)为37%,w(CO2)为24%,结晶温度为30℃;操作温度选择高于结晶温度20℃,即50℃(设计值为57℃)。为了防止回流冷凝器内部产生结晶,不能将32℃左右的循环冷却水直接送入回流冷凝器内,故在设计上采用半封闭式调温水冷却系统(图1)。 由图1可知:冷却水自成系统进行循环,温水循环泵将水送进回流冷凝器的管侧,吸收热量后返回到温水循环泵进口。当水温升高时,开大调节阀(TI-715),温度升高后的部分循环水从系统流至循环水回水总管;同时,温度较低的循环水补充至自循环系统,自循环系统的水温控制应以回流冷凝器壳侧不出现结晶为原则,一般控制在40~45℃。 2粉尘回收装置 尿素装置采用高大圆柱形混凝土造粒塔,通过造粒喷头喷洒尿素熔融物料,经自然通风降温得到尿素颗粒产品。由于化学反应过程、喷头喷射及不正常操作状态等因素,造粒塔塔顶排放气中带有粉尘。排放气中的粉尘很大一部分降落在造粒塔周围和厂区附近,造成金属设施腐蚀,混凝土地面破裂,农作物减产和其他植物枯黄。粉尘的大量飘落,不仅给周边环境带来极大的危害;同时,尿素粉尘也造成了能源的浪费。粉尘中主要成分是尿素,易溶于水,具有较好的回收价值,随着国家对环境要求越来越严,对节能措施的大力鼓励,企业可结合实际情况,决定在造粒塔顶部安装粉尘回收装置,既能降低对周边环境的污染,又可回收尿素粉尘;形成的尿素溶液重新返回系统再次利用。气体流程:尿素造粒塔内上升的含尿素粉尘气体经出气口增压装置增压进入雾化吸收区,经雾化吸收后进入高效吸收区,再经2次雾化吸收进入喷射错流气雾收集吸收捕水器,去除含雾状尿素液滴后的饱和气体进入三级分离空间,与塔顶冷空气混合,进一步冷凝含尿素微粒的液滴,然后将符合排放标准要求的气体排出塔外放空。自尿素解吸、水解或蒸汽冷凝液槽来的工艺废液直接进入喷射错流雾化收集吸收器,进行错流喷射雾化吸收,与上部下来错流雾化喷射吸收和清洗液体一起进入高效吸收及液体收集再分布装置,下降后经降液管进入循环槽,出循环槽的循环液体经过滤装置进入循环吸收泵,再由循环吸收泵加压后分别进入顶部清洗、中部错流雾化吸收喷头、底部雾化喷射吸收装置,循环吸收。 32700t/d尿素装置特点 当前,我司主要使用了2700t/d的尿素装置,与传统的尿素装置比较,这种装置具有更多优势。1)汽轮机主要是利用副线调节后的系统用汽,除此之外,还用主蒸汽进行负荷的调节。同时,注汽量的多少也可以通过对注汽压力的设定进行调节和改变。压缩机也采取了新的技术。通过在入口段间的分离器进行分离,不仅能够使二氧化碳与水的分离效率达到99%,同时还可以使操作更加便捷。解决了原有装置

二氧化碳CO2氨气生产尿素工艺的设计

第一章 1.1简介 用原料二氧化碳或氨气在合成压力下,将尿素熔融物气提,使其中的氨基甲酸铵分解,返回合成系统。如用氨进行汽提,称为氨汽提法[1] 。 合成塔排出的合成反应液在合成压力和较高温度下,在汽提塔内与气提气逆流相遇,将氨和二氧化碳从尿液中分解出来,然后将气体导入高压甲铵冷凝器内,化合冷凝为甲铵液,放出热量用于副产蒸汽。动力消耗较低,经济效果明显。 1.2工艺的优缺点 ⑴优点 ①高氨碳化,高转化率;由于合成塔采用高氨碳比操作,使合成塔中二氧化碳转化率提高,加上采用钛材的降膜式汽提塔,使汽提操作温度可以高达200℃。在汽提塔内由于过剩氨的自汽提作用,使甲铵分解率提高,从而减少低压部分的负荷。 ②采用甲铵喷射泵,使合成高压设备水平布置。不仅节省了高框架,同时也方便了安装检修。 ③热利用效率高,能耗低。 ④操作弹性大,易于操作控制。 由于合成采用高氨碳比,汽提塔采用钛管,使封塔时间可以较长,有利于装置的开停车操作,也减少了因排放所需的贮槽容积。 ⑤爆炸危险小,由于使用钛材,加入的钝化空气少,避免了爆炸混合物的生成。 ⑥原料器损失少。由于加入钝化空气量少,所以惰性气放空量少,原料损失少。 ⑵缺点 占地面积相对较大,流程长,设备多,相互制约性强,控制点多,技术素质要求高等。 1.3基本原理 使尿液中的甲铵按下述反应分解为3NH 和2CO 过程,反应方程如下:

Q CO NH COONH NH -+=气)气)液)((2(2324 (1-1) 此反应为可逆吸热,体积增大的反应。 我们只要提供热量,降低压力或者降低气相中3NH 与2CO 某一组分的分压,都可以使反应向右进行,以达到分解甲铵的目的。汽提法是在保持压力与合成塔相同的条件下,在供给热量的同时,采用降低气相中3NH 和2CO 某一组分(或3NH 与2CO 都降低)的分压的办法来分解甲铵的过程[2] 。 当温度为t ℃时,纯态甲铵的离解总压力与各组分(3NH 与2CO )的分解压的关系,按以上化学方程式可作如下表示: 设总压为S P ,则从反应式中可以看到氨分解压力为2/3S P ,二氧化碳分压为1/3S P ,如反应式在温度为t ℃时的平衡常数为t K ,则: 3 227 4)31()32S S S t P P P K ==( (1-2) 假如氨和二氧化碳之比不是2:1状态存在,在温度仍为t ℃时,它的总压为P ,其各组分的分压为: 分压3NH :3NH X P ?=?氨的分子分数总压 分压2CO :22CO X P CO ?=?的分子分数总压 3NH X ,2CO X 分别为气体中氨,二氧化碳的分子分数,这样反应式在温度为时的平衡常 数应为: 23232 32)()CO NH CO NH t X X P X P X P K ??=??=( (1-3) 温度相同,平衡常数相等,所以温度为时t ℃时 232 3327 4CO NH S X X P P ??= (1-4) S CO NH P X X P 322 353 .0?= (1-5) 纯甲铵在某一固定温度下的离解压力为不变常数C ,所以 C X X P CO NH 3 2 2 353.0?= (1-6)

尿素热解制氨工艺的安全运行与节能优化示范文本

尿素热解制氨工艺的安全运行与节能优化示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

尿素热解制氨工艺的安全运行与节能优 化示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前在众多的火力发电厂脱硝技术中,选择性催化还 原工艺(SCR)和选择性非催化还原工艺(SNCR),是应用最为 广泛的两种技术。脱硝还原剂主要来源有氨水、液氨和尿 素三种,又以液氨和尿素应用最为广泛。由于尿素在运 输、储存及电厂操作方面具有的安全性优势,越来越多的 火力发电厂选用尿素作为脱硝还原剂。尿素热解制氨工艺 成为了烟气脱硝装置的核心技术之一。但是,尿素在热解 过程中,往往伴随着尿素热解不充分,导致热解系统出现 结晶、堵塞等问题,并成为影响烟气脱硝装置长周期安全 稳定运行的隐患。 石景山热电厂20xx年完成了全厂4台670吨燃煤锅

炉烟气脱硝环保改造工程。锅炉烟气脱硝工程采用炉内低NOx燃烧器与SCR相结合的技术措施。其中,脱硝还原剂采用尿素热解制氨工艺,将50%尿素溶液使用专用的雾化喷射装置喷入到热解炉中,尿素溶液雾滴在热解炉内 350~600℃的环境下迅速完成分解制NH3过程,而尿素热解所需要的热量是通过燃用0#轻柴油得到。 脱销改造工程竣工投产后在尿素热解装置系统中相继出现以下主要问题: 1 、脱硝尿素热解炉在实际运行中,尿素热解炉及喷射系统内均不同程度的出现结晶、堵塞问题,严重时,曾发生过热解炉因大面积结晶堵塞被迫停运的情况。经调研,在北京、上海、深圳、河北、山西等地,很多电厂使用的尿素热解装置同样存在尿素热解反应不充分、热解炉大量产生沉积物的问题。部分电厂采用提高热解室出口温度的方法消除热解炉中的沉积物,由此增加了尿素热解的

尿素制氨技术:尿素水解法

1、技术要求 1.1 系统概述 尿素水解法制氨系统包括尿素储存间、斗提机、尿素溶解罐、尿素溶液给料泵、尿素溶液储罐、尿素溶液输送装置、尿素水解反应器及控制装置等。 尿素储存于储存间,由斗提机输送到溶解罐里,用除盐水将干尿素溶解成约50%质量浓度的尿素溶液,通过尿素溶液给料泵输送到尿素溶液储罐。尿素溶液经由输送泵进入水解反应器,水解反应器中产生出来的含氨气流送至反应区,被热风稀释后,产生浓度小于5%的氨气进入氨气—烟气混合系统,并由氨喷射系统喷入脱硝系统。系统产生的蒸汽冷凝水回收至疏水箱中,作为系统冲洗及溶液配置用水。系统排放的废氨气由管线汇集后从废水池底部进入,通过分散管将氨气分散入废水池中,利用水来吸收安全阀排放的氨气。 卖方所设计的尿素制氨工艺应满足:还原剂的供应量能满足锅炉不同负荷与脱硝效率的要求,调节方便、灵活、可靠。尿素储存区与其他设备、厂房等要有一定的安全防火距离,并在适当位置设置室外防火栓,设有防雷、防静电接地装置。尿素制氨工艺应配有良好的控制系统。 尿素溶解罐、尿素溶液储罐、尿素溶液输送装置、尿素水解反应器等为2台机组的SCR系统公用。 1.2 主要设备 (1) 尿素储存间 卖方为买方设计一个尿素储存间,尿素颗粒储存间的容量按两台机组脱硝系统设计工况下连续运行5d(每天按24h计)所需要的尿素用量来设计。 (2) 尿素溶解罐 设置一座不锈钢材质的尿素溶解罐,每只尿素溶解罐配1台斗提机。将尿素输送到溶解罐。在溶解罐中,用去除盐水制成约50%的尿素溶液。当尿素溶液温度过低时,蒸汽加热系统启动使溶液的温度高于80℃(确保不结晶)。材料采用SS304不锈钢。有效容积按2台锅炉BMCR工况下1天的用量设计。 尿素溶液给料泵为不锈钢本体,碳化硅机械密封的离心泵,设两台泵一运一备,并列布置。此外,溶液给料泵还利用溶解罐所配置的循环管道将尿素溶液进行循环,以获得更好混合。

洛阳电厂脱硝还原剂液氨改尿素可行性设计

电厂 2×300MW机组改建工程 脱硝还原剂液氨改尿素可行性方案 发电 2016.10

目录 脱硝还原剂液氨改尿素可行性方案 (1) 1、项目概况 (1) 2、尿素制氨工艺 (1) 2.1 热解制氨系统工艺 (1) 2.2 水解系统工艺 (3) 3、现场条件概况 (5) 4、尿素水解方案 (5) 4.1 尿素水解方案一 (5) 5、尿素热解方案 (5) 5.1 系统概述 (5) 5.2 主要设备 (5) 6、技术比较 (6) 6.1 尿素热解技术 (6) 6.2 尿素水解技术 (7) 7、厂用电增容改造 (7) 8、方案比较 (7) 8.1 投资费用比较 (7) 8.2 运行费用比较 (8) 8.3 方案技术经济定性对比汇总 (8) 9、结论和建议 (9) 9.1 结论 (9) 9.2 建议 (9)

1、项目概况 电厂机组容量为2×300MW,脱硝还原剂采用液氨法,脱硝系统单台机组氨耗量为127kg/h。 根据集团公司指示,需要将我厂脱硝还原剂由液氨更改为尿素方案,现就该方案更改作如下论证。 2、尿素制氨工艺 以尿素作为原料制取氨气相对于氨水蒸发及液氨蒸发技术具有较高的安全性,随近几年国家对安全运行要求的提高,已逐步代替液氨作为还原剂制备原料。尿素制氨技术目前成熟的有尿素热解和尿素水解制氨两种方法。 2.1 热解制氨系统工艺 尿素热解制氨的原理是利用辅助能源(燃油、电加热等)在650℃温度的热解炉,将雾化的尿素溶液直接分解为氨气,其反应方程式为: CO(NH 2) 2 → NH 3 ↑+ HNCO HNCO + H 2O → NH 3 ↑ + CO 2 ↑ 尿素热解制氨系统是由SNCR技术发展而来,早期的该项技术主要由美国燃料公司开发。尿素热解制氨系统由1)尿素颗粒储存和溶解系统、2)尿素溶液储存和输送系统及3)尿素热解系统组成。 在该系统中,储存于储仓的尿素颗粒由输送到溶解罐,用除盐水溶解成质量浓度为40%-60%的尿素溶液,通过泵输送到储罐进行储存;之后尿素溶液经给料泵、计 量与分配装置、雾化喷嘴等进入高温分解室,在650℃分解生成NH 3、H 2 O和CO 2 ,分 解产物经氨喷射系统进入SCR系统。尿素热解制氨系统采用单元制布置(一台热解炉产氨供一台机组)。 尿素热解制氨系统简要工艺流程如下:

二氧化碳汽提法工艺与氨汽提法工艺的比较

二氧化碳汽提法工艺与氨汽提法工艺的比较 摘要:近些年来,我国科学技术大力发展,在此背景之下我国的化工行业也取 得了显著地发展成果。本文围绕化工行业中的二氧化碳汽提法与氨气提法展开研究,根据两种提法工艺的设计、操作、安全性以及设备进行分析。 关键词:二氧化碳汽氨汽提法工艺比较 一、概述 近几年以来,我国的尿素装置大多运用二氧化碳汽提法工艺与氨气提法工艺,现阶段我国已经建成八十万吨每年的尿素生产线,总体而言,二氧化碳汽提法工 艺的运用范围要高于氨气提法工艺。二氧化碳汽提法工艺的开发者为荷兰斯塔米 卡邦,但是在对二氧化碳汽提法工艺进行改良的过程中充分融入了中国元素与特征。氨气提法工艺的开发者为意大利snam公司,snam公司是意大利知名的化工 研究企业,但是snam公司于2009年被saipem兼并,因此snam氨气提法工艺被更名为saipem氨气提法工艺。现阶段,我国的学者以及研究人员对这两种提法工艺的安全性、操作性、工艺流程以及维修程度有了更高层次的认识,但是从实际 情况出发,对于二氧化碳汽提法工艺与氨气提法工艺,将二者在经济、效率等方 面进行比较,仍然不可以决定出二者的优劣,因此本篇文章,将二氧化碳汽提法 工艺与氨气提法工艺进行比较,详细的对两者的使用效率与效果进行分析。 二、工艺比较 2.1工艺流程 二氧化碳汽提法尿素工艺流程详见第一图,氨气汽提法尿素工艺流程详见第 二图。 由以上两图可以看出,二氧化碳汽提法工艺流程较短,并且此项工艺流程的 运用设施相对较少,参与二氧化碳提法工艺流程的物质只需要在简单的流程之中 进行循环,因此这就在很大程度上减少了了设备的使用空间,并且从图中可以看 出二氧化碳汽提法的设备分布在不同的楼层,因此尿素的运用可以通过设备的落 差进行,所以这就减轻了动力要求。而氨气汽提法的工艺流程相对较长,并且与 二氧化碳汽提法相比,多出了许多的环节与过程,同时氨气汽提法采用平面性的 分布,因此此项工艺的设备占地面积广,但是氨气汽提法工艺便于展开维修。但 是总的来说,二氧化碳的工艺流程相对较少,因此二氧化碳汽提法的故障率会大 大降低。 2.2合成塔转化率的比较 无论使用哪种方法生产尿素,要使合成系统达到最佳转化率,应同时考虑二 氧化碳和氨气的转化率。合成塔工艺条件比较详见下表。 由上表可以看出,随着氨碳比的提高,在反应过程中的二氧化碳平衡转化率 也在不断地提升,但是在反应过程中平衡产物中尿素的水质量分数却只存在一个 最大值。根据图表显示,氨气/二氧化碳的值在二至四的范围之中,尿素中水质 量的分值变化不明显,不管平衡值怎样发生改变,其水质量分数始终保持一个最 大值。在氨气汽提法工艺之中,氨碳摩尔比的值大体为二点九五,所以从这里可 以看出氨气汽提法工艺的转化率要高于二氧化碳汽提法工艺。因为氨气汽提法具 有较高的氨碳摩尔比值,所以氨气汽提法的转化效率要高,但是氨气汽提法的回 收过程相对较为繁琐。另外,两项工艺的最终产物是尿素,而氧化碳汽提法要比

尿素水解和尿素热解的工艺介绍及技术经济比较

目录 一、概述 (2) 二、技术介绍 (2) 2.1尿素水解制氨技术 (2) 2.2尿素热解制氨技术 (3) 三、应用现状 (4) 3.1尿素热解技术 (4) 3.2 尿素水解技术 (5) 四、投资、运行费用比较 (6) 4.1设备投资、安装费用比较 (6) 4.2 运行费用比较 (6) 五、结论 (6)

关于尿素水解制氨和尿素热解制氨的工艺介绍 及技术、经济比较 一、概述 “十二五”期间国内建设了大量的烟气脱硝装置,其还原剂制备系统主要由液氨蒸发、氨水汽化、尿素制氨三种方式,随着国内民众和企业安全意识的加强,加上国内危化品运输、储存、使用事故层出不穷,尿素制氨技术因其不需要装卸、运输、储存危险化学品、装置占地面积小、运行安全稳定可靠,逐渐成为电厂选择脱硝还原剂制备系统的主流技术。 尿素是氨的理想的来源。尿素(CH4N2O)为无毒无味的白色晶体或粉末,是人工合成的第一个有机物,广泛存在于自然界中,其理化性质较稳定,应用于农业及工业领域,其运输和储存和管理均不受国家和地方法规的限制。尿素是一种稳定、无毒的固体物料,对人和环境均无害;可以被散装运输并长期储存;不需要运输和储存方面的特殊程序,它的使用不会对人员和周围社区产生不良影响。但固体颗粒尿素容易吸湿,当空气中的相对湿度大于尿素的吸湿点时,它就吸收空气中的水分而潮解,尿素在储存过程中极易吸潮板结,需采取措施防止吸湿结块的情况发生。 尿素制氨技术中根据其反应机理和核心反应设备的不同分为尿素水解制氨和尿素热解制氨二种技术。先分别介绍及对比如下: 二、技术介绍 2.1尿素水解制氨技术 尿素水解制氨工艺的原理是尿素水溶液在一定温度下发生水解反应,生成的气体中包含氨气和二氧化碳。其化学反应式为: NH 2-CO-NH 2 + H 2 O → 2NH 3 ↑+ CO 2 ↑ 尿素水解制氨系统由1)尿素颗粒储存和溶解系统、2)尿素溶液储存和输送系统及3)尿素水解系统组成。

尿素热解制氨工艺的安全运行与节能优化实用版

YF-ED-J5707 可按资料类型定义编号 尿素热解制氨工艺的安全运行与节能优化实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

尿素热解制氨工艺的安全运行与 节能优化实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 目前在众多的火力发电厂脱硝技术中,选 择性催化还原工艺(SCR)和选择性非催化还原工 艺(SNCR),是应用最为广泛的两种技术。脱硝 还原剂主要来源有氨水、液氨和尿素三种,又 以液氨和尿素应用最为广泛。由于尿素在运 输、储存及电厂操作方面具有的安全性优势, 越来越多的火力发电厂选用尿素作为脱硝还原 剂。尿素热解制氨工艺成为了烟气脱硝装置的 核心技术之一。但是,尿素在热解过程中,往 往伴随着尿素热解不充分,导致热解系统出现

结晶、堵塞等问题,并成为影响烟气脱硝装置长周期安全稳定运行的隐患。 石景山热电厂20xx年完成了全厂4台670吨燃煤锅炉烟气脱硝环保改造工程。锅炉烟气脱硝工程采用炉内低NOx燃烧器与SCR相结合的技术措施。其中,脱硝还原剂采用尿素热解制氨工艺,将50%尿素溶液使用专用的雾化喷射装置喷入到热解炉中,尿素溶液雾滴在热解炉内350~600℃的环境下迅速完成分解制NH3过程,而尿素热解所需要的热量是通过燃用0#轻柴油得到。 脱销改造工程竣工投产后在尿素热解装置系统中相继出现以下主要问题: 1 、脱硝尿素热解炉在实际运行中,尿素热解炉及喷射系统内均不同程度的出现结晶、

尿素热解制氨关键技术及其产业化东南大学

2018年国家技术发明奖提名项目 公示内容 一、项目名称:尿素热解制氨关键技术及其产业化 二、提名单位意见: 大气污染物治理一直是环境保护领域的重点,其中氮氧化物的安全高效脱除是一个难点。该项目通过系统研究,掌握了尿素热解制氨核心参数,开发了独立的工艺计算软件包,发明了尿素热解制氨装置,形成了尿素热解制氨关键技术,实现了产业化。该项目打破了国外技术垄断,作为自主知识产权技术,有效降低了国内应用烟气脱硝工程的成本,促进了国内环保产业的发展。 项目获得了多项原创性成果,技术经济指标先进;获授权发明专利10项,实用新型专利8项。项目成果作为一种先进的在线制氨技术,可以在多个领域进行液氨脱硝替代,应用前景广阔。成果已实现产业化并应用于烟气脱硝、除尘等工程。项目获得了媒体、同行和用户的高度评价,取得了较大的经济和社会效益。 该项目于2015年获北京市科学技术奖二等奖,对照国家技术发明奖授奖条件,提名该项目申报2018年国家技术发明奖二等奖。提名单位:北京市科委。 三、项目简介: 大气污染物治理一直是环境保护领域的重点,其中氮氧化物的安全高效脱除是一个难点。传统方法采用液氨为原料,产生氨气作为减排氮氧化物的还原剂。但是液氨属于危险化学品,超过10t即为重大危险源,其在运输、储存和使用时都有可能发生危险,国内曾经发生过多起液氨事故,造成重大人身伤亡。采用尿素为制氨原料可以达到与液氨相同的脱硝性能,无毒且使用安全。尿素脱硝技术可作为一项普遍适用的氮氧化物治理技术应用于大气环保领域。 但长期以来,尿素热解制氨技术被国外所垄断。因无有效竞争,致使国内采购尿素热解制氨装置的费用一直居高不下,还要交纳高昂的技术使用费,其价格很大程度上决定着烟气脱硝工程造价,制约着国内烟气脱硝工程的实施。在此背景下,中国大唐集团公司统筹规划,大唐环境产业集团股份有限公司具体牵头,

尿素热解和水解的区别性报告

尿素热解和水解的区别 性报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

尿素热解和水解的区别性报告 一、背景 SCR技术中还原剂NH3的来源有3种:液氨(anhydrous Ammonia)、 氨水(Aqueous Ammonia)和尿素(Urea)。由于液氨是危险化学品,随着国家对安全的日益重视,逐渐出台一系列相关的限制措施,使得电厂在用液氨时会在审批、工期、占地等诸多方面受到越来越多的制约,投运后通过环保验收的程序也较为繁琐;氨水也因为其运行成本居高不下而受到应用的局限。作为无危险的制氨原料,尿素具有与液氨相同的脱硝性能,是绿色肥料、无毒性,使用完全,因而没有法规限制,并且便于运输、储存和使用。目前在国内SCR脱硝采用尿素为还原剂已经成为一种趋势,并逐渐成为主流,尤其是在一些重点区域和离居民区较近的城市电厂,已有了越来越多的应用。 二、尿素热解和水解技术简述 尿素制氨工艺的原理是尿素水溶液在一定温度下发生分解,生成的气体中含二氧化碳、水蒸气和氨气。尿素制氨工艺包括尿素水解和尿素热解。尿素水解和尿素热解工艺由于温度压力条件不同,有着不同的化学过程。尿素水解制氨技术 作为应用于脱硝目的的水解技术在1999年开始运用在国外锅炉烟气脱硝工程, 目前这样的技术主要有AOD 法、U2A 法及SafeD eNOx 法三种。 在一定的温度条件下尿素能水解生成氨和二氧化碳。主要反应式:CO (NH2 ) 2 + H2O = 2NH3 + CO2 尿素水解制氨工艺: 用溶解液泵将约90℃溶解液送入尿素溶解槽, 颗粒状尿素经斗式提升机输送到尿素溶解槽,经搅拌后, 配制成浓度约40% ~ 50% (w t)的尿素

尿素热解制氨工艺的安全运行与节能优化

尿素热解制氨工艺的安全运行与节能优化目前在众多的火力发电厂脱硝技术中,选择性催化还原工艺(SCR)和 选择性非催化还原工艺(SNCR),是应用最为广泛的两种技术。脱硝 还原剂主要来源有氨水、液氨和尿素三种,又以液氨和尿素应用最 为广泛。由于尿素在运输、储存及电厂操作方面具有的安全性优势,越来越多的火力发电厂选用尿素作为脱硝还原剂。尿素热解制氨工 艺成为了烟气脱硝装置的核心技术之一。但是,尿素在热解过程中,往往伴随着尿素热解不充分,导致热解系统出现结晶、堵塞等问题,并成为影响烟气脱硝装置长周期安全稳定运行的隐患。 石景山热电厂2008年完成了全厂4台670吨燃煤锅炉烟气脱硝环保 改造工程。锅炉烟气脱硝工程采用炉内低NOx燃烧器与SCR相结合的技术措施。其中,脱硝还原剂采用尿素热解制氨工艺,将50%尿素溶液使用专用的雾化喷射装置喷入到热解炉中,尿素溶液雾滴在热解 炉内350~600℃的环境下迅速完成分解制NH3过程,而尿素热解所需要的热量是通过燃用0#轻柴油得到。 脱销改造工程竣工投产后在尿素热解装置系统中相继出现以下主要 问题:

1、脱硝尿素热解炉在实际运行中,尿素热解炉及喷射系统内均不同程度的出现结晶、堵塞问题,严重时,曾发生过热解炉因大面积结晶堵塞被迫停运的情况。经调研,在北京、上海、深圳、河北、山西等地,很多电厂使用的尿素热解装置同样存在尿素热解反应不充分、热解炉大量产生沉积物的问题。部分电厂采用提高热解室出口温度的方法消除热解炉中的沉积物,由此增加了尿素热解的能耗与运行费用。尿素热解反应不充分、热解装置产生大量沉积物已是国内较为常见的问题。 2、尿素热解装置运行费用高。单台热解炉每年的0#轻柴油消耗量432吨,费用达到350余万元,石热电厂4台脱硝热解炉每年消耗柴油的成本支出高达约1500万元。为减少燃油消耗,降低运行成本,石热电厂根据现有热源条件,于2009年自主完成了尿素热解炉稀释风源的改造:利用锅炉高温热一次风(280~320℃)替代原稀释风系统。但是,由于锅炉使用回转式预热器,锅炉热一次风中含尘量较高,在热解炉改用锅炉热一次风后,热解炉及喷氨管线出现了粉尘沉积、堵塞的问题。使用锅炉热风做为热解炉稀释风,可以降低运行成本,但由于尿素热解不充分以及热风携带的粉尘均会堵塞喷氨管线。特别是喷氨格栅的喷氨支管堵塞后,会导致SCR喷氨格栅氨气/烟气配比失衡,SCR反应器局部氨逃逸率增大,进而引起脱硝效率降低、脱硝物料消耗增加等负面影响。氨逃逸量增加还会使锅炉

尿素水解制氨在电厂中的应用

尿素水解制氨在电厂中的应用 摘要:随着经济不断发展,带动我国各行业快速发展。在电厂生产运行过程中,电厂中的烟气脱硝工艺受到广泛重视,尤其是随着科学技术的飞速发展,针对电 厂烟气脱硝工艺不断研发。而氨气作为烟气脱硝的重要还原剂,氨气的获取主要 是通过氨水、液氨、尿素等集中原材料中获取。应用尿素作为原材料,采用尿素 水解制氨工艺,能够有效降低安全隐患风险,鉴于此,文章简要结合尿素水解制 氨在电厂中的应用展开相关论述。 关键词:尿素水解制氨;电厂;应用 1引言 氮氧化物是破坏大气环境形成酸雨的重要污染物,根据国家环保标准要求新 建的电站锅炉必须配备脱NO的相关设备,已建成进行投运的电站锅炉也需要及 时进行改造,增设脱硝装置,烟气脱硝技术涉及SCR和SNCR。两种烟气脱硝技 术还原剂都可以是液氨、氨水及尿素,液氨属于危险品,在运输和储存过程中具 有一定的危险性和局限性,但其投资成本低,一般在条件允许情况下,液氨作为 还原剂应用尤为广泛,用氨水作为还原剂,安全性相对较高,但其运输和储存成 本高,经济性较差。尿素水解技术主要应用于化工行业,其易于运输和储存,尿 素溶液制备设备、水解或热解设备占地面积小,尿素热解和水解制氨技术比液氨 方案和氨水方案安全性高,因而逐步应用在电站锅炉烟气脱硝项目中,有效降低 厂用电,在烟气脱硝项目中作为制作还原剂具有重要优势,不断提高电厂的生产 效率。 2尿素水解制氨工艺分析 尿素水解制氨的工艺原理在于是在一定温度环境下,尿素水溶液会发生水解 反应,进而产生氨气。其工艺的构成主要是尿素颗粒储存和溶解输送系统及尿素 水解系统等方面,该工艺被广泛应用到各地电厂中,有利于进一步提升电厂的生 产效率,有效降低电厂的生产污染等方面。在使用运输车辆将尿素运输至尿素溶 液制备区后,将其存储在尿素储仓间备用。在配制尿素溶液的过程中,主要是需 要将溶液放入溶解罐中,通过加热系统加热到一定温度,通过运用循环搅拌的方式,进一步促使材料的充分溶解。在尿素溶液溶解完毕后,将其运输至尿素溶液 储罐中,通过加热盘管,将尿素的溶液温度控制在50℃~70℃,进一步避免温度 过低而导致尿素结晶的现象发生。 尿素水解制氨工艺中的尿素催化水解系统需要通过压力及温度的有效控制, 在催化剂的作用下,进而促使尿素溶液发生水解,并且在此过程中产生二氧化碳、水蒸气混合气、氨气等,具有一定脱销作用,将其应用到电厂中,能够进一步提 高电厂的运行效率,推进相关电厂脱销进程。 3尿素水解制氨在电厂中的具体应用分析 3.1尿素催化水解系统分析 尿素催化水解制氨系统主要是将浓度约50%、温度为50℃的尿素溶液通过高 压泵从尿素储罐打入尿素水解罐中,在压力0.4~0.9MPa、温度135℃~160℃和 催化剂的作用下进行一定的水解反应,产生氨气、二氧化碳、水蒸汽混合气。混 合气经由减压、流量控制调节与稀释风在氨空气混合器中混合,将氨浓度稀释至5%以下,进入SCR反应器内进行一定的脱硝反应。 烟气脱硝主要反应方程式如下: 4NO+4NH3+O2→N2+6H2O

热解制氨

尿素热解制氨技术 在SCR系统(选择性催化还原脱硝工艺)中,利用还原剂--氨气和NOx反应来达到脱硝的目的,目前成熟的还原剂制备工艺有液氨法、氨水法、尿素水解法、尿素热解法。采用液氨法和氨水法制备还原剂具有工艺简单、能耗低、维护方便等特点,但液氨和氨水都是有毒物质,其运输和储存都属于重大危险源,具有较大的安全风险。使用液氨法作为还原剂时,在设计安全规范、运输线路许可、储存的安全评价及环评认证等支持性文件,并在相关管理部门进行危险化学品使用登记;采用尿素制备还原剂时,从尿素的运输、储存及最终制成还原剂都非常安全,虽然工艺相对复杂、投资运行费用相对高,但能够确保氨来源的安全可靠。在较大城市、人口密集、和靠近饮用水源的地方,越来越多的电厂脱硝系统开始倾向于选用安全的尿素作为还原剂。出于发展脱硝技术,降低脱硝成本,同时确保脱硝系统安全使用的目的,我公司致力于开发自有知识产权的尿素热解制氨技术,目前该技术已获得国家专利局批准,并已应用于100MW~600MW机组脱硝装置,成功案例表明,该技术各项技术指标稳定可靠。我公司的尿素热解制氨技术利用高温空气或烟气作为热源,将雾化的尿素水溶液迅速分解为氨气,低浓度的氨气作为还原剂进入烟道与烟气混合后进入SCR反应器,在催化剂的作用下将氮氧化物还原成无害的氮气和水。尿素热解制氨系统一般包括尿素储备间、斗提机、尿素溶解罐和储罐、给料泵、尿素溶液循环传输装置、电加热器、计量分配装置、绝热分解室(内含喷射器)、控制装置等设备。 袋装尿素颗粒储存于尿素储备间,由斗提机输送到溶解罐里,用去离子水将干尿素溶解成质量浓度40%~60%的尿素溶液,通过尿素溶液给料泵输送到尿素溶液储罐。空预器提供的热一次风通过电加热装置(或直接采用空气加热,也可使用燃油、天然气、高温蒸汽等各种热源)加热到600℃左右进入绝热分解室。尿素溶液经由循环传输装置、计量分配装置、雾化喷嘴等以雾化状态进入绝热分解室内高温下分解,生成NH3、H2O和CO2,分解产物通过氨气喷射格栅喷入脱硝系统前端烟道。控制装置保证还原剂的供应量满足锅炉不同负荷与脱硝效率的要求。 尿素热解制氨技术特点: 1. 使用安全的尿素,且易于运输和储存,无危险源建设、运行、管理的困扰; 2. 占地面积小,周围不需要大距离的防火安全间距; 3.与尿素水解相比,投资与运行费用相当,但不需要压力容器,安全性高;精确计量,调节控制容易,响应速度更快; 4. 分解完全,热解炉能将尿素溶液完全分解为还原剂; 5. 热源可根据现场实际情况选择性的组合。

尿素热解技术

尿素制氨SCR脱硝技术 一、国内外脱硝还原剂制备现状 目前大型电厂烟气脱硝主要采用选择性催化脱硝(SCR)技术,其化学反应机理比较复杂,但主要的反应是NH3在一定的温度和催化剂作用下,选择性地把烟气中的NOx 还原为N2和水,目前最常用的还原剂制备方法一般有3 种:液氨法、氨水法、尿素法。 液氨法 采用液氨法,具有投资少,运行费用较低等优点。但根据我国《危险化学物品名表》(GB12268-90)和《重大危险源辨识》(GB18218-2000)的有关规定,液氨在生产场所超过40t、储存场所超过100t时构成重大危险源,需报相关安全生产部门审批。液氨的储存和制备系统在安全、消防和环保等方面需满足相关的规范,对电厂的日常运行和管理按二级重大危险源要求。 液氨储存和装卸场所应禁止设置在学校、医院、居民区等人口稠密区附近,如表1所示。 表1 液氨储存及装卸的限制区域 据统计, 我国95%以上的危险化学品涉及异地运输问题, 例如液氨的年流动量达100多万吨,,其中80%是通过公路运输的。国内外统计表明, 危险化学品运输事故占危险化学品事故总数的30%~40%。危险化学品公路运输事故频繁发生, 对社会公共安全造成了巨大的损失和潜在威胁。此外,液氨具有极强的挥发性、

腐蚀性,因此,在使用及运输过程中也容易产生泄露,从而导致事故的发生。 图1 我国各种危险化学品事故发生比例 氨水法 氨水法采用浓度为20%~25%的氨水溶液作为原料。氨水储罐中的氨水通过加热装置使其蒸发,形成氨气和水蒸汽,送至烟气系统。采用氨水法较液氨法相对安全,但同样存在安全隐患,且与其它常用方法比较运行费用最高。因此90年代以后国际上已经很少采用氨水作为SCR脱硝还原剂。 尿素法 热解法:国际上应用的是由美国FuelTech公司设计的NOxOUT ULTRA尿素热解制氨技术。其技术要点为利用热空气作为热源,在450-600℃来快速分解40%-55%的尿素水溶液。其优点为:近常压热解,操作压力低。其缺点和容易出现的故障现象有: 1)燃油耗量大、运行费用高。尿素热解装置在运行过程中,由于稀释风温度低、流量大,同时系统需氨量大,尿素热解吸收较大的热量,需要燃油提供的热量就越多; 2)热解炉尾部积物较快。热解炉工作温度过高(450-600℃),在使用过程中发生由于底部尾管处尿素存积过多,导致出口风量减少,系统供氨量不够,直接造成热解炉停运清理,影响脱硝装置的可靠性。如果热解炉内热空气的流量低或温度低,都会造成尿素溶液得不到完全热解而在尾部形成沉积。 水解法:尿素水解技术主要有AOD法、U2A法及SafeDeNOx 法三种。主要技

1二氧化碳气提法制取尿素

二氧化碳气提法制取尿素 目录 一.概述 .......................................... 二.方法比较 ...................................... 三.发展历史 . (2) 四.工艺原理 .................... 错误!未定义书签。五.工艺条件 . (3) 1.温度 (3) 2.氨碳比 (3) 3.水碳比 (4) 4.压力 (4) 5.反应时间 (5) 6.原料纯度 (5) 六.工艺流程 (5) 七.主要设备 (6) 1.合成塔 (6) 2.喷射泵 (7) 3.汽提塔 (8) 4.洗涤器 (8) 5.精馏塔 (9) 八.总结 (9) 九.参考文献 (10)

二氧化碳气提法制取尿素一.概述 1.尿素的性质:尿素又称为脲,分子是为:CO(NH 2) 2 ,相对分子质量为60.06, 熔点为132.7℃。在室温下是无色、无味、无嗅的针状晶体,在一定条件下,也 呈斜方棱柱结晶状,尿素易溶于水和液氨,也溶于甲醇、乙醇、甘油、不溶于乙醚和氯仿。 2.尿素的用途:主要分为工业和农业两类: 农业:尿素总产量中90%以上主要用作化学肥料,除了做化学肥料外,还可作牛、羊等反刍动物的辅助饲料(46%左右)。 工业:尿素在工业上主要用作合成高聚物材料,其中一半以上用作生产尿素甲醛树脂和三聚氰胺;除此之外尿素作为添加剂应用于多种化工产品的生产中,同时尿素还用于医药和试剂的生产中。 3.尿素的生产方法:不循环法、半循环法、全循环法 全循环法:(水溶液全循环法、气提法) 4.尿素生产原料:二氧化碳、氨 二.方法比较 1.水溶液全循环法与汽提法相比能量利用不合理,消耗较高,流程较长,近几年新建的大中型厂已很少采用该工艺。 2. CO 2 汽提法高压圈操作压力最低,无中压系统,流程短,设备少,生产稳定,消耗较低,投资较少,在国内有丰富的设计、设备制造和生产经验,且采用脱氢技术,从根本上杜绝了生产中的爆炸危险性,故选用该工艺。 3.氨汽提法工艺先进,消耗低,无高框架结构,无爆炸危险;但该工艺需购买国外专利工艺包,装置不能国产化,设备制造周期长,故不采用该工艺。三.发展历史 1773年化学家鲁艾尔首次制得尿素结晶。1828年德国化学家维勒利用氰酸与氨的水溶液反应,首次用人工方法从无机物出发制的了有机化合物尿素。1868年俄国化学家巴扎罗夫通过加热氨基甲酸铵制得了尿素,为尿素的工业化发展奠 定了基础。1922年在德国建成第一座以氨和CO 2 为原料的合成尿素工厂。 中国尿素工业的发展始于20世纪50年代,目前全国尿素年产能力达2500

尿素热解制氨系统方案

1主要设计原则及技术要求 3.1 主要设计原则 1)脱硝工艺采用 SCR法。 2)本方案脱硝系统运行的锅炉负荷 (MCR) 设计条件下限为 ~60% (即60~100% BMCR)。 3)采用尿素SCR工艺的烟气脱硝技术,若锅炉已有低NOx燃烧技术(LNB),烟气脱硝技术应与之配合使用; 4)吸收剂采用尿素。使用50%尿素水溶液(wt%)作为SCR烟气脱硝系统的还原剂;按氨流量要求每台炉167kg/hr来设计; 5)脱硝反应器布置在锅炉省煤器和空预器之间。 6)脱硝设备年利用小时暂按6000小时考虑,年运行时间暂按 8000小时考虑。 7)脱硝系统整套装置的可用率在正式移交后的一年中大于98% 8)装置服务寿命为30年。 3.2 主要技术要求 1)本工程采用尿素热解法制备脱硝还原剂,全厂2台锅炉共用一个还原剂储存与供应系统。 2)尿素热解制氨工艺和设备具有可靠的质量和先进的技术,能够保证高可用率和低物耗,完全符合环境保护要求,便于运行维护。 3)所有的设备和材料应是新的和优质的。 4)机械部件及其组件或局部组件应有良好的互换性。 5)确保人员和设备安全。 6)观察、监视、维护简单。 7)运行人员数量少。 8)在设计上要留有足够的通道,包括施工、检修所需要的吊装与运输通道及消防应急通道。 3.3规范、规程和标准 参考和规章要求 - 中国工作根据适合中国法规的设备

GB8978-1996《污水综合排放标准》 GB13223-2003《火电厂大气污染物排放标准》 DB11/139-2002《北京市锅炉污染物综合排放标准》 GBZ2-2002《作业环境空气中有害物职业接触标准》 DL5033-1996《火力发电厂劳动安全和工业卫生设计规程》 GB50187-93《工业企业总平面设计规范》 DL5028-93《电力工程制图标准》 SDGJ34-83《电力勘测设计制图统一规定:综合部分(试行)》 DL/T5032-94《火力发电厂总图运输设计技术规程》 DL5000-2000《火力发电厂设计技术规程》 DL/T5121-2000《火力发电厂烟风煤粉管道设计技术规程》 YB9070-92《压力容器技术管理规定》 GBl50-98 《钢制压力容器》 GB50260-96 《电力设施抗震设计规范》 DL5022-93 《火力发电厂土建结构设计技术规定》 GB4272-92 《设备及管道保温技术通则》 DL/T630-2001 《火力发电厂保温材料技术条件》 DL/T5072-1997 《火力发电厂保温油漆设计规程》 GB12348-90 《工业企业厂界噪声标准》 GBJ87-85 《工业企业噪声控制设计规范》 DL/T5054-96 《火力发电厂汽水管道设计技术规定》 SDGJ6-90 《火力发电厂汽水管道应力计算技术规定》 GBJ16-1987(2002)《建筑设计防火规范》 GB50160-92(1999)《石油化工企业设计防火规范》 GB50229-1996 《火力发电厂与变电所设计防火规范》 GB50116-98 《火灾自动报警系统设计规范》 DL/T5041-95 《火力发电厂厂内通信设计技术规定》 GBJ42-81 《工业企业通讯技术规定》 NDGJ16-89 《火力发电厂热工自动化设计技术规定》 DL/T657-98 《火力发电厂模拟量控制系统在线验收测试规程》 DL/T658-98 《火力发电厂顺序控制系统在线验收测试规程》 DL/T659-98 《火力发电厂分散控制系统在线验收测试规程》 NDGJ92-89 《火力发电厂热工自动化内容深度规定》 DL/T5175-2003 《火力发电厂热工控制系统设计技术规定》 DL/T5182-2004 《火力发电厂热工自动化就地设备安装、管路及电缆设计技术规定》

相关文档
相关文档 最新文档