文档库 最新最全的文档下载
当前位置:文档库 › 最新平面向量讲义 学生版

最新平面向量讲义 学生版

最新平面向量讲义  学生版
最新平面向量讲义  学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.

知识点一 向量的概念

思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?

思考2 两个数量可以比较大小,那么两个向量能比较大小吗?

梳理 向量与数量

(1)向量:既有________,又有________的量统称为向量.

(2)数量:只有________,没有________的量称为数量.

知识点二 向量的表示方法

思考1 向量既有大小又有方向,那么如何形象、直观地表示出来?

思考2 0的模长是多少?0有方向吗?

思考3 单位向量的模长是多少?

梳理 (1)向量的表示

①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度

也叫作有向线段AB →的长度,记作________.

②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.

③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a → , b → , c →

,…来表示.

(2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0.

知识点三 相等向量与共线向量

思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗?

思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?

思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗?

梳理 (1)相等向量:____________且____________的向量叫作相等向量.

(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线. ①记法:a 与b 平行或共线,记作________.

②规定:零向量与____________平行.

类型一 向量的概念

例1 下列说法正确的是( )

A .向量A

B →与向量BA →的长度相等 B .两个有共同起点,且长度相等的向量,它们的终点相同

C .零向量没有方向

D .任意两个单位向量都相等

反思与感悟 解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题.

跟踪训练1 下列说法正确的有________.

①若|a |=|b |,则a =b 或a =-b ;

②向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一条直线上;

③向量AB →与BA →是平行向量.

类型二 共线向量与相等向量

例2 如图所示,△ABC 的三边均不相等,E 、F 、D

分别是AC 、AB 、BC 的中点.

(1)写出与EF →共线的向量;

(2)写出与EF →的模大小相等的向量;

(3)写出与EF →相等的向量.

反思与感悟 (1)非零向量共线是指向量的方向相同或相反.

(2)共线的向量不一定相等,但相等的向量一定共线.

跟踪训练2

如图所示,O 是正六边形ABCDEF 的中心.

(1)与OA →的模相等的向量有多少个?

(2)是否存在与OA →长度相等、方向相反的向量?若存在,有几个?

(3)与OA →共线的向量有哪些?

类型三 向量的表示及应用

例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向,向西偏北50°的方向走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.

(1)作出向量AB →、BC →、CD →;

(2)求|AD →|.

反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点. 跟踪训练3 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.

(1)试以B 为终点画一个向量b ,使b =a ;

(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?

1.下列结论正确的个数是( )

①温度含零上和零下温度,所以温度是向量; ②向量的模是一个正实数;

③向量a 与b 不共线,则a 与b 都是非零向量; ④若|a |>|b |,则a >b .

A .0

B .1

C .2

D .3

2.下列说法错误的是( )

A .若a =0,则|a |=0

B .零向量是没有方向的

C .零向量与任一向量平行

D .零向量的方向是任意的

3.如图所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( )

A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →

4.如图所示,在以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.

(1)写出与AF →、AE →相等的向量;

(2)写出与AD →的模相等的向量.

1.向量是既有大小又有方向的量,从其定义可以看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起到数形结合的桥梁作用.

2.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一条直线上.当然,同一直线上的向量也是平行向量.

3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.

2.1 向量的加法 学习目标 1.理解并掌握向量加法的概念,了解向量加法的物理意义及其几何意义.2.掌握向量加法的三角形法则和

高中数学竞赛讲义(8)平面向量

高中数学竞赛讲义(八) ──平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b共线的充要条件是存在实数0,使得a=f 定理 3 平面向量的基本定理,若平面内的向量a, b不共线,则对同一平面内任意向是c,存在唯一一对实数x, y,使得c=xa+yb,其中a, b称为一组基底。

定义 3 向量的坐标,在直角坐标系中,取与x 轴,y轴方向相同的两个单位向量i, j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x, y,使得c=xi+yi,则(x, y)叫做c坐标。 定义4 向量的数量积,若非零向量a, b的夹角为,则a, b的数量积记作a·b=|a|·|b|cos =|a|·|b|cos,也称内积,其中|b|cos叫做b 在a上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x1, y1), b=(x2, y2), 1.a+b=(x1+x2, y1+y2), a-b=(x1-x2, y1-y2), 2.λa=(λx1, λy1), a·(b+c)=a·b+a·c, 3.a·b=x 1x2+y1y2, cos(a, b)=(a, b0), 4. a//b x1y2=x2y1, a b x1x2+y1y2=0. 定义5 若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若 P1,P,P2的坐标分别为(x1, y1), (x, y), (x2, y2),则 定义6 设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h, k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x, y)是F上任意一点,平移 到上对应的点为,则称为平移公式。 定理5 对于任意向量a=(x1, y1), b=(x2, y2), |a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.

平面向量单元测试题(含答案)

平面向量单元检测题 学校学号成绩 一、选择题(每小题5分,共60分) 1.若ABCD是正方形,E是CD的中点,且AB a =,AD b =,则BE =() A. 1 2 b a +B.1 2 b a - C. 1 2 a b +D.1 2 a b - 2.下列命题中,假命题为() A.若0 a b -=,则a b = B.若0 a b ?=,则0 a =或0 b = C.若k∈R,k0 a =,则0 k=或0 a = D.若a,b都是单位向量,则a b ?≤1恒成立 3.设i,j是互相垂直的单位向量,向量13 () a m i j =+-,1 () b i m j =+-,()() a b a b +⊥-,则实数m为() A.2 -B.2 C. 1 2 -D.不存在 4.已知非零向量a b ⊥,则下列各式正确的是()A.a b a b +=-B.a b a b +=+ ... . .

... . . C .a b a b -=- D .a b +=a b - 5. 在边长为1的等边三角形ABC 中,设BC a =,CA b =,AB c =,则a b b c c a ?+?+?的值为 ( ) A . 32 B .32 - C .0 D .3 6. 在△OAB 中,OA =(2cos α,2sin α), OB =(5cos β,5sin β),若5OA OB ?=-,则S △OAB ( ) A B . 2 C .5 D . 52 7. 在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,则四边形ABCD 的形状是 ( ) A .长方形 B .平行四边形 C .菱形 D .梯形 8. 把函数23cos y x =+的图象沿向量a 平移后得到函数 的图象,则向量 是 ( ) A .( 33 ,π-) B .( 36 ,π) C .( 312 ,π-) D .(312 ,π- ) 9. 若点1F 、2F 为椭圆 的两个焦点,P 为椭圆上的点,当△12 F PF 的面积为1时, 的值为 ( ) A .0 B .1 C .3 D .6 2sin()y x π =-6 a 2214 x y +=1 2 PF PF ?

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

平面向量测试题,高考经典试题,附详细答案

平面向量高考经典试题 一、选择题 1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与b A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .4 3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ?+?=______; 答案:3 2 ; 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(, sin ),2 m b m α=+其中,,m λα为实数.若2,a b =则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 5、(山东理11)在直角ABC ?中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2 AC AC AB =? (B ) 2 BC BA BC =? (C )2AB AC CD =? (D ) 2 2 ()() AC AB BA BC CD AB ???= 6、(全国2 理5)在?ABC 中,已知D 是AB 边上一点,若AD =2DB , CD =CB CA λ+3 1 ,则= (A) 3 2 (B) 3 1 (C) - 3 1 (D) - 3 2 7、(全国2理12)设F 为抛物线y 2 =4x 的焦点,A 、B 、C 为该抛物线上三点,若 ++=0,则|FA|+|FB|+|FC|= (A)9 (B) 6 (C) 4 (D) 3 8、(全国2文6)在ABC △中,已知D 是AB 边上一点,若

平面向量复习讲义

平面向量复习讲义 一.向量有关概念: 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是 || AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); 6.相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。如 下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相 同,终点相同。(3)若AB DC = ,则ABCD 是平行四边形。(4)若ABCD 是平行四边形, 则AB DC = 。(5)若,a bb c == ,则a c = 。(6)若/,/a bb c ,则//a c 。其中正确的是_______ (答:(4)(5)) 二.向量的表示方法: 1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i , 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+= ,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 三.平面向量的线性运算: (1)向量加法: ①三角形法则:(“首尾相接,首尾连”),如图,已知向量a 、b.在平面内任取一点A ,作AB =a , =b ,则向量叫做a 与b 的和,记作+a b 定:a + 0-= 0 + a =a, 当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; 当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,

平面向量全部讲义

第一节平面向量的概念及其线性运算 1.向量的有关概念 (1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量. (4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 例1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线 C .不可能都是零向量 D .不可能都是单位向量 例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u u r 等价于四边形 ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .④⑤ CA 2.向量的线性运算 向量运算 定义 法则(或几何意义) 运算律 加法 求两个向量和的运 算 三角形法则 (1)交换律: a + b =b +a ; (2)结合律: (a +b )+ c = a +( b + c ) 平行四边形法则 减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差 三角形法则 a - b =a +(-b ) 数乘 求实数λ与向量a 的积的运算 (1)|λa |=|λ||a |; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0 λ(μ a )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb 例3:化简AC -BD +CD -AB 得( ) D .0 例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r =( ) A .0 B .BE u u u r C .A D u u u r D .CF u u u r (2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =2 3BC .若DE u u u r =λ1AB u u u r +λ2AC u u u r (λ1,λ2为实数),则λ1+λ2的值为________. 巩固练习: 1.将4(3a +2b )-2(b -2a )化简成最简式为______________.

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

重点中学平面向量单元测试题(含答案)

平面向量单元测试题 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.向量a =(1,-2),向量a 与b 共线,且|b |=4|a |.则b =( ) A .(-4,8) B .(-4,8)或(4,-8) C .(4,-8) D .(8,4)或(4,8) 2.已知a=(2,1),b =(x ,1),且a +b 与2a -b 平行,则x 等于( ) A .10 B .-10 C .2 D .-2 3.已知向量a 和b 满足|a |=1,|b |=2,a ⊥(a -b ).则a 与b 的夹角为( ) A .30o B .45o C .75o D .135o 4.设e 1、e 2是两个不共线向量,若向量 a =3e 1+5e 2与向量b =m e 1-3e 2共线, 则m 的值等于( ) A .- 53 B .- 95 C .- 35 D .- 59 5.设□ABCD 的对角线交于点O ,AD → =(3,7),AB → =(-2,1),OB → =( ) A .( -52 ,-3) B .(52 ,3) C .(1,8) D .(1 2 ,4) 6.设a 、b 为两个非零向量,且a ·b =0,那么下列四个等式①|a |=|b |;②|a +b |=|a -b |; ③a ·(b +a )=0;④(a +b )2=a 2+b 2.其中正确等式个数为( ) A .0 B .1 C .2 D .3 7.下列命题正确的是( ) A .若→ a ∥→ b ,且→ b ∥→ c ,则→ a ∥→ c B .两个有共同起点且相等的向量,其终点可能不同 C .向量AB 的长度与向量BA 的长度相等 D .若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线 8.a =),(21-,b =),(1-1,c =),(2-3用a 、b 作基底可将c 表示为c =p a +q b ,则实数p 、q 的值为( ) A .p =4 q =1 B . p =1 q =4 C . p =0 q =4 D . p =1 q =0 9.设平面上四个互异的点A 、B 、C 、D ,已知(DB → +DC → -2DA → )·(AB → -AC → )=0.则ΔABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等边三角形 10.设()()2211,,,y x b y x a ==定义一种向量积()()().,,,21212211y y x x y x y x b a =?=?已知 ,0,3,21,2?? ? ??=??? ??=πn m 点()y x P ,在x y sin =的图象上运动,点Q 在()x f y =的图象上运动,且满足 (),为坐标原点 其中O n OP m OQ +?=则()x f y =的最大值A 及最小正周期T 分别为( ) A .π,2 B ., 2π4 C .,21π4 D .π,2 1 二、填空题:每小题5分,共25分. 11.已知()2,1,10==b a ,且b a //,则a 的坐标为_______ 12.已知向量a 、b 满足 a =b =1,b a 23-=3,则 b a +3 = 13.已知向量a =( 2 ,- 2 ),b =( 3 ,1)那么(a +b )·(a -b )的值是 . 14.若a =(2,3),b =(-4,7),a +c =0,则c 在b 方向上的投影为 . 15.若对n 个向量 a 1,a 2,a 3,…,a n ,存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1 a 1+k 2a 2 +…+k n a n =0成立,则称a 1,a 2,…,a n 为“线性相关”.依此规定,能使a 1=(1,0),a 2=(1, -1),a 3=(2,2)“线性相关”的实数k 1,k 2,k 3 依次可以取 . 三、解答题 16.(本题满分13分)已知向量a =(sin 2x ,cos 2x),b =(sin 2x ,1), )(x f )=8a ·b . (1)求)(x f 的最小正周期、最大值和最小值. (2)函数y=)(x f 的图象能否经过平移后,得到函数y=sin4x 的图象,若能,求出平移向量m ;若不能,则说明理由.

高一 平面向量讲义

平面向量讲义 §2、1 平面向量得实际背景及基本概念 1.向量:既有________,又有________得量叫向量. 2.向量得几何表示:以A 为起点,B 为终点得向量记作________. 3.向量得有关概念: (1)零向量:长度为__________得向量叫做零向量,记作______. (2)单位向量:长度为______得向量叫做单位向量. (3)相等向量:__________且__________得向量叫做相等向量. (4)平行向量(共线向量):方向__________得________向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作________. ②规定:零向量与__________平行. 考点一 向量得有关概念 例1 判断下列命题就是否正确,并说明理由. ①若a ≠b ,则a 一定不与b 共线;②若AB →=DC → ,则A 、B 、C 、D 四点就是平行四边形得四个顶 点;③在平行四边形ABCD 中,一定有AB →=DC → ;④若向量a 与任一向量b 平行,则a =0;⑤若a =b ,b =c ,则a =c ;⑥若a ∥b ,b ∥c ,则a ∥c 、 变式训练1 判断下列命题就是否正确,并说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ; (2)若向量|a |=|b |,则a 与b 得长度相等且方向相同或相反; (3)对于任意|a |=|b |,且a 与b 得方向相同,则a =b ; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反. 考点二 向量得表示方法 例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD → |、 考点三 相等向量与共线向量 例3 如图所示,O 就是正六边形ABCDEF 得中心,且OA →=a ,OB →=b ,OC → =c 、 (1)与a 得模相等得向量有多少个? (2)与a 得长度相等,方向相反得向量有哪些? (3)与a 共线得向量有哪些? (4)请一一列出与a ,b ,c 相等得向量. §2、2 平面向量得线性运算 1.向量得加法法则 (1)三角形法则 如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC → =b ,则向量________叫做a 与b 得与(或与向量),记作__________,即a +b =AB →+BC → =________、上述求两个向量与得作图法则,叫做向量求与得三角形法则. 对于零向量与任一向量a 得与有a +0=________+______=______、 (2)平行四边形法则

平面向量测试题_高考经典试题_附详细答案

平面向量高考经典试题 海口一中高中部黄兴吉同学辅导内部资料 一、选择题 1.(全国1文理)已知向量(5,6)a =-r ,(6,5)b =r ,则a r 与b r A .垂直 B .不垂直也不平行 C .平行且同向 D .平行且反向 解.已知向量(5,6)a =-r ,(6,5)b =r ,30300a b ?=-+=r r ,则a r 与b r 垂直,选A 。 2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2 C .2 D .4 【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得: 2(3,)(1,)303n n n n ?-=-+=?=±, 2=a 。 3、(广东文4理10)若向量,a b r r 满足||||1a b ==r r ,,a b r r 的夹角为60°,则a a a b ?+?r r r r =______; 答案:3 2 ; 解析:1311122 a a a b ?+?=+??=r r r r , 4、(天津理10) 设两个向量22 (2,cos )a λλα=+-r 和(,sin ),2 m b m α=+r 其中,,m λα为 实数.若2,a b =r r 则m λ 的取值范围是 ( A.[6,1]- B.[4,8] C.(,1]-∞ D.[1,6]- 【答案】A 【分析】由22 (2,cos )a λλα=+-r ,(,sin ),2 m b m α=+r 2,a b =r r 可得 2222cos 2sin m m λλαα+=??-=+?,设k m λ =代入方程组可得222 22cos 2sin km m k m m αα+=??-=+?消去m 化简得2 2 22cos 2sin 22k k k αα??-=+ ? --?? ,再化简得

高中数学竞赛讲义_平面向量

平面向量 一、基础知识 定义 1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 21 2121y x y x y y x x +?++(a, b ≠0), 4. a//b ?x 1y 2=x 2y 1, a ⊥b ?x1x2+y 1y 2=0. 定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分2 1P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP 。由此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ 定义6 设F 是坐标平面内的一个图形,将F 上所有的点按照向量a=(h, k)的方向,平移|a|=2 2k h +个单位得到图形'F ,这一过程叫做平移。设p(x, y)是F 上任意一点,平移到'F 上对应的点为)','('y x p ,则? ??+=+=k y y h x x ''称为平移公式。 定理5 对于任意向量a=(x 1, y 1), b=(x 2, y 2), |a ·b|≤|a|·|b|,并且|a+b|≤|a|+|b|. 【证明】 因为|a|2·|b|2-|a ·b|2=))((2 222212 1 y x y x ++-(x 1x 2+y 1y 2)2=(x 1y 2-x 2y 1)2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ),b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2≥0, 又|a ·b|≥0, |a|·|b|≥0, 所以|a|·|b|≥|a ·b|. 由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|. 注:本定理的两个结论均可推广。1)对n 维向量,a=(x 1, x 2,…,x n ), b=(y 1, y 2, …, y n ),同样有|a ·b|≤|a|·|b|,化简即为柯西不等式:≥++++++))((2 22212222 1 n n y y y x x x (x 1y 1+x 2y 2+…+x n y n )2。 2)对于任意n 个向量,a 1, a 2, …,a n ,有| a 1, a 2, …,a n |≤| a 1|+|a 2|+…+|a n |。 二、方向与例题 1.向量定义和运算法则的运用。

中学数学竞赛讲义——平面向量

中学数学竞赛讲义——平面向量 一、基础知识 定义1 既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。 定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。 定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。 定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λf 定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。 定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。 定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作 a ·b=|a|·|b|cos θ=|a|·|b|cos,也称内积,其中|b|cos θ叫做 b 在a 上的投影(注:投影可能为负值)。 定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c , 3.a ·b=x 1x 2+y 1y 2, cos(a, b)= 22 22 21 2 1 2121y x y x y y x x +?++(a, b ≠0), 4. a ?⊥?定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使 21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λ λ++= 12 1OP OP OP 。由 此可得若P 1,P ,P 2的坐标分别为(x 1, y 1), (x, y), (x 2, y 2),则..1121212 121y y y y x x x x y y y x x x --=--=??? ????++=++=λλλλλ

(完整版)《平面向量》测试题及答案

《平面向量》测试题 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为4 3 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=( ) A.103 B.-103 C.102 D.10 6.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( ) A.? ????79,73 B.? ????-73,-79 C.? ????73,79 D.? ????-7 9 ,-73 7.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1 ) 9.设四边形ABCD 中,有DC = 2 1 ,且||=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为( ) A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2 的图像,则a 等于( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。 14.已知:|a|=2,|b|=2,a 与b 的夹角为45°,要使λb-a 垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a ∥b ,则a ·b= 。 16.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

平面向量讲义 - 学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. 知识点一 向量的概念 思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 思考2 两个数量可以比较大小,那么两个向量能比较大小吗? 梳理 向量与数量 (1)向量:既有________,又有________的量统称为向量. (2)数量:只有________,没有________的量称为数量. 知识点二 向量的表示方法 思考1 向量既有大小又有方向,那么如何形象、直观地表示出来? 思考2 0的模长是多少?0有方向吗? 思考3 单位向量的模长是多少? 梳理 (1)向量的表示 ①具有________和长度的线段叫作有向线段,以A 为起点,以B 为终点的有向线段记作________,线段AB 的长度 也叫作有向线段AB →的长度,记作________. ②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________. ③向量也可以用黑体小写字母如a ,b ,c ,…来表示,书写用a → , b → , c → ,…来表示. (2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a 方向上的单位向量,记作a 0. 知识点三 相等向量与共线向量 思考1 已知A ,B 为平面上不同两点,那么向量AB →和向量BA →相等吗?它们共线吗? 思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗? 思考3 若a ∥b ,b ∥c ,那么一定有a ∥c 吗? 梳理 (1)相等向量:____________且____________的向量叫作相等向量. (2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线. ①记法:a 与b 平行或共线,记作________. ②规定:零向量与____________平行. 类型一 向量的概念 例1 下列说法正确的是( ) A .向量A B →与向量BA →的长度相等 B .两个有共同起点,且长度相等的向量,它们的终点相同

高中平面向量测试题及答案

一、选择题 1.已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值为( ) A .-2 B .0 C .1 D .2 2.已知点A (-1,0),B (1,3),向量a =(2k -1,2),若AB → ⊥a ,则实数k 的值为( ) A .-2 B .-1 C .1 D .2 3.如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为( ) A .-3 B .2 C .-1 7 4.在平行四边形ABCD 中,E 、F 分别是BC 、CD 的中点,DE 交AF 于H ,记AB →、BC → 分别为a 、b ,则AH → =( ) a -45b a +45b C .-25a +45b D .-25a -45b 5.已知向量a =(1,1),b =(2,n ),若|a +b |=a ·b ,则n =( ) A .-3 B .-1 C .1 D .3 6.已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →)( ) A .最大值为8 B .是定值6 C .最小值为2 D .与P 的位置有关 7.设a ,b 都是非零向量,那么命题“a 与b 共线”是命题“|a +b |=|a |+|b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( ) A .30° B .60° C .120° D .150° 9.设O 为坐标原点,点A (1,1),若点B (x ,y )满足????? x 2+y 2-2x -2y +1≥0,1≤x ≤2,1≤y ≤2,则OA →·OB →取得最 大值时,点B 的个数是( ) A .1 B .2 C .3 D .无数 10.a ,b 是不共线的向量,若AB →=λ1a +b ,AC → =a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1·λ2+1=0 D .λ1λ2-1=0 11.如图,在矩形OACB 中, E 和 F 分别是边AC 和BC 的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF → 其中λ,μ∈R ,则λ+μ是( )

必修4 平面向量(讲义和练习)

《必修4》 第二章 平面向量 一、知识纲要 1、向量的相关概念: (1) 向量: 既有大小又有方向的量叫做向量,记为AB 或a 。 向量又称矢量。 ①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。普通的数量都是标量,力是一种常见的向量。②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。 (2)向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。 记作:|AB |或|a |。 向量本身不能比较大小,但向量的模可以比较大小。 (3)零 向 量: 长度为0的向量叫零向量,记为0 ,零向量的方向是任意的。 ①|a |=0; ②0 与0的区别:写法的区别,意义的区别。 (4)单位向量:模长为1个单位长度的非零向量叫单位向量。 若向量a 是单位向量,则|a |= 1 。 2、 向量的表示: (1) 几何表示法:用带箭头的有向线段表示,如AB ,注意:方向是“起点指向终点”。 (2) 符号表示法:用一个小写的英文字母来表示,如a ,b → 等; (3) 坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴正方向相同的两个单位向量 i 、j 为基底向量,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的 坐标,a =(),x y 叫做向量a 的坐标表示。此时|a |。 若已知1122(,)(,)A x y B x y 和,则()2121=--AB x x y y ,, 即终点坐标减去起点坐标。 特别的,如果向量的起点在原点,那么向量的坐标数值与向量的终点坐标数值相同。

相关文档