文档库 最新最全的文档下载
当前位置:文档库 › 点线面之间的关系

点线面之间的关系

点线面之间的关系
点线面之间的关系

点线面之间的关系

一.选择题(共8小题)

1.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC

2.在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是()

A.A1C1⊥AD B.D1C1⊥AB

C.AC1与DC成45°角D.A1C1与B1C成60°角

3.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是()A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥β

C.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β

4.已知互不相等的直线l,m,n和平面α,β,γ,则下列命题正确的是()A.若l与m为异面直线,l?α,m?β,则α∥β;

B.若α∥β,l?α,m?β,则l∥m;

C.若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则m∥n;

D.若α⊥β,β⊥γ,则α∥β.

5.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()

A.B.C.D.

6.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()

A.B.C.D.

7.直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()

A.30°B.45°C.60°D.90°

8.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C.

D.

二.填空题(共4小题)

9.在三棱锥P﹣ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC=2,则直线PC与AB所成角的大小是.

10.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为.

11.已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二

面角等于°.

12.如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.

三.解答题(共6小题)

13.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E,F,G分别是AB,PC,CD的中点.

求证:(1)CD⊥PD;

(2)平面EFG∥平面PAD.

14.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED ⊥底面ABC,若G、F分别是EC、BD的中点.

(Ⅰ)求证:GF∥底面ABC;

(Ⅱ)求证:AC⊥平面EBC;

(Ⅲ)求几何体ADEBC的体积V.

15.如图,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN⊥CD;

(2)若∠PDA=45°,求证:MN⊥平面PCD.

16.如图,在正三棱柱ABC﹣A1B1C1中,点D是AB中点,M是AA1上一点,且AM=tAA1.

(1)求证:BC1∥平面A1CD;

(2)若3AB=2AA1,当t为何值时,B1M⊥平面A1CD?

17.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.

(Ⅰ)求证:平面MOE∥平面PAC;

(Ⅱ)求证:平面PAC⊥平面PCB.

18.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC为等边三角形,AB=4,AA1=5,点M是BB1中点

(Ⅰ)求证:平面A1MC⊥平面AA1C1C (Ⅱ)求点A到平面A1MC的距离.

点线面之间的关系

参考答案与试题解析

一.选择题(共8小题)

1.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()

A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC

【解答】解:法一:连B1C,由题意得BC1⊥B1C,

∵A1B1⊥平面B1BCC1,且BC1?平面B1BCC1,

∴A1B1⊥BC1,

∵A1B1∩B1C=B1,

∴BC1⊥平面A1ECB1,

∵A1E?平面A1ECB1,

∴A1E⊥BC1.

故选:C.

法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,

则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),

=(﹣2,1,﹣2),=(0,2,2),=(﹣2,﹣2,0),

=(﹣2,0,2),=(﹣2,2,0),

∵?=﹣2,=2,=0,=6,

∴A1E⊥BC1.

故选:C.

2.在正方体ABCD﹣A1B1C1D1中,下列几种说法正确的是()

A.A1C1⊥AD B.D1C1⊥AB

C.AC1与DC成45°角D.A1C1与B1C成60°角

【解答】解:由题意画出如下图形:

A.因为AD∥A1D1,

所以∠C1A1D1即为异面直线A1C1与AD所成的角,而∠C1A1D1=45°,所以A错;B.因为D1C1∥CD,利平行公理4可以知道:AB∥CD∥C1D1,所以B错;C.因为DC∥AB.所以∠C1AB即为这两异面直线所成的角,而

,所以C错;

D.因为A1C1∥AC,所以∠B1CA即为异面直线A1C1与B1C所成的角,在正三角形△B1CA中,∠B1CA=60°,所以D正确.

故选:D.

3.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是()A.若a⊥b,a⊥α,则b∥αB.若a∥α,α⊥β,则a⊥β

C.若a⊥β,α⊥β,则a∥αD.若a⊥b,a⊥α,b⊥β,则α⊥β

【解答】解:A中,b可能在α内;

B中,a可能在β内,也可能与β平行或相交(不垂直);

C中,a可能在α内;

D中,a⊥b,a⊥α,则b?α或b∥α,又b⊥β,∴α⊥β.

故选:D.

4.已知互不相等的直线l,m,n和平面α,β,γ,则下列命题正确的是()

A.若l与m为异面直线,l?α,m?β,则α∥β;

B.若α∥β,l?α,m?β,则l∥m;

C.若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则m∥n;

D.若α⊥β,β⊥γ,则α∥β.

【解答】解:在A中,若l与m为异面直线,l?α,m?β,则α与β相交或平行,故A错误;

在B中,若α∥β,l?α,m?β,则l与m平行或异面,故B错误;

在C中,若α∩β=l,β∩γ=m,α∩γ=n,l∥γ,则由线面平行的性质定理得m∥n,故C正确;

在D中,若α⊥β,β⊥γ,则α与β相交或平行,故D错误.

故选:C.

5.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()

A.B.C.D.

【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,

AA1=,

∴A(1,0,0),D1(0,0,),D(0,0,0),

B1(1,1,),

=(﹣1,0,),=(1,1,),

设异面直线AD1与DB1所成角为θ,

则cosθ===,

∴异面直线AD1与DB1所成角的余弦值为.

故选:C.

6.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()

A.B.C.D.

【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角

(因异面直线所成角为(0,]),

可知MN=AB1=,

NP=BC1=;

作BC中点Q,则△PQM为直角三角形;

∵PQ=1,MQ=AC,

△ABC中,由余弦定理得

AC2=AB2+BC2﹣2AB?BC?cos∠ABC

=4+1﹣2×2×1×(﹣)

=7,

∴AC=,

∴MQ=;

在△MQP中,MP==;

在△PMN中,由余弦定理得

cos∠MNP===﹣;又异面直线所成角的范围是(0,],

∴AB1与BC1所成角的余弦值为.

【解法二】如图所示,

补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;

BC1=,BD==,

C1D=,

∴+BD2=,

∴∠DBC1=90°,

∴cos∠BC1D==.

故选:C.

7.直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()

A.30°B.45°C.60°D.90°

【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,

∠DA1B就是异面直线BA1与AC1所成的角,

又A1D=A1B=DB=AB,

则三角形A1DB为等边三角形,∴∠DA1B=60°

故选:C.

8.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()

A.B.C.

D.

【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;

对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;

对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;

所以选项A满足题意,

故选:A.

二.填空题(共4小题)

9.在三棱锥P﹣ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC=2,则直线PC与AB所成角的大小是60°.

【解答】解:取PA中点E,PB中点F,BC中点G,连接EF,FG,EG,

∵EF、FG分别是△PAB、△PBC的中位线

∴EF∥AB,FG∥PC,

因此,∠EFG(或其补角)就是异面直线AB与PC所成的角.

连接AG,则Rt△ACG中,AG==,

EG==,

又∵AB=PC=2,∴EF=FG=.

由此可得,在△EFG中,cos∠EFG==﹣

结合∠EFG是三角形内角,可得∠EFG=120°.

综上所述,可得异面直线AB与PC所成角的大小为60°.

故答案为:60°.

10.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异

面直线EF、GH所成角的余弦值为.

【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,

由题意E(0,2,1),F(1,2,2),G(2,0,),H(,0,2),

=(1,0,1),=(﹣,0,),

设异面直线EF、GH所成角的为θ,

则cosθ===.

∴异面直线EF、GH所成角的余弦值为.

故答案为:.

11.已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.

【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,

所以正四棱锥的高为3,

则侧面与底面所成的二面角的正切tanα=,

∴二面角等于60°,

故答案为60°

12.如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异

面直线AD与BF所成角的余弦值是.

【解答】解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,

同时也得AB⊥平面BCE,即AB⊥CE,

即三角形CEF为直角三角形和三角形CBE为等边三角形;

即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,

利用余弦定理,得.

故异面直线AD与BF所成角的余弦值是.

三.解答题(共6小题)

13.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E,F,G分别是AB,PC,CD的中点.

求证:(1)CD⊥PD;

(2)平面EFG∥平面PAD.

【解答】证明:(1)∵PA⊥底面ABCD,∴CD⊥PA,

又矩形ABCD中,CD⊥AD,且AD∩PA=A,

∴CD⊥平面PAD,

∵PD?平面PAD,∴CD⊥PD.

(2)∵矩形ABCD中,E、G分别是AB、CD中点,∴EG∥AD,

∵EG?平面PAD,AD?平面PAD,∴EG∥平面PAD,

∵F是PC中点,∴FG∥PD,

∵FG?平面PAD,PD?平面PAD,

∴FG∥平面PAD,

∵EG∩FG=G,EG、FG?平面EFG,

∴平面EFG∥平面PAD.

14.如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED ⊥底面ABC,若G、F分别是EC、BD的中点.

(Ⅰ)求证:GF∥底面ABC;

(Ⅱ)求证:AC⊥平面EBC;

(Ⅲ)求几何体ADEBC的体积V.

【解答】解:(I)证法一:取BE的中点H,连接HF、GH,(如图)

∵G、F分别是EC和BD的中点

∴HG∥BC,HF∥DE,(2分)

又∵ADEB为正方形∴DE∥AB,从而HF∥AB

∴HF∥平面ABC,HG∥平面ABC,HF∩HG=H,

∴平面HGF∥平面ABC

∴GF∥平面ABC(5分)

证法二:取BC的中点M,AB的中点N连接GM、FN、MN

(如图)

∵G、F分别是EC和BD的中点

∴(2分)

又∵ADEB为正方形∴BE∥AD,BE=AD

∴GM∥NF且GM=NF

∴MNFG为平行四边形

∴GF∥MN,又MN?平面ABC,

∴GF∥平面ABC(5分)

证法三:连接AE,

∵ADEB为正方形,

∴AE∩BD=F,且F是AE中点,(2分)

∴GF∥AC,

又AC?平面ABC,

∴GF∥平面ABC(5分)

(Ⅱ)∵ADEB为正方形,∴EB⊥AB,∴GF∥平面ABC(5分)

又∵平面ABED⊥平面ABC,∴BE⊥平面ABC(7分)

∴BE⊥AC

又∵CA2+CB2=AB2

∴AC⊥BC,

∵BC∩BE=B,

∴AC⊥平面BCE(9分)

(Ⅲ)连接CN,因为AC=BC,∴CN⊥AB,(10分)

又平面ABED⊥平面ABC,CN?平面ABC,∴CN⊥平面ABED.(11分)

∵三角形ABC是等腰直角三角形,∴,(12分)

∵C﹣ABED是四棱锥,

==(14分)

∴V C

﹣ABED

15.如图,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.

(1)求证:MN⊥CD;

(2)若∠PDA=45°,求证:MN⊥平面PCD.

【解答】证明:(1)连接AC,BD,设AC∩BD=0,连接NO,MO,则NO∥PA.

∵PA⊥平面ABCD,

∴NO⊥平面ABCD,

∴NO⊥AB,

∵MO⊥AB,

∴AB⊥面MNO

∴MN⊥AB,而CD∥AB,

∴MN⊥CD…(6分)

(2)∵∠PDA=45°

∴PA=AD=BC,由△PAM≌△CMB,

得PM=CM,

又∵N为PC的中点,

∴MN⊥PC

又MN⊥CD,PC∩CD=C

∴MN⊥平面PCD…(12分)

16.如图,在正三棱柱ABC﹣A1B1C1中,点D是AB中点,M是AA1上一点,且AM=tAA1.

(1)求证:BC1∥平面A1CD;

(2)若3AB=2AA1,当t为何值时,B1M⊥平面A1CD?

【解答】解:(1)如图1,取A1B1的中点E,连接BE,C1E.

在正三棱柱ABC﹣A1B1C1中,点D是AB中点,可得CD∥C1E

又因为DB∥EA1,DB=EA1?BE∥DA1.

且CD∩DA1=D,BE∩C1E=E,面EBC1∥平面A1CD;

∵BC1?面EBC1,BC1?平面A1CD,∴BC1∥平面A1CD

(2)由在正三棱柱ABC﹣A1B1C1中,点D是AB中点,可得CD⊥面AA1B1B.?CD⊥B1M,

∴要使B1M⊥平面A1CD,只需DA1⊥MB即可,如下图,

当DA1⊥MB时,△ADA1∽△A1MB1,

?,又∵3AB=2AA1,DAB为中点

∴?

即当t=时,B1M⊥平面A1CD.

17.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在上,且OM∥AC.

(Ⅰ)求证:平面MOE∥平面PAC;

(Ⅱ)求证:平面PAC⊥平面PCB.

【解答】(本小题满分10分)

证明:(1)因为点E为线段PB的中点,点O为线段AB的中点,所以OE∥PA.因为PA?平面PAC,OE?平面PAC,

所以OE∥平面PAC.因为OM∥AC,

又AC?平面PAC,OM?平面PAC,

所以OM∥平面PAC.

因为OE?平面MOE,OM?平面MOE,OE∩OM=O,

所以平面MOE∥平面PAC.…(5分)

(2)因为点C在以AB为直径的⊙O上,

所以∠ACB=90°,即BC⊥AC.

因为PA⊥平面ABC,BC?平面ABC,

所以PA⊥BC.

因为AC?平面PAC,PA?平面PAC,PA∩AC=A,

点线面之间的位置关系基础练习练习题复习.doc

精品 文 档 点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

空间点线面位置关系例题训练

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角 ________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点. 变式迁移1

(精编)点线面之间的位置关系测试题)

点、直线、平面之间的位置关系 一、选择题 1. 若是平面外一点,则下列命题正确的是( ) ( A )过只能作一条直线与平面相交 ( B )过可作无数条直线与平面 垂直 (C )过只能作一条直线与平面平行 (D )过可作无数条直线与平面平行 2.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题 ① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题... 的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④ 3.设正四棱锥S —ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角是 ( ) A .30° B .45° C .60° D .90° 4.如图所示,在正方形ABCD 中, E 、 F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) 5.下列说法正确的是( ) A .若直线平行于平面内的无数条直线,则 B .若直线在平面外,则 C .若直线,,则 D .若直线,,则直线就平行于平面内的无数条直线 6.在下列条件中,可判断平面与平面平行的是( ) A .、都垂直于平面 B .内存在不共线的三点到平面的距离相等 C .、是内两条直线,且, D .、是两条异面直线,且,,, 7.已知直线a ∥平面α,直线b ?α,则a 与b 的关系为( ) A .相交 B .平行 C .异面 D .平行或异面1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥????⊥// ②b a M b M a //????⊥⊥ ③????⊥⊥b a M a b ∥M ④????⊥b a M a //b ⊥M . 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 8.把正方形ABCD 沿对角线AC 折起,当点D 到平面ABC 的距离最大时, 直线BD 和平面ABC 所成角的大小为 ( ) A . 90 B . 60 C . 45 D . 30 第4题图

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

高中数学空间点线面之间的位置关系讲义

2.1空间点、直线、平面之间的位置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题

1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个 (B )1个或4个 (C )3个或4个 (D )1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。 8.在空间中, ① 若四点不共面,则这四点中任何三点都不共线。② 若两条直线没有公共点,则这两条直线是异面直线。 以上两个命题中为真命题的是 (把符合要求的命题序号填上) 9.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。 10.正方体1111ABCD A B C D -中,E 、F 分别为11D C 和11B C 的中点,P 、Q 分别为AC 与BD 、11A C 与EF 的交点. (1)求证:D 、B 、F 、E 四点共面;(2)若1A C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线.

空间点线面的位置关系教案教学文案

精品文档 精品文档 空间点线面的位置关系 (一)教学目标: 1. 知识与技能 (1) 理解空间直线、平面位置关系的定义; (2) 了解作为推理依据的公理和定理。 (3) 会根据定理和公理进行简单的线面关系的推理和证明,并能够进 行简单的体积或面积运算 2. 过程与方法 (1) 通过对空间事物的观察,经历由具体到抽象的思维过程 (2) 通过对空间图形的描述和理解,体验由图形归纳性质的过程 3. 情感、态度与价值观 (1) 由图形归纳性质的过程中,培养学生从具体到抽象的思维能力 (2) 又实际空间物体联想空间线面关系,使学生感受到数学在实际生 活中的应用。 (二)教学重点和难点: 1、教学重点:空间中线面平行和垂直关系的性质和判定; 2、教学难点:线面平行和垂直关系判定和性质定理的应用。 (三)教学过程: 【复习引入】 提问:空间中直线与直线,直线与平面,平面与平面的位置关系有几种? 如何来证明线线,线面,面面的平行和垂直? 【新课讲授】 根据空间具体事物,能够抽象地画出它的直观图形,并通过定理和公理进行推理证明是立体几何的基本问题之一.如何正确理解空间直线、平面的位置关系,能够通过定理和公理判断和推理证明平行和垂直关系是解决这个基本问题的途径。 1、高考数学(文科)考试说明的了解 2、针对性训练及讲解: 题组一:(空间点线面位置关系的判断) (1)、已知两条不同直线l 1和l 2及平面a,则直线l 1//l 2的一个充分条件是 A 、l 1//a 且l 2//a B. l 1⊥a 且l 2⊥a C.l 1//a 且l 2?a D. l 1//a 且l 2 ?a (2)、已知βα,是两个不同的平面,m ,n 是两条不同的直线,给出下列命题: ①若βαβα⊥?⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ??;

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系''' x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积③圆锥的表面积2 S rl r ππ =+ ④圆台的表面积22 S rl r Rl R ππππ =+++⑤球的表面积2 4 S R π = ⑥扇形的面积公式 21 3602 n R S lr π == 扇形 (其中l表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S h =? 底 ②锥体的体积1 3 V S h =? 底 ③台体的体积1) 3 V S S S S h =+? 下下 上上 (④球体的体积3 4 3 V R π = 2 π 2 π 2r rl S+ =

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1平面含义:平面是无限延展的 2平面的画法及表示 (1)平面的画法:水平放置的平面 通常画成一个平行四边形,锐角画成45°,且横边画成邻边的 2倍长(如图) (2)平面通常用希腊字母a、B、Y等表示,如平面a、平面B等,也可以 用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABCD等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为 公理1作用:判断直线是否在平面内 (2)公理2 :过不在一条直线上的三点,有且只有一个平面。符号表示为:A B、C三点不共线=> 有且只有一个平面a, 使A€a、B€a、C€a。 公理2作用:确定一个平面的依据。 (3)公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直 线。符号表示为:P€aQB => aPp =L,且P€ L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1空间的两条直线有如下三种关系: f相交直线:同一平面内,有且只有一个公共点; 共面直线 Y l平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4注意点: ①a'与b'所成的角的大小只由a、b的相互位置来确定,与0的选择无关,为简便,点0 —般取在两直线中的一条上; ②两条异面直线所成的角(0,); ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a丄b; a// b 2公理4:平行 =>a // c

点线面之间的位置关系的知识点汇总

点线面之间的位置关系的知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面=>a ∥2

高中数学必修点线面的位置关系知识点习题答案

D C B A α 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 1平面含义:平面是无限延展的 2平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面 的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线=>有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论1:一条直线与它外一点确定一个平面。 推论2:两条平行直线确定一个平面。 推论3:两条相交直线确定一个平面。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公 共直线。 符号表示为:P ∈α∩β=>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1空间的两条直线有如下三种关系: A · α C · B · A · α P · α L β

c a b c b a //////?? ??ααα////b b a b a ??? ? ????相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。 2公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4异面直线: ①a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便, 点O 一般取在两直线中的一条上; ②两条异面直线所成的角θ∈(0,]; ③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3—2.1.4空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交——有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表a αa ∩α=Aa ∥α】2.2.1直线与平面平行的判定 1、线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: 线线平行 线面平行 共面直 2π

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

高中数学空间点线面之间的位置关系讲义之欧阳数创编

2.1空间点、直线、平面之间的位 置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,,(D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个(B )1个或4个(C )3个或4个 (D )

1个、3个或4个 3.以下命题正确的有() (1)若a∥b,b∥c,则直线a,b,c共面;(2)若a∥α,则a平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面。 (A)1个(B)2个(C)3个(D)4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是() (A)2 (B)3 (C)6 (D)12 5.以下命题中为真命题的个数是() (1)若直线l平行于平面α内的无数条直线,则直线l∥α;(2)若直线a在平面α外,则a∥α; (3)若直线a∥b,α?b,则a∥α;(4)若直线a∥b,α?b,则a平行于平面α内的无数条直线。 (A)1个(B)2个(C)3个(D)4个 6.若三个平面两两相交,则它们的交线条数是()(A)1条(B)2条(C)3条(D)1条或3条

点线面之间的位置关系的知识点总结

点线面之间的位置关系的知识 点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 空间点、直线、平面之间的位置关系 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

点 线 面之间的位置关系知识易错点及例题合集

点、线、面之间的位置关系知识易错点及例题合集 最近许多高二的同学问必修二点线面之间的知识点,普遍感觉这块非常难学,小数老师今天整理了易错点和例题给大家,作为参考! [整合·网络构建]

[警示·易错提醒] 1、不要随意推广平面几何中的结论 平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”、“垂直于同一条直线的两条直线平行”等性质在空间中就不成立. 2、弄清楚空间点、线、面的位置关系 解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,要注意定理应用准确、考虑问题全面细致。 3、不要忽略异面直线所成的角的范围 求异面直线所成的角的时候,要注意它的取值范围是(0°,90°]。 两异面直线所成的角转化为一个三角形的内角时,容易忽略这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角. 4、透彻理解直线与平面的关系 直线与平面位置关系的分类要清晰,一种分法是直线在平面内与直线在平面外(包括直线与平面平行和相交);另一种分法是直线与平面平行(无公共点)和直线与平面不平行(直线在平面内和直线与平面相交)。 5、使用判定定理时不要忽略条件 应用直线与平面垂直的判定定理时,要熟记定理的应用条件,不能忽略“两条相交直线”这一关键点。 专题1共点、共线、共面问题 (1)、证明共面问题

证明共面问题,一般有两种证法:一是先由某些元素确定一个平面,再证明其余元素在这个平面内;二是先分别由不同元素确定若干个平面,再证明这些平面重合。 (2)、证明三点共线问题 证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上。 (3)、证明三线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题。 [例1]如图所示,在空间四边形ABCD中,E,F 分别为AB,AD 的中点,G,H分别在BC,CD上,且 BG∶GC=DH∶HC=1∶2,求证: (1)、E,F,G,H四点共面; (2)、EG与HF的交点在直线AC上。 证明:(1)、因为BG∶GC=DH∶HC,所以GH∥BD。 又因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF∥GH,所以E,F,G,H四点共面。 (2)、因为G,H不是BC,CD的中点,所以EF∥GH,且EF≠GH,所以EG 与FH必相交。 设交点为M,而EG?平面ABC,HF?平面ACD,所以M∈平面ABC,且M ∈平面ACD。 因为平面ABC∩平面ACD=AC,所以M∈AC,即EG与HF的交点在直线AC 上。 归纳升华:证明共点、共线、共面问题的关键是合理地利用三个公理,做

空间点线面之间的位置关系

空间点线面之间的位置关系 一、平面 1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法: (1)一个平面:当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面: 画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图) 3. 运用集合观点准确使用图形语言、符号语言和文字语言 空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示 点、线、面的基本位置关系如下表所示:

a α? α=? A α= l αβ= 二、平面的基本性质 1. 公理1 如果一条直线的两点在一个平面,那么这条直线在这个平面 推理模式: A A B B ααα∈? ???∈? . 如图示: 或者:∵,A B αα∈∈,∴AB α? 公理1的作用:①判定直线是否在平面; ②判定点是否在平面; ③检验面是否是平面. 2. 公理2 经过不在同一条直线上的三点,有且只有一个平面 推理模式:,, ,,,,A B C A B C A B C ααβ? ? ∈???∈? 不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面;

高中数学-空间点线面位置关系

高中数学-点线面位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1平面含义:平面是无限延展的 2平面的画法及表示 (1) 平面的画法:水平放置的平面通常画成一个平行四边形, 锐角画成45°,且横边画成邻边的2倍长(如 图) (2) 平面通常用希腊字母a 、B 、丫等表示,如平面a 、平面B 等,也可以用表示平面的平行四边形的 四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC 平面ABCD 等。 3 三个公理: (1) 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A € L B € L l=> L A €a B €a - 公理1作用:判断直线是否在平面内 (2) 公理2 :过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线=> 有且只有一个平面a, 使 A €a 、 B €a 、 C €a 。 公理2作用:确定一个平面的依据。 (3) 公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有 符号表示为:P €aA3 => aA3 =L ,且P € L 公理3作用:判定两个平面是否相交的依据 2.1.2空间中直线与直线之间的位置关系 1空间的两条直线有如下三种关系: 共面直线 r 2公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设 a 、b 、c 是三条直线 a // b c // b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4注意点: ① a'与b'所成的角的大小只由 a 、b 的相互位置来确定,与 0的选择无关,为简便,点 0 —般取在两直 线中的一条上; ② 两条异面直线所成的角9€ (0 , ; ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 a 丄b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1) 直线在平面内一一有无数个公共点 条过该点的公共. 异面直线: 不同在任何一个平面内,没有公共点。 平行直线:同一平面内,没有公共点;

必修2第二章《点线面之间的位置关系》知识点及练习

2.1 点、线、面之间的位置关系 1.平面概述 (1)平面的两个特征:①无限延展 ②平的(没有厚度) (2)平面的画法:通常画平行四边形来表示平面 (3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC 。 (4)点A 在直线l 上,记作:A l ∈;点A 在平面α内,记作:A α∈;直线l 在平面α内,记 作l α? 2.平面的基本性质: 推论一:经过一条直线和这条直线外的一点,有且只有一个平面。 推论二:经过两条相交直线,有且只有一个平面。 推论三:经过两条平行直线,有且只有一个平面。 异面直线的画法常用的有下列三种: 公理4:平行于同一条直线的两条直线互相平行,即c a c b b a ////,//? 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角 相等 或 互补 a b a b α α

2.2线面平行的判定与性质 1.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:,,////a b a b a ααα???. 2.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式://,,//a a b a b αβαβ?=? . 3.两个平面的位置关系有两种:两平面相交(有一条公共直线) 两平面平行(没有公共点) (1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。 定理的模式://////a b a b P a b ββαβαα?? ? ??? =??? ??? 推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。 推论模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=??=??? (2)两个平面平行的性质 a) 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面; b) 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 a b βα

点线面位置关系例题及练习含答案

点、线、面的位置关系 ● 知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线... 的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; 1.4异面直线所成的角:(1)X 围:(]0,90θ∈??;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ②判定定理:////a b a a b ααα? ???? ??? ③性质定理:////a a a b b αβαβ??????=? 2.线面斜交:①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。X 围:[]0,90θ∈?? 3.面面平行:①定义://α βαβ=??; ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ?=? 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥?. ③面面平行的性质:(1)////a a αββα????? ; (2)////a a b b αβαγβγ? ? =???=? (四)垂直关系(包括线面垂直,面面垂直) 1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 符号表述:若任意,a α?都有l a ⊥,且l α?,则l α⊥.

相关文档
相关文档 最新文档