文档库 最新最全的文档下载
当前位置:文档库 › 列管式换热器设计正文

列管式换热器设计正文

列管式换热器设计正文
列管式换热器设计正文

摘要

在不同温度的流体间传递热能的装置成为热交换器,简称为换热器。在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,并占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不用类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算,并确定换热器的结构尺寸、材料。

列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程列管式换热器。

关键词:温度传热面积结构尺寸材料

1.前言

1.1列管式换热器设计的意义

换热器是建筑采热取暖生产中必不可少的设备,近几年由于新技术的发展,各种类型的换热器越来越受工业界的重视,而换热器又是节能措施中较为关键的设备,广泛应用于化工、医药、食品饮料、酒精生产、制冷、民用等工艺;因此,无论是从工业的发展还是从能源的有效利用,换热器的合理设计、制造、选型和运行都具有非常重要的意义。

1.2列管式换热器的工作原理

进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体

按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易

结垢的流体。

流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。按换热方式可分为单壳程单管程换热器、双管程、多管程、多壳程换热器。

最简单的单壳程单管程换热器,简称为1-1型换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。

同样,管壳式换热器为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。

1.3列管式换热器的优点

单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。

1.4列管式换热器的结构

壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。

1.4.1 列管式换热器的折流挡板

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍动程度大为增加。常用的折流挡板有圆缺盘和圆盘形两种,前者更为常用。

图1 圆缺形列管式换热器

图2 圆盘形列管式换热器

1.4.2 列管式换热器的多壳程换热器

列管式换热器必须从结构上考虑热膨胀的影响,采取各种补偿的办法,消除或减小热应力,根据所采取的温差补偿措施。为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差60℃以上时,为了安全起见,换热器应有温差补偿装置,但补偿装置(膨胀节),只能在壳壁与管壁温度低于60~70℃和壳程流体压强不高的

情况下。一般壳程压强超过0.6MP时才会由于补偿圈过厚,难于伸缩,失去温差补偿的作用,就用考虑其他结构。

1.5 列管式换热器的种类

1.5.1 固定管板式换热器

这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

1.5.2 浮头式换热器

换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。其优点:管束可以拉出,以便清洗;管束的膨胀不变壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀的不同而产生温差应力。其缺点为结构复杂,造价高。

图3 浮头式换热器

1.5.3 U形管式换热器

U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板排列的管子少。优点是结构简单,质量轻,适用于高温高压条件。

1.5.4 填料函式换热器

这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

设计内容

已知条件:(1),反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301 kg/h,压力为6.9MPa,循环冷却水的压力为0.4MPa,循环水的入口温度为29℃,出口温度为39℃

(2) 混和气体在85℃下的有关物性数据如下(来自生产中的实测值):

= 90 kg/m3

密度ρ

1

定压比热容c p1 = 3.297 kJ/(kg?℃)

热导率λ

= 0.0279 W/(m?℃)

1

= 1.5×10-5 Pa?s

粘度μ

1

循环冷却水在34℃ 下的物性数据:

= 994.3 kg/m3

密度ρ

2

定压比热容c p2 = 4.174 kJ/(kg?℃)

= 0.624 W/(m?℃)

热导率λ

2

= 0.742×10-3 Pa?s

粘度μ

2

2确定设计方案

2.1 选择换热器的类型

两流体温度变化情况:热流体进口温度110℃,出口温度60℃。冷流体(循环水)进口温度29℃,出口温度39℃。该换热器冷却热的混合气体,传热量较大,可预计排管较多,因此初步确定选用固定管板式换热器。因气体操作压力为6.9MPa,属于较高压操作,因此不选用膨胀节。

2.2 流动空间及流速的确定

单从两物流的操作压力看,混合气体操作压力高达6.9MPa,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降;且两流体温度相差较大,应使α较大的循环水(一般气体α<液体)走管内。所以从总体考虑,应使循环水走管程,混和气体走壳程。选用Φ25mm×2.5mm的碳钢管,管内循环水流速取1.3m/s。

3 换热器结构尺寸设计

3.1、管径和管内流速

=1.3m/s。

选用Φ25mm×2.5mm传热管(碳钢),取管内流速u

i

3.2、管程数和传热管数

依据传热管内径和流速确定单程传热管数。

= 错误!未找到引用源。 = 错误!未找到引用源。≈615 (根)

n

s

按单程管计算,所需的传热管长度为L =错误!未找到引用源。 =错误!未找到引用源。 = 12.0(m)

按单管程设计,传热管过长,宜采用多管程结构。现取传热管长L = 6.0(m),则该换 = L/l = 12.0/6.0 = 2(管程)

热器管程数为N

P

传热管总根数N = 615×2 = 1230(根)

3.3 传热管排列和分程方法

采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。

因为壳程流体压力较大,故采用焊接法连接管子与管板。取管心距a = 1.25d

,则

o

a = 1.25×25≈32(mm)

隔板中心到离其最近一排管中心距离=a/2+6=32/2+6=22mm

则分程隔板槽两侧相邻管中心距S

= 44mm。

n

图4隔板

横过管束中心线的管数n = 1.19错误!未找到引用源。 = 1.19错误!未找到引用

源。 = 42(根)

3.4 壳体内径

采用多管程结构,取管板利用率η= 0.7,则壳体内径为:

D = 1.05a错误!未找到引用源。 = 1.05×32错误!未找到引用源。 = 1408.5(mm) 圆整可取D = 1400 mm

3.5 折流板

采用单弓形折流板,取折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为

h = 0.25D = 0.25×1400 = 350(mm)

取折流板间距B = 0.3D = 0.3×1400 = 420(mm)

= 传热管长/折流板间距-1 = 6000/420-1 = 14(块)

折流板数N

B

图5 折流板圆缺面水平装配

3.6 接管

管程流体进、出口接管:取接管内循环水流速为3.0m/s,则接管内径为:

d = 错误!未找到引用源。 = 错误!未找到引用源。 = 0.326(m)

圆整取350mm。

壳程流体进、出口接管:取接管内混合气体流速为10.0m/s,则接管内径为:

d = 错误!未找到引用源。 = 错误!未找到引用源。 = 0.299(m)

圆整取300mm。

3.7 传热面积S

S = 错误!未找到引用源。 = 错误!未找到引用源。 = 413.41(m2)

该换热器的实际传热面积S

p = πd

o

Ln = 3.14×0.025×(6.0-0.06)×(1230-42) =

554.23(m2)

该换热器的面积裕度为:H = (S

p

-S)/S×100% = (554.23-413.41)/ 413.41×100% = 34.1%

传热面积裕度合适,该换热器能够完成生产任务。

4换热器的材料设计

换热器的设计,初步确定选用固定管板式换热器。因气体操作压力为6.9MPa,属于较高压操作换热器的制作材料应该根据操作压强、温度及流体的腐蚀性等来选取。在高温下一般材料的机械性能及耐腐蚀性能要下降。同时具耐热性、高强度及耐腐性的材料是很少的饿,目前,常用的金属材料有碳钢、不锈钢、低合金钢、低合金钢、铜和铝等;非金属性材料有石墨、聚四佛乙烯和玻璃等。不锈钢和有色金属虽然扛腐蚀性能好,但价价格高且比较缺稀,应尽量少用。

5 换热器主要结构尺寸和计算结果

表1

项目结果

推荐使用材料碳钢

管子规格Φ25×2.5

管数 1230

管间距/mm 32

管长/mm 6000

管体内径/mm 1400

排列方式正三角形

折流板形式上下

间距/mm 420

切高/mm 350

6设计评述

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,结构简单;在相同的壳体直径内,排管最多,比较紧凑,本设计由于换热任务较大,故管数较多。由于这种结构使壳侧清洗困难,所以壳程走不易结垢的混合气体。

在设计过程中应尽量做到:

1、增大传热系数。在综合考虑流体阻力及不发生流体诱发振动的情况下,尽量选择较高的流速。

2、提高平均温差。对于无相变的流体,采用逆流的传热方式,不仅可提高平均温差,还有助于减少结构中的温差应力。

3、妥善布置传热面。本设计采用合适的管间距和排列方式,不仅可以加大单位空间内的传热面积,还可以改善流体的流动特性。并且错列管束的传热方式比并列的好。

管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。

工作结构及其工作原理,图为固定管板式换热器的构造(附图)。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过

管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截

面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~

280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。

图6固定管板式换热器

7符号说明 B——折流板间距,m; C——系数,无量纲;

d——管径,m;

D——换热器外壳内径,m; f——摩擦系数;

L——管长,m;

m——程数;

n——指数、管数、程数; N——管数、程数;

N

B

——折流板数;

P——压力,Pa;

r——半径,m;

S(或A)——传热面积,m2;

t——冷流体温度,℃;

a(或t)——管心距,m;

ρ——密度,kg/m3;

h——热流体;

i——管内;

参考资料

[1] 马江权,冷一欣.化工原理课程设计,北京:中国石化出版社,2009

[2] 柴诚敬,刘国维,李阿娜.化工原理课程设计.天津:天津科学技术出版社,1995

[3] 姚玉英等.化工原理(上、下册).天津:天津科学技术出版社,2001

[4] 上海医药设计院.化工工艺设计手册(上、下).北京:化学工业出版社,1986

[5] 尾范英郎(日)等,徐忠权译.热交换设计手册,1981

[6] 时钧,汪家鼎等.化学工程手册,北京:化学工业出版社,1996。

致谢

在论文完成之际,我首先向关系和帮助我的指导老师熊慧英老师表示感谢并致以崇高的敬意!历时两个多月的努力,我的毕业设计终于接近尾声,随之而来的是大学生涯的满结束。在这次设计过程中不仅把以前三年的知识巩固复习了一下,还学到了一些新的东西,可以说即有喜又有辛酸,喜得是在工作之前能再有一次这样的机会来把三年的理论知识运用到实际上,可以说这是走向社会的一次实战模拟,能完成它就是对我三年学习的一种肯定。

本次设计的内容是列管式换热器的设计,虽然在设计过程遇到很多困难,但毕竟给我们带来了很多有价值的东西,培养了团结合作的意识,锻炼了运用资料及查阅文献和设计手册的能力,这些也就是此次设计的最大收获。

通过本次毕业设计,我感到自己应用基础知识及专业知识解决问题的能力有了很大的提高,因此,是在我即将工作之前它是一次重要的演练。我想,通过这次毕业设计到了工作单位后,我将能够更快的适应工作岗位和工作要求。我对自己充满信心。

毕业设计是大学里最后一次正真学习的机会,在设计中几乎用到了大学里所有的基础知识,再次感谢熊慧英老师对我们孜孜不倦的指导和教诲。

毕业设计-换热器设计模版

毕业设计-换热器设计模版

一、 设计参数 过热蒸汽压力P 1:0.35Mpa ;入口温度T 1:250C ;出口温度T 2:138.89C (查水和水 蒸汽热力性质图表P11);传热量Q :375400kJ/h 。 冷却水压力P 2:0.7MPa ;入口温度t 1:70C ;出 口温度t 2(C );水流量m 2:45320kg/h 。 水蒸汽走管程,设计温度定为300C ,工作压力 为0.35Mpa (绝压);冷却水走壳程,设计温度定位100C ,工作压力为0.9Mpa (绝压)。 二、 工艺计算 1.根据给定的工艺条件进行热量衡算 )t t ()()T T (1 2 2 2 2 1 2 1 1 2 1 1 1 p p c m Q h h m c m Q 查水和水蒸汽热力性质图表得 0.3MPa ,140C ,2738.79kJ/kg 250C ,2967.88 kJ/kg 0.4MPa, 150C ,2752.00 kJ/kg 250C ,2964.50 kJ/kg 采用插值法得到:0.35MPa 水蒸汽从138.89C 到 250C 的焓变为:234.6 kJ/kg h kg h h Q m /16006.234/375400)/(1 211 由表得70C 时水的比热2 p c 为4.187C kg J /k (【1】《化

200C 粘度0.136mPa/s ,导热系数 1.076C m W ,比热容4.505C kg kJ /【3】 得:194.45 C 时密度 3 16193.1m kg ,粘度 s 0.14m Pa 1 ,导热系数C m W 0699.11 ;比热容 C kg kJ c p /479.41 588 .00699 .100014 .044791 1 11 p r c P 0.7MPa ,70.99C 时水的物性参数:(【4】《化 工原理》P525页) 70C 密度977.83 m kg ,粘度0.406mPa/s ,导 热系数0.668C m W ,比热容4.187C kg kJ /[4] 80C 密度971.83 m kg ,粘度0.355mPa/s ,导 热系数0.675C m W ,比热容4.195C kg kJ /[4] 得:70.99 C 时密度 3 271.926m kg ,粘度 s 0.383m Pa 2 ,导热系数C m W 671.02 ;比热容 C kg kJ c p /329.42 393 .2667 .0000383 .043292 2 22r p c P 3.初定换热器尺寸 ①已知传热量Q

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

化工原理设计:列管式换热器设计

化工原理课程设计 设计题目:列管式换热器的设计班级:09化工 设计者:陈跃 学号:20907051006 设计时间:2012年5月20 指导老师:崔秀云

目录 概述 1.1.换热器设计任务书 .................................................................... - 7 - 1.2换热器的结构形式 .................................................................. - 10 - 2.蛇管式换热器 ........................................................................... - 11 - 3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 - 1.7确定设计方案.......................................................................... - 17 - 2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

列管式换热器的设计计算

列管式换热器的设计计算 晨怡热管2008-9-49:49:33 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 (4)饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2.流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3.流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4.管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有 φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

换热器设计开题报告

毕业设计(论文)开题报告设计(论文)题目: 学院:化工装备学院 专业班级:过程装备与控制工程0802 学生: 指导教师: 开题时间:2011年10 月18 日

指导教师评阅意见

一、选题的目的及意义: 换热器的基建投资在一般化工、石化企业中约占设备总投资的20%,其中固定管板式换热器约占换热器的70%。 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。固定管板式换热器主要有外壳、管板、管束、封头压盖等部件组成。 固定管板换热器的结构特点是在壳体中设置有管束,管束两端用焊接或胀接的方法将管子固定在管板上,两端管板直接和壳体焊接在一起,壳程的进出口管直接焊在壳体上,管板外圆周和封头法兰用螺栓紧固,管程的进出口管直接和封头焊在一起,管束根据换热器的长度设置了若干块折流板。这种换热器管程可以用隔板分成任何程数。 固定管板式换热器结构简单,制造成本低,管程清洗方便,管程可以分成多程,壳程也可以分成双程,规格围广,故在工程上广泛应用。壳程清洗困难,对于较脏或有腐蚀性的介质不宜采用。当膨胀之差较大时,可在壳体上设置膨胀节,以减少因管、壳程温差而产生的热应力。 本课题所设计的冷却器属于固定管板换热器,是针对给定的设计参数,按照相关规定的要求,通过壁厚计算和强度校核等,设计固定管板式换热器产品。熟悉压力容器设计的基本要求,掌握固定管板式换热器的常规设计方法,把所学的知识应用到实际的工程设计中区,为以后的工作和学习打下扎实的基础。 二、国外现状发展及趋势 2.1 国外情况 对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。螺旋折流板换热器是最新发展起来的一种管壳式换热器是由美国ABB公司提出的。其基本原理为:将圆截面的特制板安装在“拟螺旋折流系统”中每块折流板占换热器壳程中横剖面的四分之一其倾角朝向换热器的轴线即与换热器轴线保持一定倾斜度。相邻折流板的周边相接与外圆处成连续螺旋状。每个折流板与壳程流体的流动方向成一定的角度使壳程流体做螺旋运动能减少管板与壳体之间易结垢的死角从而提高了换热效率。在气一水换热的情况下传递相同热量时该换热器可减少30%-40%的传热面积节省材料20%-30%。相对于弓形折

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

化工原理课程设计模板-换热器

化工原理课程设计 学院: 班级: 姓名: 学号:(长号) 指导教师: 2016年11月

化工原理课程设计 《列管式换热器》设计任务书 班级姓名 一、设计题目:列管式柴油冷却器的工艺设计 二、设计任务及操作条件 (1)设计任务 非标准系列列管式柴油冷却器的工艺设计。 说明:对于非标准系列列管式换热器的设计,因是非标,显然不能按照标准系列列管式换热器在标准系列规格中进行选型设计,而应按照非标准系列列管式换热器的设计程序进行。 (2)操作条件 ①处理能力(班级×0.3)×104t/a柴油 ②设备型式列管式换热器(或立式、或卧式)。 ③操作条件 柴油入口温度:100+班级+学号℃,出口温度:25+班级+学号℃冷却介质:自来水,入口温度:29 ℃,出口温度:49 ℃ 允许压降:不大于105Pa 每年按330天计,每天24h连续运行 已知柴油的有关物性数据:密度ρ1=994kg/m3;定压热比容c p,1=2.22kJ/(kg·℃);热导率λ1=0.14W/(m·℃);黏度μ1=7.15×10-4 Pa·s 三、设计项目(说明书格式) 1、封面、任务书、目录。 2、设计方案简介:对确定的换热器类型进行简要论述。 3、换热器的工艺计算: 1)确定物性数据 2)估算传热面积 3)工艺结构尺寸 4)换热器核算:包括传热面积核算和换热器压降核算 4、换热器的机械设计 5、绘制列管式换热器结构图(CAD)。 6、对本设计进行评述。 7、参考文献 成绩评定指导教师 2016年月日

课程设计内容1设计方案简介 1.1选择换热器类型 1.2冷热流体流动通道的选择 2工艺设计计算 2.1 确定物性数据 2.2估算传热面积 2.3 工艺结构尺寸 2.3.1 管径和管内流速 2.3.2 管程数和传热管数 2.3.3 管子排列方式和分程方法 2.3.4 平均传热温差校正及壳程数 2.3.5 壳体内径 2.3.6 折流板 2.4 换热器核算 2.4.1 传热面积校核 2.4.2 换热器内流体流动阻力 2.5 换热器主要结构尺寸和计算结果 3换热器机械设计 3.1 壳体壁厚 3.2 管板尺寸 3.3 接管尺寸 3.4 换热器封头选择 3.5 膨胀节选择(根据设计可选可不选) 3.6其他部件 4评述 4.1 可靠性评价 4.2 个人感想 5参考文献 附表换热器主要结构尺寸和计算结果 附录换热器结构图 时间安排: 2016-11-1 发任务书,设计指导 6 2016-12-0 完成计算 6 2016-12-1 完成初稿(包括绘图) 6

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

列管式换热器设计(水蒸气加热水)要点

食品工程原理课程设计 设计题目:列管式换热器的设计 班级:食品卓越111班 设计者:张萌 学号:5603110006 设计时间:2013年5月13日~5月17日指导老师:刘蓉

目录 概述 1.1.换热器设计任务书 ......................................................................... - 7 - 1.2换热器的结构形式 ....................................................................... - 10 - 2.蛇管式换热器 ................................................................................. - 11 - 3.套管式换热器 ................................................................................. - 11 - 1.3换热器材质的选择 ....................................................................... - 11 - 1.4管板式换热器的优点 ................................................................... - 13 - 1.5列管式换热器的结构 ................................................................... - 14 - 1.6管板式换热器的类型及工作原理 ............................................... - 16 - 1.7确定设计方案 ............................................................................... - 17 - 2.1设计参数........................................................................................ - 18 - 2.2计算总传热系数 ........................................................................... - 19 - 2.3工艺结构尺寸 ............................................................................... - 20 - 2.4换热器核算.................................................................................... - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

相关文档