文档库 最新最全的文档下载
当前位置:文档库 › 镭射卡的应用范围

镭射卡的应用范围

镭射卡的应用范围
镭射卡的应用范围

镭射卡的应用范围

本文由“联合智能卡”编辑,在智能卡的表面烫镭射金或者烫镭

射银变成镭射卡,卡的材质是采用了普通PVC,在卡的表面上不同

局部镭射也会产生不同的效果,视觉也会不一样。因为镭射卡的颜色

绚丽多彩,高档华丽,派发客户,彰显个性,同时因为镭射的效果让

卡的防模仿性和防复制性比其他智能卡更高。使卡的流通性更强。是

制作高端会员卡、贵宾卡、铂金卡、钻石卡的首要之选。

镭射卡被广泛应用在商场、KTV、酒吧、卖场、等等消费场所。

镭射卡技术参考:

产品材质镭射PVC材质

产品规格长×宽×厚:85.5×54(mm)

可加工艺胶印、丝印、金/银底、撒银粉、签名条、烫金/银/镭射或其他彩金、磁条、贴标

打码方式凹凸码、条形码、平码、喷码、

应用范围适合于高端会员卡、贵宾卡、铂金卡、钻石卡且可以根据的要求制作成IC卡、ID卡等。

镭射效果全镭射和局部镭射,镭射的材料和图案的不同,呈现的视觉效果也不同。客户可以根据效果的不同选择。

激光雷达在气象和大气环境监测中的应用

激光雷达在气象和大气环境监测中的应用 摘要:在目前,激光雷达属于运用非常广泛的现代光学遥控设备,是传统雷达 与现代激光技术相融合的产物,在大气环境监测中占据较为重要的地位。文章主 要探讨了激光雷达在气象和大气环境监测中的应用。 关键词:大气环境监测;激光雷达技术;应用要点 前言 激光雷达融合了激光技术和光学以及信息解析方面的知识,将其融入一种现 代化遥感方法。激光雷达在探测波长方面有所缩短,并且波束定位性非常强,所 以自身拥有较强的分辨率与灵敏度,可以精准测量盲区。通常激光雷达能在一定 程度上达到对大气环境、海洋以及陆地的探测,在各个区域占据非常重要的作用。 1.激光雷达概述 在对大气环境中污染物进行监测时,需有效分析气象原因,探测大气中的成分。一般激光雷达可以有效检测出气溶胶与云粒子详细的分布情况,并且可以检 测出大气成分、污染环境气体,有效管理污染源于城市上空的扩散情况。激光发 射和回波信号以及采集、控制等都属于激光雷达系统。激光束和大气物质相互的 作用,便能产生一定的回波信息,其中大气探测激光雷达实施大气探测是较为重 要的一点[1]。激光雷达在探测大气环境时,主要探测的是云、雾、能见度、大气 气溶胶等方面,当探测器夹杂着被测物质相关的信息,便可对其实施分析,获得 相应的大气物理要素。 当前,我国激光雷达获得了非常大的进步,在我国研究院大气物理研制出新 型的激光雷达,与此同时,携带着能见度较高的YAG雷达。在研究院中,研究出 的激光雷达具有非常强的优势。中科院研究中的激光雷达技术获得了较为明显的 成绩。前后研制出我国第一台测污激光雷达,分别为监测乙烯JC-1激光雷达、平 流层气溶胶探测L625激光雷达等。 2.激光雷达在气象中的应用 为了达到气象的需求,取得相应的区域性大气参数三维空间分布,在国际激 光雷达中,逐渐建立了许多区域性面积空间,来覆盖地基激光雷达观测网。其中 主要有全球大气成分探测网、独联体激光雷达观测网等[2]。近阶段,在世界范围内,正计划建立全球大气气溶胶激光雷达观测网。主要目的便是评估全球气候变化、空气质量评估等,可以合理应对突发事件。 激光雷达根据运载平台,可以将其分为地基固定式、车载式以及机载式等方式。像地基固定式、车载式、记载式等区域,在观测区域中,都拥有相应的区域 约束,非常不容易实施全球区域内的连续观测。然而,研究气候过程中,只实施 局部大气探测是不可以,但是,采用星载式激光雷达便能从根源解决此难题[3]。 在当前,许多地方都在研究星载激光雷达,例如:美国、日本等发达国家,都提 出了使用星载LDAR发展计划,其中美国是最初的使用者,它可以对全球云、气 溶胶垂直结构等方面实施全面的观测。基于技术原因,发射时间会有所推迟。 3.大气环境监测中激光雷达技术的运用 在以往,激光雷达属于新兴遥感探测技术,在空间分辨率、测量精度等方面 都拥有很大的优点,并慢慢应用到了大气科学、环境、气候等领域。依照探测物 质不一,可以对其进行分类,从而介绍如何使用激光雷达技术。当前的激光雷达 技术在技术方面难度非常大,实际应用中仍然会存在以下缺点,例如:受到大气 光的影响,会降低光的传输效应,导致遇到以下雨、雪、等天气都没有办法进行

激光雷达基础知识

什么是色散呢? 当光纤的输入端光脉冲信号经过长距离传输以后,在光纤输出端,光脉冲波形发生了时域上的展宽,这种现象即为色散。以单模光纤中的色散现象为例,如下图所示: 如何消除色度色散对DWDM系统的影响: 对于DWDM系统,由于系统主要应用于1550nm窗口,如果使用G.652光纤,需要利用具有负波长色散的色散补偿光纤(DCF),对色散进行补偿,降低整个传输线路的总色散。 光的衍射 光在传播过程中,遇到障碍物或小孔时,光将偏离直线传播的途径而绕到障碍物后面传播的现象,叫光的衍射(Diffraction of light)。 光的衍射和光的干涉一样证明了光具有波动性。

物理学中,干涉(interference)是两列或两列以上的波在空间中重叠时发生叠加从而形成新的波形的现象。 光的干涉 光的干涉现象是波动独有的特征,如果光真的是一种波,就必然会观察到光的干涉现象。定义:两列或几列光波在空间相遇时相互叠加,在某些区域始终加强,在另一些区域则始终削弱,形成稳定的强弱分布的现象,证实了光具有波动性。 两束光发生干涉后,干涉条纹的光强分布与两束光的光程差/相位差有关:当相位差为周期的整数倍时光强最大;当相位差为半周期的奇数倍时光强最小。从光强最大值和最小值的和差值可以定义干涉可见度作为干涉条纹清晰度的量度。 只有两列光波的频率相同,相位差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。 大气气溶胶 大气气溶胶是液态或固态微粒在空气中的悬浮体系。它们能作为水滴和冰晶的凝结核、太阳辐射的吸收体和散射体,并参与各种化学循环,是大气的重要组成部分。雾、烟、霾等都是天然或人为原因造成的大气气溶胶。 大气气溶胶是悬浮在大气中的固态和液态颗粒物的总称,粒子的空气动力学直径多在0.001~100μm之间,非常之轻,足以悬浮于空气之中,当前主要包括6 大类7种气溶胶粒子,即:沙尘气溶胶、碳气溶胶(黑碳和有机碳气溶胶)、硫酸盐气溶胶、硝酸盐气溶胶、铵盐气溶胶和海盐气溶胶。 散射特性:气溶胶质点能发生光的散射,这是使天空成为蓝色,太阳落山时成为红色的原因。 多普勒频移 当移动台以恒定的速率沿某一方向移动时,由于传播路程差的原因,会造成相位和频率的变化,通常将这种变化称为多普勒频移。 多普勒效应造成的发射和接收的频率之差称为多普勒频移。它揭示了波的属性在运动中发生变化的规律。 主要内容为:物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift)。多普勒频移,当运动在波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift)。 多普勒频移及信号幅度的变化等如图所示。当火车迎面驶来时,鸣笛声的波长被压缩(如图2右侧波形变化所示),频率变高,因而声音听起来尖利刺耳。当火车远离时,声音波长就被拉长(如图2左侧波形变化所示),频率变低,从而使得声音听起来减缓且低沉。

项目一车削加工的基本知识

课题一车削加工的基本知识 一、是非题(是画√ 非画×) 1、工件旋转作主运动车刀作进给运动的切削加工方法称为车削。() 2、变换主轴箱外手柄的位置可使主轴得到各种不同转速。() 3、卡盘的作用是用来装夹工件带动工件一起旋转。() 4、车削不同螺距的螺纹可通过调换进给箱内的齿轮实现。() 5、光杠是用来带动溜板箱使车刀按要求方向作纵向或横向运动的。() 6、光杠是用来车削螺纹的。() 7、变换进给箱手柄的位置在光杠或丝杆的传动下能使车刀按要求方向作进给运动。 ()8、小滑板可左右移动角度车削带锥度的工件。() 9、床鞍与车床导轨精密配合纵向进给时可保证径向精度。() 10、机床的类别用汉语拼音字母表示居型号的首位其中字母“C”是表示车床类。() 11、对车床来说如第一位数字是“6” 代表的是落地及卧式车床组。() 12、C6140B 表示第二次改进的床身上最大工件回转直径达 400mm 的卧式车床。() 13、CM6140 车床比 C6136车床床身上最大工件回转直径要大。() 14、CQM6132 车床型号中的 32 表示主轴中心高为 320mm。() 15、在机床型号中通用特性代号应排在机床类代号的后面。() 16、车床工作中主轴要变速时必须先停车变换进给箱手柄位置要在低速时进行。() 17、为了延长车床的使用寿命必须对车床上所有摩擦部位定期进行润滑。() 18、车床露在外面的滑动表面擦干净后用油壶浇油润滑。() 19、主轴箱和溜板箱等内的润滑油一般半年需更换一次。() 20、主轴箱换油时先将箱体内部用煤油清洗干净然后再加油。()

21、车床主轴箱内注入的新油油面不得高于油标中心线。() 22、车床尾座中、小滑板摇动手柄转动轴承部位每班次至少加油一次。() 23、油脂杯润滑每周加油一次每班次旋转油杯盖一圈。() 24、对车床进行保养的主要内容是清洁和必要的调整。() 25、车床运转 500h 后需要进行一级保养。() 26、一级保养以操作工人为主维修人员进行配合。() 27、开机前在手柄位置正确情况下需低速运转约 2min 后才能进行车削。 ()28、装夹较重较大工件时必须在机床导轨面上垫上木块防止工件突然坠下砸 伤导轨。() 29、在切削时车刀出现溅火星属正常现象可以继续切削。() 30、车工在操作中严禁戴手套。() 31、切削液的主要作用是降低温度和减少摩擦。() 32、粗加工时加工余量和切削用量均较大因而会使刀具磨损加快所以应选 用以润滑为主的切削液。() 33、以冷却为主的切削液都呈碱性。() 34、乳化液的比热容小粘度小流动性好主要起润滑作用。() 35、乳化液是将切削油用 15 20 倍的水稀释而成。

项目一车削加工的基本知识习题集及答案

项目1 车削加工的基本知识习题集及答案 1、车床主要由哪里部分组成? 答:车床主要由主轴变速箱、交换齿轮箱、进给箱、溜板部分、刀架、尾座及冷却、照明等部分组成。 2、车床上主要有哪里运动?其含义是什么? 答:主要有切削运动,切削运动主要指工件的旋转运动和车刀的直线运动。车刀的直线运动又叫进给运动,进给运动分为纵向进给运动和横向进给运动。 (1)主运动:车削时开成切削速度的运动叫主运动。工件的旋转运动就是主运动。 (2)进给运动:使工件多余材料不断被车去的运动叫进给运动。车外圆是纵向进给运动,车端面、切断、车槽是横向进给运动3、切削用量要素有哪几个?它的定义、单位及计算公式是什么?答:三要素:背吃刀量、进给量、切削速度。 (1)背吃刀量αp:车削时工件上待加工表面与已加工表面间的垂直距离。 计算①切断、车槽时,αp=车刀主切削刃的宽度 ②车外圆时ap=dw-dm/2 (dw——待加工表面直径dm——已加工表面直径) (2)进给量(f)(单位:mm/r)定义工件旋转一周,车刀沿进给方向移动的距离。 (3)切削速度(Vc)(单位:m/min):定义主运动的线速度

计算①车外圆时,Vc= πdn/1000(d——工件待加工表面直径,mm n ——主轴转速,r/ min vc——切削速度,m/min) 4、车削直径为50mm的轴类工件外圆,要求一次进给车削到46mm,若选用Vc=80m/min的切削速度,求背吃刀量和主轴转速各是多少? 答:由工式:ap=dw-dm/2 可得背吃刀量为2mm 再由工式:Vc= πdn/1000得n=1000*80/3.14/50=510r/min 5、车床润滑方式主要有哪几种?车床一级保养的周期有多长?保养的主要内容是什么? 答:主要有:常用方式:浇油、油绳、直通式压注油杯等一级保养运行500个小时后,就需进行一级保养,保养的主要内容是:清洗、润滑、进行必要的调整 6、切削液的作用是什么?常用切削液有哪两大类?每类的主要作用是什么? 答:作用是冷却、润滑、清洗、防锈 常用的有:乳化液和切削油。 乳化液乳化油加15-20倍水稀释而成主要起冷却作用 切削油主要成分矿物油主要起润滑作用 7、试述前刀面、主后刀面、副后刀面、刀尖、主切削刃、副切削刃、修光刃的定义。 答:前刀面:刀具上切屑流过的表面。 主后刀面:与过渡表面相对的刀面

激光雷达在军事中的应用

激光雷达在军事中的应用 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状.Laser rader’s character was briefly introduced in this essay.Besides,its elementary physical fundamental was also introduced as well al its use from military field. 关键词:激光雷达;探测;军事应用 1引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式即为直接探测和外差探测。它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响. 由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好.激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达.激光雷达在军事上可用于对各种飞行目标轨迹的测量。如对导弹对卫星的精密定轨等。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光雷达可以对大气进行监测,遥测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。用激激光器作为辐射源的雷达。 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息. 例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64

激光雷达回波信号仿真模拟

激光雷达回波信号仿真模拟研究 摘要 关键字 第一章绪论 第一节引言 激光雷达(Lidar:Li ght D etection A nd R anging),是一种用激光器作为辐射源的雷达,是激光技术与雷达技术完美结合的产物。激光雷达的最基本的工作原理与我们常见的普通雷达基本一致,即由发射系统发射一个信号,信号到达作用目标后会产生一个回波信号,我们将回波信号经过收集处理后,就可以获得所需要的信息。与普通雷达不同的是,激光雷达的发射信号是激光而普通雷达发射的信号是无线电波,两者在波长上相比,激光信号要短的多。由于激光的高频单色光的特性,激光雷达具有了许多普通雷达无法比拟的特点,比如分辨率高,测量、追踪精度高,抗电子干扰能力强,能够获得目标的多种图像,等等。因此,利用激光雷达对大气进行监测,收集、分析数据,建立一个大气环境预测理论模型,这将会成为研究气候变化和寻求解决对策的一项重要武器。 第二节本文的选题意义 由于投入巨大,在研制激光雷达实物之前,我们需要进行模拟与仿真研究,预测即将研制的激光雷达的各性能指标,评价总体方案的可行性。激光雷达回拨信号仿真模拟就是利用现代仿真技术,逼真的复现雷达回波信号的动态过程,它是现代计算机技术、数字模拟技术和激光雷达技术相结合的产物。仿真模拟的对象是激光雷达的探测没标以及它所处的环境,模拟的手段是利用计算机和相关设备以及相关程序,模拟的方式是复现包含着激光雷达目标和目标环境信息的雷达信号。通过激光雷达回波信号的仿真模拟,进而产生回波信号,我们可以在实际雷达系统前端不具备条件的情况下,对激光雷达系统的后级设备进行调试。 第三节本文的研究思路和结构安排 本文主要研究面向气象服务应用的大气激光雷达。笔者在熟悉激光雷达的基本工作原理的前提下,学习和熟悉各种参数对大气回波能量的影响,进而学习和掌握matlab编程语言,并且根据给定的激光雷达系统参数、大气参数和光学参数,以激光雷达方程为基础,通过仿真模拟得到理想状态下的大气回波信号。但是,在实际测量工作中,由于大气中的各种干扰,我们获得的回波信号并不和理想状态下的大气回波信号一致,因此,在本文的后期工作中,笔者根据已有的大量激光雷达实测信号与模拟信号对比,既能验证仿真模拟结果的准确性,又能应用于激光雷达的性能指标等方面的分析上,具有比较高的实际应用价值。 第二章激光雷达的原理 第一节激光雷达系统 一个标准的激光雷达系统应该包含以下部件:激光器、发射系统、接收系统、光学系统、信号处理系统以及显示系统。它的工作原理图我们可以用下图表示:

激光雷达在大气环境监测中的应用

激光雷达在大气环境监测中的应用 鲁岸立sc12002044 摘要:本文介绍了RAMAN激光雷达、多普勒激光雷达、MIE激光雷达的工作原理。并讨论了它们在气象和环境监测中的应用。 1.RAMAN激光雷达 RAMAN散射是激光与大气中各种分子之间的一种非弹性相互作用过程,散射光的波长和入射光不同,产生了向长波或短波方向的移动。散射光频率的改变 v~因入 r 射光和受作用的分子不同而异。分析该散射光的频率和强度的光谱图可以得到大气分子的相关信息,所以Raman 散射激光雷达可以用来测量环境中某种污染气体的浓度分布,接收系统用的是光谱分析仪,以便接收污染分子散射的不同Raman 散射波长的回波信号。 图1 RAMAN激光雷达结构原理图

图2 典型的污染物分子相对于激光频率的振动-转动拉曼散射频率 变化 在实验中用RAMAN激光雷达测量了羽油烟和机动车尾气的组成成分。RAMAN激光雷达使用的是波长337.1nm的激光作为探测光。首先给出正常大气气体的拉曼后向散射及频率不变成分包括瑞利及米散射成分的光谱图。 图3 正常大气气体的拉曼后向散射及频率不变成分包括瑞利及米散射成 分的光谱图 图3中每个箭头对应一特定分子的拉曼散射线的中心波长。正常大气中的主要成分包括N2,O2,水汽分子,CO2在光谱图中可以方便的检测出来。 在得到正常大气气体的光谱图之后,用激光雷达337.1nm波长激光分析羽油烟气体和机动车尾气中各种成分的拉曼频移,从而得出羽油烟气体具体组成。

图4 羽油烟气体中各组分分子的拉曼光谱图 图5 机动车尾气中各组分分子的拉曼光谱图 由探测结果可以看出,羽油烟气体和机动车尾气中除了包括N2,O2,水汽分子,CO2 还探测到了SO2,CO,H2S等有害气体。 RAMAN激光雷达不仅可以检测分析污染气体成分,还可以进行气溶胶探测。中科院安徽光机所在原有的一台Mie散射激光雷达的基础上,增加了一个

激光雷达技术在气象中的应用

激光雷达论文 激光雷达技术在气象中的应用 摘要

激光束与大气物质相互作用而产生回波信号是大气探测激光雷达进行大气探测的关键。激光雷达探测大气环境的工作原理是激光器发射的激光通过与大气中的气溶胶及各种大气成分的作用而产生后向散射信号。对探测器接收的携带着被测物质有关的信息(吸收、散射等)进行分析处理便可得到所需的大气物理要素(如大气消光系数、速度、密度等)。 本文主要介绍了激光雷达在气象要素即大气温度、大气湿度和风速中的应用。 关键词:激光雷达气象要素温度风速 目录 一.引言 (4) 二.激光雷达在大气温度检测中的应用 (4)

2.1基于瑞利散射的大气温度检测研究 (4) 2.1.1基于测量瑞利散射回波能量的方法 (5) 2.1.2基于测量瑞利散射半高线宽的方法 (5) 2.2基于拉曼散射的大气温度检测研究 (6) 2.2.1基于转动拉曼散射的方法 (6) 2.2.2基于振动拉曼散射的方法 (7) 三.激光雷达在大气湿度中的应用 (7) 四.激光雷达在风速检测中的应用 (8) 五.参考文献 (9) 六.心得体会 (9)

一.引言 激光雷达系统从整体上可分为激光发射、回波信号接收和采集以及控制三大部分。激光束与大气物质相互作用而产生回波信号是大气探测激光雷达进行大气探测的关键。激光雷达探测大气环境的工作原理是激光器发射的激光通过与大气中的气溶胶及各种大气成分的作用而产生后向散射信号。对探测器接收的携带着被测物质有关的信息(吸收、散射等)进行分析处理便可得到所需的大气物理要素(如大气消光系数、速度、密度等)。在大气环境污染观测中有关风速、气温、湿度等气象要素是不可缺少的重要参数,所以可以将激光雷达技术在气象中的应用按其要素分为在大气温度检测中的应用、在大气湿度检测中的应用、在风速检测中的应用。 二.激光雷达在大气温度检测中的应用 在进行大气物理特性测试、天气预报相关大气参数的获取以及环境监测等领域中,大气温度是至关重要的一个参数。大气温度及其分布的相关信息的准确获取,对正确评估大气物性及其变化趋、!对流活动、云层状态等一系列构成大气复杂系统的参量,具有及其重要和最基本的意义。目前大气温度探测较成功的系统有瑞利散射激光雷达系统和转动拉曼散射激光雷达系统,理论及已发表的研究成果表明,这两种系统是在理论和实际应用上都各有优势、物理上可实现的系统。 2.1基于瑞利散射的大气温度检测研究 瑞利散射是一种中心波长与入射激光波长相同,谱宽依存大气温度变化的弹性散射,它是由散射体粒径比激光波长小的分子或原子引起的散射现象,主要用于大气温度、大气分子密度等参数的测量。

第一章 切削加工基础知识

第一章切削加工基础知识 一、本章的教学目的与要求 本章主要介绍了机械加工基础知识。重点应掌握切削运动及切削用量概念;切削刀具及其材料基本知识;切削过程的物理现象及控制;砂轮及磨削过程基本知识;材料切削加工性概念;机械加工工艺过程基本概念;机械加工质量的概念等。掌握本章内容为后续内容的学习打基础,为初步具备分析、解决工艺问题的能力打基础,为学生了解现代机械制造技术和模式及其发展打基础。学生学习本章要注意理论联系生产实践,才能更好体会,加深理解。可通过课堂讨论、作业练习、实验、校内外参观等及采用多媒体、网络等现代教学手段学习,以取得良好的教学效果。为学好本章内容,可参阅邓文英主编《金属工艺学》第4版、傅水根主编《机械制造工艺基础》(金属工艺学冷加工部分)、李爱菊等主编《现代工程材料成形与制造工艺基础》下册及相关机械制造方面的教材和期刊。 二、授课主要内容 1切削运动和切削要素 主要学习零件表面的形成、切削运动、切削用量、切削层参数 2切削刀具和切削过程 主要学习切削刀具材料、车刀、刨刀、镗刀、麻花钻、铣刀的结构及刀具几何角度,切削的形成及形态、积屑瘤、切削力、切削热和切削温度、刀具磨损和刀具耐用度3磨具和磨料切削 主要学习磨具和磨削原理 4材料的切削加工性 主要学习衡量材料切削加工性能的指标、常用材料的切削加工性、改善材料切削加工性的方法 5机械加工工艺过程基本概念 主要学习工艺过程的基本概念、工件的安装和夹具、基准及其选择原则、工件在夹具中的定位 6机械加工质量的概念 主要学习机械加工精度、机械加工表面质量 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 让学生重点掌握切削运动及切削用量概念、切削刀具及其材料基本知识、切削过程、砂轮及磨削过程、

车工认识的基本学习知识

<<车工认识的基本知识>>教学案例 <<车工认识的基本知识>>教学案例 一、【教学设计思路】 切削加工有手工切削、机械切削、数控切削等几个手段。机械切削较手工切削有提高加工效率,降低劳动强度等优点。机械切削是通过机床对金属或其它材质的坯料或工件进行的切削,使之获得所要求的几何形状、尺寸精度和表面质量。而车床是使用最广泛的机床,可用于切削外圆、端面、台阶、锥面、孔、槽及各种螺纹。夹持和调速是利用车床对工件进行切削前的准备工作,是确保质量的重要基础。 本节内容包括三个方面:一是车床的构造;二是车速调整;三是夹持(工件、钻头、车刀)。 本设计思路是通过对切削加工的两种手段(手工加工与机械加工)的比较,激发学生学习机械加工技术的兴趣。以车床为载体,通过教师的介绍了解机床的构造和各部件的作用;示范夹持(工件、车刀)和调整车床转速的操作方法。引导学生进行工件夹持和调速的操作练习,尽快掌握夹持和调速的技术要领。 在教学过程中,可根据各学校的情况及学生学习能力的不同,适当调整教学层次,增加相关的加工技术知识。 本设计的重点:(1)了解车床结构及切削运动方式。(2)车速的调整。(3)工件的夹持。 本设计的难点:车刀夹持时刀尖与轴线等高的调整。教师可通过示范讲解,或通过个别学生的示范操作,教师指导,组织讨论等手段了解车刀的正确夹持方法。 本节教学建议2-3课时。 二、【教学目标】

1、知识与技能: (1)了解车床构造,知道车床各部件的作用。 (2)初步学会正确夹持工件。 (3)学会准确开关车床和调速。 2、过程与方法: (1)通过阅读教材、观察微型车床,了解微型车床的构造和各部件的作用。 (2)通过教师示范和亲自动手操作,掌握车床调速和卡盘夹持工件的技术方法。 3、情感与价值: 在操作中认识到遵守操作规范是保障安全的前提,逐步养成安全操作的习惯。 三、【重点与难点】 重点: 1、了解切削运动方式和车床结构。 2、学会工件的夹持。 难点: 车刀的夹持。 四、【教学器材】 教具:微型车床、钢尺、卡盘钥匙、工件、车刀、摄像头、电视机。 学具:微型车床、钢尺、卡盘钥匙、工件。

激光雷达探测大气气溶胶研究进展

激光雷达探测大气气溶胶研究进展 周军 (中国科学院大气成分与光学重点实验室,合肥市230031)摘要本文分析了米散射(Mie)激光雷达、拉曼(Raman)激光雷达、高光谱分辨激 光雷达(HSRL)及偏振(Polarization)激光雷达在大气气溶胶探测研究中的特点及其应用进展。随着激光技术、光学机械加工技术、信号探测与采集技术的发展和新的探 测原理与方法的涌现,大气气溶胶探测激光雷达取得了长足的技术进步。激光雷达由 单波长单功能向多波长多功能发展;由仅仅夜晚探测向白天夜晚连续探测发展;由需 要人工干预向着无人值守自动化运行发展;由实验室的研究设备型向商业化产品型转 化。对于大气气溶胶光学参数、微物理参数和气溶胶分类的探测研究,需要定量地获 取多波长大气气溶胶消光系数、后向散射系数及退偏振比等光学参数,如2α(355nm,532nm)+3β(355nm,532nm,1064nm)+2δ(355nm,532nm)等。为此,研制被称 之为Next generation aerosol lidar的多波长Raman/HSRL-Mie-Polarization激光雷达系统为激光雷达界所关注。为了适应区域性和全球气候与环境变化对大气气溶胶三维空间 分布和时间演变资料(4D)的需求,近些年来,先后建立了区域性的地基大气气溶胶激光雷达观测网(如EARLINET、AD-Net等)。国际气象组织(WMO)正在此基础上组建全球大气气溶胶激光雷达观测网,G AW A esosol LI dar O bservation N etwork (GALION)。同时,气溶胶激光雷达的支撑平台也由地基向机载(如国家航空遥感系统)和星载(如CALIPSO)方向发展。 关键词激光雷达、大气气溶胶、气溶胶观测网 1. 气溶胶激光雷达的功能 2008年10月世界气象组织(WMO)发布的GAW Report No.178《Plan for implementation of the GAW Aerosol Lidar Observation Network GALION》文件中明确地给出了各种类型的激光雷达探测大气气溶胶的功能[1],如表1所示。 表1.各种类型的激光雷达探测大气气溶胶(云)的功能。

车床加工基本知识

车床加工基本知识 一、车刀材料 在切削过程中,刀具的切削部分要承受很大的压力、摩擦、冲击和很高的温度。因此,刀具材料必须具备高硬度、高耐磨性、足够的强度和韧性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。 常用车刀材料主要有高速钢和硬质合金。 1.高速钢 高速钢又称锋钢、是以钨、铬、钒、钼为主要合金元素的高合金工具钢。高速钢淬火后的硬度为HRC63~67,其红硬温度550℃~600℃,允许的切削速度为25~30m/min。 高速钢有较高的抗弯强度和冲击韧性,可以进行铸造、锻造、焊接、热处理和切削加工,有良好的磨削性能,刃磨质量较高,故多用来制造形状复杂的刀具,如钻头、铰刀、铣刀等,亦常用作低速精加工车刀和成形车刀。 常用的高速钢牌号为W18Cr4V和W6Mo5Cr4V2两种。 2.硬质合金 硬质合金是用高耐磨性和高耐热性的WC(碳化钨)、TiC(碳化钛)和Co(钴)的粉末经高压成形后再进行高温烧结而制成的,其中Co起粘结作用,硬质合金的硬度为HRA89~9 4(约相当于HRC74~82),有很高的红硬温度。在800~1000℃的高温下仍能保持切削所需的硬度,硬质合金刀具切削一般钢件的切削速度可达100~300m/min,可用这种刀具进行高速切削,其缺点是韧性较差,较脆,不耐冲击,硬质合金一般制成各种形状的刀片,焊接或夹固在刀体上使用。 常用的硬质合金有钨钴和钨钛钴两大类: (1)钨钴类(YG) 由碳化钨和钴组成,适用于加工铸铁、青铜等脆性材料。 常用牌号有YG3、YG6、YG8等,后面的数字表示含钴量的百分比,含钴量愈高,其承受冲击的性能就愈好。因此,YG8常用于粗加工,YG6和YG3常用于半精加工和精加工。(2)钨钛钴类(YT) 由碳化钨、碳化钛和钴组成,加入碳化钛可以增加合金的耐磨性,可以提高合金与塑性材料

最新榔头柄的车削工艺流程

1.材料:铜棒,尺寸Φ10mmX182mm。 2. 熟悉图纸过程,了解工件的工艺流程,保证能够达到工件的尺寸与精度要求。 3. 安装工件,熟悉车床的附件,四爪卡盘、花盘、中心架、跟刀架的特点。用三爪卡盘,要对其外圆及端面找正。(长度夹出30mm左右,太长刚性不足,以免折断)。 4. 选择车削端面刀具,了解刀具的材料和适用于工件的材料: 45°外圆刀(白钢刀);安装车刀时严格对准工件中心,以免端面出现凸台,造成崩坏刀尖。 5. 车两个端面之尺寸为180mm,粗糙度符合图纸要求。 6. 车削螺纹M8X1.25的Φ8的外圆:选择90°外圆车刀,先进行外圆对零,试切到Φ9mm,合理选择进给量,车削尺寸至Φ 。操作中学会千分尺的使用,注意尺寸精度要求。 7. 选择60°螺纹刀具车Φ8mm处的倒角1X30°。 8. 加工退刀槽:正确选择切槽刀具,及合理的转速;手动匀速移动进给,切退刀槽Φ6mmX2.5mm。 9. 螺纹的加工:用套丝的方法加工M8X1.25。 进一步介绍螺纹的种类和作用,介绍螺纹的几种加工方法,进给箱手轮的变换,切削转速的选择要点。 10.调头:加工右边的切槽部分及倒角,位置和尺寸由同学自定。 11.调头:加工左边的Φ8X53mm与3°锥面之长度73mm。

锥面的四种加工方法。本实例中3°的锥面采用转动小溜板法加工,优点是能车削整个锥面和锥角很大的工件,缺点是不能自动走刀,劳动强度大,表面光洁度较难控制。其它的锥面加工方法:靠模法、偏移尾架法、宽刃刀车削法的特点和适用性简介。 12.抛光处理:进行合理的选择转速,用砂纸抛光。提醒操作者掌握安全注意事项。

激光雷达综述

激光雷达技术及其应用综述 一、激光雷达的概念 激光雷达(LIDAR-Light Detected And Ranging)是一套复杂的光机系统,它结合了光源、光电探测等技术,有时还包括计算机图象处理技术,能够同时获得方位、俯仰角度、距离、强度等信息,特别适合用于森林结构的估计、城市建设、工业、农业、航空航天等领域[1]。一个典型的激光雷达结构示意图,如图1所示。激光雷达是一种主动式遥感探测设备,从工作原理来说,它只是把传统微波雷达的光源变成了激光:向被测目标发射激光信号,然后接收反射回来的信号、并与发射信号进行比较,作适当处理后,就可获得目标的有关信息。 激光雷达不同于机器视觉技术,使用的是更为精确的激光光源和光电传感器,而机器视觉多是使用普通相机摄像头探测和CCD或CMOS作为图像传感器。激光雷达可以实现较大测量范围内的3D立体探测,但易受环境天气因素影响;使用微波(毫米波)雷达的机器视觉探测技术,立体测量范围有限、精度不高,但抗干扰性强、测量距离远。 图 1 典型激光雷达系统结构 二、激光雷达的关键技术 2. 1 光源技术 激光雷达系统中使用的光源,目前主要是CO2激光器,半导体激光器(LD)和以Nd:YAG 为主的固体激光器。 较远测程(数百米以上)的二极管激光成像雷达对其辐射源的要求, 一是具有足够高的输出功率, 二是具有足够窄的发射波束。目前商品化的二极管激光器虽可分别达到10W 的平均功率和衍射极限的波束质量, 但同一器件却难以同时满足这两项要求。一种可能的途径是采用面发射分布反馈(SEDFB)的二极管激光器阵列和微光学(MOC)准直技术。一个40 阵列, 采用微透镜组1.3cm ×10cm 孔径, 得到0.5 ~0.75mrad 发散度的10W 连续输出功率。当然, 为了实现这样的准直效果, 必须对微光学系统进行精心设计加工, 使其达到1μm 的绝对准直精度, 采用激光辅助化学腐蚀工艺制造微光学系统, 可以满足这一要求。在具体设计时, 必须对孔径尺寸, 波束发散度和输出功率进行合理的折衷[2]。 2. 2 传感器的选择 如果说激光源是激光雷达的“发射机”,那么光电探测器就是“接收机”。类似雷达系统的接收机,光电探测器可选择如光电倍增管、半导体光电二极管、雪崩光电二极管(APD)、红外和可见光多元探测器件等[3]。 从激光源发射的脉冲只有小部分光子到达了光电探测器的有源探测区域[4]。若大气衰减不会随着脉冲路径发生变化,则激光的光束发散角可忽略不计,照明点小于目标,入射角度

大气能见度激光雷达数据采集系统

第十七届全国科学计算与信息化会议暨智慧科研论坛 Contribution ID:13Type:not specified 大气能见度激光雷达数据采集系统 Tuesday,August18,201511:35AM(0:15) Content 大气能见度激光雷达数据采集系统 摘要:针对大气能见度激光雷达,本文设计了一套双通道高速数据采集系统。系统硬件基于FPGA设 计,支持在门控信号输入与激光雷达同步工作。通过硬件逻辑,可实现双通道数据的实时计数,并完 成多次数据的实时累加和数据存储。本系统通过USB2.0高速接口与计算机进行互联。上位机软件的 编写由Labwindows/CVI可视化虚拟仪器编写。此外该系统功耗低,成本低廉,探测距离大,可以满足 大气能见度激光雷达的数据采集需求。关键词:大气能见度;FPGA;数据采集;USB文章分类:3 硬件环境与基础设施 1.引言 相比于其他探测方式,激光雷达作为一种新型的大气探测工具,可以更加精确地反映大气对传 输于其中的激光的衰减作用,因此激光雷达在大气能见度探测方面有着重要应用。探测中要求 数据采集系统速度快,死时间小,针对这种需求,设计了一套专用的双通道数据采集系统。2. 能见度探测原理 大气能见度跟大气消光系数存在确定的数量关系。其中大气消光系数跟激光回波的强度存在关 系。因此激光雷达探测大气能见度时,首先发射一定波长的激光束,将回波转换为电信号进行 数据采集,从而得到回波功率随距离变化的曲线,进而进行大气消光系数的反演以及能见度计 算。 2.系统框架 双通道信号以及触发信号通过一个甄别器后,转换为标准TTL电平送入FPGA,门控信号触发 FPGA跟激光雷达同步工作,信号送入FPGA计数。比较器的阈值由FPGA通过DAC输出。FPGA与 上位机之间的通信是通过USB接口芯片实现的。 3.系统设计 FPGA是系统的核心,采用Altera公司的EP1C12Q240C8N芯片。FPGA内部主要由存储器,计数 器,锁存器以及控制逻辑组成。比较器的阈值由串行DAC输出。BIN宽度是通过计数器分频时钟 来实现的。为了提高信噪比,需要将数据多次累加以减少随机误差,而累加次数的设定是通过 设定触发次数比较器输入端来实现的。两个计数器进行乒乓计数,以减少计数死时间。一个计 数器记录一个BIN宽度的数据。下一个计数周期到来时,将上一次记录的数据Load进计数器里 进行累加。累加到一定次数时,上位机读取数据。USB芯片从总线上取走数据,等待上位机取 走数据。数据采集完毕后,采集完成的标志位置高,将RAM和读写地址产生器清零。 4.软件设计 USB接口芯片为Cypress公司的CY7C68013,其内部集成了一个可运行USB固件程序的8051增 强型内核。该程序实现命令和数据在上位机和下位机之间传送。上位机软件采用虚拟仪器技 术,使用Labwindows/CVI编写。界面简洁,功能齐全。 5.结论 整套系统可实现对数据的高速采集,工作稳定。系统探测距离为61.440千米,整机功率仅为 0.77瓦特,适用于低功耗场合,可以满足能见度激光雷达的数据采集要求。 Summary Primary author(s):Mr.孙,荣奇(核探测与核电子学国家重点实验室) Co-author(s):Mr.刘,宇哲(核探测与核电子学国家重点实验室);Mr.路,后兵(核探测与核电子学国家重点实验室);Prof.金,革(核探测与核电子学国家重点实验室) Presenter(s):Mr.孙,荣奇(核探测与核电子学国家重点实验室) Session Classi?cation:电子学与数据获取(I)

2018年机床加工工艺基础试题大全

2018年机床加工工艺基础试题大全1.1主运动:车削/铣削的回转运动,拉削的拉刀直线运动,功能切除工件上的切削层,形 成新表V 2.进给运动:车削车刀纵向或横向移动速度用Vf或进给量f/af来表示 3.沙轮组成:磨料和结合剂烧结的多孔体特性:磨料。粒度。硬度,结合剂。组织,形 状,尺寸 4.刀具材料具备的性能;高硬度,足够的强度和韧性,高耐磨性,高的热硬性,良好的工 艺性 5.刀具材料的种类:碳素工具钢,合金工具钢,高速钢,硬质合金 6.切屑的种类:带状切屑(加工表面粗糙度小)挤裂切屑(大),崩碎切屑 7.切屑收缩:刀具下切屑外形尺寸比工件上短而厚。变形系数=L切削层长度/切削长度Lc= 切屑厚度A0/切削层厚度Ac 系数大于1 ,越大,变形越大 8.积屑瘤:切屑与刀具发生激烈摩擦,切屑底面金属流动速度变慢而形成滞留层,在产 生和压力下,滞留层金属与前刀面的外摩擦阻力大于切屑内部的分子结合力,滞留层粘结在刀刃形成 9.低速切削V小5m/min,高速大100,形成积屑流中速5到50 10.影响切削力的主要素:工件材料,切削用量,刀具几何角度的影响 11.刀具磨损主要原因:磨料,粘结,相变,扩散磨损。刀具主要有后刀面,前刀面,前后 刀面同时磨损 12.精度;尺寸精度,形状精度(公差),位置精度(公差)按生产批量选择加工设备,按 加工经济精度选择加工方法 13.尽可能选择低的加工精度和高的粗糙度,降低成本,提高生产率 14.粗加工,选取大的Ap,其次较大的f,最后取适当的v;精加工:选取小的f和Ap,选 取较高的切削速度,证加工精度和表面粗糙度 15.在国家标准中,公差带包括公差带的大小,公差带的位置,公差带大小有标准公差确定, 公差带位置有基本偏差确 16.互换性:尺寸公差与配合,形状与位置公差,表面粗糙度 17.形位公差的标注:公差项目符号,形位公差值,基准字母及有关符号 18.形位公差项目的选择:零件的几何特征,零件的使用,检测的方便性 19.车削:粗车,半精车,精车IT7 Ra=0.8um 粗车IT10 Ra=12.5um 20.在车削加工中,主轴带动工件直线运动为主运动,溜板带动工件直线运动为进给运动 21.间隙配合:孔的公差带在轴的公差带上方Xmax=Dmax-dmin=Es-ei Xmin=EI-es 过盈配合:。。。在。。。下方,Ymax=dmax-Dmin=es-EI Ymin=ei-Es 过渡配合:相交叠Xmax=Dmax-dmin=Es-ei Ymax=es-EI 22.外圆柱面适宜车削加工表面,内圆柱面适宜钻,镗,扩,铰 23.内外锥面车削加工方法:小刀架转位法,偏移尾座法,靠模法,成形法 1、刀具的磨损大致可分为初磨损阶段;正常磨损阶段;和急剧磨损阶段_三个阶段。 2、逆铣加工是指铣刀旋转方向;和工件进给(顺序无关)的方向相反。 3、切削用量包括_切削速度(v)切削深度(ap)进给量(f)三要素。 4、钻孔时孔径扩大或孔轴线偏移和不直的现象称为_引偏。 5、切削液的作用有冷却、润滑、清洗、排屑及防锈等作用。 6、增加刀具后角,刀具后面与工件之间摩擦_减少;,刀刃强度降低。 7、切削液一般分为水溶液、乳化液和_切削油三类。 9、切削速度是(切削刃选定点相对于工件的主运动)的瞬时速度,它是主运动的参数。

金属切削加工基础知识试题复习课程

第一章 金属切削加工基础知识 一、填空题 1、切削运动包括_________________运动与________________运动。______运动消耗功率最大 2、切削三要素有_______________、_________________与_________________。 3、切屑的种类有_____________、_____________、_____________与_____________。 4、切削力由于大小与方向都不易确定,为便于测量、计算和反映实际作用的需要,将合力F 分解为3个分力:_____________、_____________与____________。 5、在切削过程中,当系统刚性不足时为避免引起振动,刀具的前角应大些__________,主偏角应__________。 6、指出什么加工表面 7、在车外圆时,工件的回转运动属于_________,刀具沿工件轴线的纵向移动属于_________。 8、影响切削力的因素有_____________、_____________与____________。 9、车细长轴时,长采用90度_________车刀,以减少弯曲振动与变形。 10、零件的加工质量包括_____________与____________。 二、选择题 1、金属切削过程中,切屑的形成主要是( )的材料剪切滑移变形的结果。 A 、 第Ⅰ变形区 B 、 第Ⅱ变形区 C 、 第Ⅲ变形区 D 、 第Ⅳ变形区 2、在正交平面内度量的基面与前刀面的夹角为( )。 A 、 前角 B 、 后角 C 、 主偏角 D 、 刃倾角 3、切屑类型不但与工件材料有关,而且受切削条件的影响。如在形成挤裂切屑的条件下,若加大前角,提高切削速度,减小切削厚度,就可能得到( )。 A 、 带状切屑 B 、 单元切屑 C 、 崩碎切屑 D 、 挤裂切屑 4、切屑与前刀面粘结区的摩擦是( )变形的重要成因。 A 、 第Ⅰ变形区 B 、 第Ⅱ变形区 C 、 第Ⅲ变形区 D 、 第Ⅳ变形区 5、切削用量中对切削力影响最大的是( )。 A 、 切削速度 B 、 背吃刀量 C 、 进给量 D 、 切削余量 6、精车外圆时采用大主偏角车刀的主要目的是降低( )。 A 、 主切削力F c B 、 背向力F p C 、 进给力F f D 、 切削合力F 7、切削用量三要素对切削温度的影响程度由大到小的顺序是( )。 A 、 f a v p c →→ B 、 p c a f v →→ C 、 c p v a f →→ D 、 c p v f a →→ 8、积屑瘤是在( )切削塑性材料条件下的一个重要物理现象。

相关文档