文档库 最新最全的文档下载
当前位置:文档库 › 量子力学 一维无限深势阱

量子力学 一维无限深势阱

量子力学 一维无限深势阱
量子力学 一维无限深势阱

55

§2.6一维无限深势阱(Potential Well )(理想模型)

重点:一维无限深势阱中粒子运动的求解

难点:对结果的理解

实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。

一、写出本征问题 势场为:?

??≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 2

2

2ψ=ψμ?h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dx

d 2()III (II )III (II 022

2ψ=ψ+μ?h (2) 其中∞=0U 。

波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I ?ψ=?ψ (3)

二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h

?μ=α (4) 则:)x (E )x (dx d 2I I 2

2

2ψ=ψμ?h 的解为: x i x i I Be Ae )x (αα?+=ψ a x <

(5)

56 )x (E )x ()U dx d 2()III (II )III (II 022

2ψ=ψ+μ?h 的解为:

x 'x

'II e 'B e 'A )x (αα?+=ψ a x ≥ (6)

x 'x 'III e ''B e ''A )x (αα?+=ψ a x ?≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:

x 'II e 'A )x (α?=ψ a x ≥

x 'III e ''B )x (α=ψ a x ?≤

又由于∞=0U ,则:∞=?μ=α20)

E U (

2'h

于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I ?ψ=?ψ;x i x

i I Be Ae )x (αα?+=ψ

则:???=+=+α?ααα?0Be Ae 0

Be Ae a i a i a

i a i (9)

于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i a

i a

i =α?ααα?, 即:0)a 2sin(=α 解之得:a 2n π

=α,,....2,1,0n ±±= (10)

将其代入到???=+=+α?ααα?0Be Ae 0Be Ae a i a i a i a

i ,得:0Be Ae 2

/in 2/in =+ππ?

即:B )1(A 1n +?=

代入x i x i I Be Ae )x (αα?+=ψ中,得:

57 ???

????=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)

其中0n =,()0x =Ψ为平凡解,无意义;

,...2,1n ??=不给出新的解。

而0)x ()x (III II =ψ=ψ 则利用归一化条件

∫+∞

∞?=ψ1dx 2n 得:a

1D C ==。 于是体系的本征函数: ???????????≥<=π<=π=ψa

x 0a x ,5,3,1n x a 2n cos a

1a x 6,4,2n x a 2n sin a 1)x (n L L (12) 又由于2E 2h

μ=α和a 2n π=α,则对应体系本征函数的本征值为: 2

2

222222n a 8n )a 2(2n E μπ=μπ=h h (,...3,2,1n =) (13) 说明:由于2

n sin x a 2n cos 2n cos x a 2n sin )a x (a 2n sin ππ+ππ=+π,则一维无限深势阱中粒子的定态波函数可表述为: ?????≥<+π=Ψ?a x 0a x e )a x (a

2n sin a 1)t ,x (/t iE n n h (14)

58

三、讨论 1.能量量子化 22

22n a

8n E μπ=h ,L ,3,2,1n = 其特征为:

(1)n 叫做主量子数,每一个可能的能量称

为一个能级,1n =称为基态,粒子处于能量最低的状态,即:0a 8E E 2

221min

≠μπ==h ,称为零点能;

(2)能量是分立的,相邻能级间距: 22

2n 1n n a

8)1n 2(E E E μπ+=?=Δ+h 所以当∞→n 时,相邻能级的相对间距:0n

2E E n n →≈Δ 即相邻能级的相对间距随量子数n 的增加而减少。当n 很大时,能级可视为连续,这是经典极限时的情况,即经典物理可以看成是量子物理中量子数∞→n 时的近似。

2.波函数n ψ及几率密度2n ψ (1)在a x >时,波函数均为零,即粒子被束缚在阱内运动。通常把在无限远处波函数为零的状态称为束缚态(仅在有限范围内运动的状态)。一般来说束缚态所属能级是分立的。

(2))t ,x (n Ψ

是阱内驻波,是两个沿相反方向传播的平面波的迭加。

59 )]t E x a

2n (i exp[c )]t E x a 2n (i exp[c e )a x (a 2n sin a 1)t ,x (n 2n 1/t iE n n +π?+?π=+π=Ψ?h h h h h

(15) 其中1c 、2c 为两常数。

说明:利用形成驻波的条件可导出能级公式,形成驻波的条件是:波所在的空间限度等于半波的整数倍,即2

n a 2L λ==,则波矢的大小为:a

2n 2k π=λπ= 于是由De Broglie 关系得: 2

2

22222n a 8n 2k 2p E μπ=μ=μ=h h (16) (3)节点(波函数的零点)数(P37图):

n ψ有1n ?个节点(与x 轴的交点,

即0n =ψ的点且除去两端点); 2

n ψ有n 个极大值,两极大值之间有一零

点,共1n ?个零点,且2

n ψ关于y 轴

对称。

(4)n ψ的奇偶性(宇称)

n ψ的奇偶性由n 决定,当n 为偶数时,n ψ为奇函数或奇宇称(odd parity);当n 为奇数时,n ψ为偶函数或偶宇称(even parity)。 即有:)x ()1()x (n 1n n ψ?=?ψ?

60 所以n ψ的宇称为1)1(??n 。(这是由)x (U )x (U =?决定的)

3.与阱内经典质点的比较

(1)经典质点的能量连续,而阱内微观粒子的能量是分立的。

微观粒子具有波动性,限制在阱内运动,只能形成驻波,波长必分立,则粒子的能量和动量必分立。

(2)经典粒子的能量的最小值为零,它可在零到无穷大之间取值,而阱内微观粒子的能量最小值不等于零。

当微观粒子的质量增大且阱宽增大时,过渡到宏观环境,0E ,0E min →Δ→(能量连续)。

(3)经典质点几率分布均匀,而阱内微观粒子几率分布不均匀。 一般来说,经典质点的动量和能量相当大,由2/n a 2λ=可看出,波长趋于零时,n 将趋于无穷大,即确定的阱宽内包含了大量的半波,几率分布快速起伏变化,而平均值是均匀的,即在不同x 处找到粒子的几率相等,这就是经典极限情况。所以在大量子数(∞→n )的情况下,几率分布趋于经典分布。

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

量子力学答案完整版周世勋第三版

找了好久才找到的,希望能给大家带来帮助 量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比, 即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86' =? ?? ? ? ??-?+--?=-kT hc kT hc e kT hc e hc λλλλλπρ ? 011 5=-?+--kT hc e kT hc λλ ? kT hc e kT hc λλ=--)1(5 如果令x=kT hc λ ,则上述方程为 x e x =--)1(5 第一章绪论

这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ nm m m E c hc E h e e 71.01071.031051.021024.12296 6 2=?=????= ==--μμ 在这里,利用了 m eV hc ??=-61024.1 以及 eV c e 621051.0?=μ 最后,对 E c hc e 2 2μλ= 作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

一维无限深势阱

6.ξ一维无限深势阱 考虑一维空间中运动的粒子,它的势能在一定区域内: 0,,x x a U x a ?

,sin cos 0 sin cos 0 sin 0 cos 0 x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得: 因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。(物理问题对ψ的要求) 所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5.......2n a n απ==对第⑵组解有:,2,4,6 (2) n a n απ== 合并,即有:,1,2,3,4,5 (2) n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2n a απ=代回12 22E μα??= ???,得体系的能量本征值为:222 2 ,8n n E n a πμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。 这样,我们得到:体系的能量是量子化的,即能谱是分立的。n E 称为体系的能量本征值。相应的本征波函数为:P36 第一组n ψ为偶函数,即波函数具有偶宇称 第二组n ψ为奇函数,即波函数具有奇宇称 两式合并,得n ψ 的表达式,进行归一化,得'A = 子的定态波函数为:()()(),sin 2n n iE iE t t n n x n x t e x a e a a πψ--ψ==+(n ψ,与n E 对 应关系,粒子处于1ψ态时,E 有确定值2E ) 讨论:①粒子最低能级22 1208E a πμ=≠,这与经典粒子不同,是微观粒子波

一维方势阱

2.4 一维方势阱 本节我们要讨论一维方势阱问题。所谓一维方势阱指的是在一维空间中运动的微观粒子,其势能在一定的区间内,为一负值,而在此区间之外为零,即 00,0,(),0,0,,x U x U x a x a ≤?? =-≤≤??≥? (2.76) 其相应的势能曲线如图2.6所示 图2.6 一维方势阱 下面我们就E 大于与小于零的两种情形分别讨论如下: (1)E>0的情形。 此时,描述粒子运动状态的波函数()x φ所满足的定态薛定谔方程为 22220,l l d m E dx φφ== (2.77) 202 22()0,l m d m E U dx φφ=+= (2.78) 22220,r r d m E dx φφ== (2.79) 式中,l m φφ与r φ分别为粒子位于左方区间、势阱区间与右方区间中的波函数。 为方便起见,令 22 12022 22,()。m m k E k E U = =+ (2.80) 则上述三式可改写为 2212 0,l l d k dx φφ== (2.81) 22 22 0,m m d k dx φφ== (2.82) 2212 0,r r d k dx φφ== (2.83) 其解分别为 1 1 (),ik x ik x l x Ae A c φ-'=+ (2.84) 2 2 (),ik x ik x m x Be B c φ-'=+ (2.85)

1 1 (),ik x ik x r x Ce C c φ-'=+ (2.86) 显然,C 必须为零,利用φ及其导数的连续性条件即可求得、 A C '与A 关系为 2222 1222212122()sin ,()()ik a ik a i k k k a A A k k e k k e --'=--+ (2.87) 122122212124,()()ik a ik a ik a k k e C A k k e k k e --=--+ (2.88) 从而求得其反射系数R 与透射系数T 分别为 222 2122222222 12212()sin ,()sin 4k k k a R k k k a k k -=-+ (2.89) 22 12 222222 12212 4,()sin 4k k T k k k a k k -=-+ (2.90) 由此可见,对于方势阱而言,即使是在E>0的情形下,一般而论,其透射系数T 小于1,而反射系数R 则大于零,二者之和也是等于1。 显然,在2(1,2,)k a n n π== 的特定情形下,其透射系数T 等于1。这种透射亦叫共振透射。此时,有 22 022(),m E U a n π+= (2.91) 与之相应的能量为 222 02 ,2n E U ma π=- (2.92) E n 叫做共振能级。当阱深与阱宽一定时,透射系数T 与人射粒子能量E 的关系如图2.7所示。 图2.7 势阱的透射系数T 与入射能量的关系 当粒子能量E 与阱深一定时,有 0min 2 00 4() ,4()E E U T E E U U += ++ (2.93) 又当入射粒子能量与阱宽一定时,透射系数是阱深U 0的函数,且当满足 222 02 ()2n U n E ma π=- (2.94) 时,T =1。 (2)E<0的情形。 此时,粒子的波函数应满足的定态薛定谔方程为 22220,l l d m E dx φφ-= (2.95)

量子力学作业答案

第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλλρλρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ ? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5

如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。 已知外磁场H=10T ,玻尔磁子124109--??=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为 ?=nh pdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。 (1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有 2 22 12kx p E +=μ 这样,便有 )2 1(22kx E p - ±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。此外,根据 221 kx E = 可解出 k E x 2± =± 这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有 ?? -+ + - =--+-x x x x nh dx kx E dx kx E )2 1 (2)()21(222μμ

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

一维无限势阱

一维无限深势阱 定义编辑 粒子在一种简单外力场中做一维运动,其势能函数为U(X)=0 (-a

电子在一维无限深势阱中运动,用经典力学描述和量子力学描述得到了完全不同的结果。 按照经典概念,当外界向它提供能量时,电子可获得此能量而自身能量发生连续变化。电子在阱内任何位置出现的概率也是相等的。然而,按照量子力学观点,它的行为却不是这样的。 (1) 定态薛定谔方程的解 电子所受的保守力,在边界处电子所受的力无限大,指向阱内,意味着电子不可能越出阱外,由波函数物理意义可知势阱外波函数。电子在势阱内势能为零,受力为零。势阱内定态薛定谔方程为 令 方程变为

其解为 根据波函数应满足的标准化条件,波函数应在边界x=0和x=a上连续 得 应用归一化条件 求得 于是定态波函数为 (2) 能量量子化 因,合并(23.3.3)式,即得到一维无限深势阱中的电子能量

周世勋量子力学第二章知识题

第二章 波函数和薛定谔方程 2.1. 证明在定态中,几率流密度与时间无关. 解: 几率流密度公式为 ()**2J i ψψψψμ = ?-? 而定态波函数的一般形式为 ()(),i Et t e ψψ-=r r 将上式代入前式中得: ()()()()** 2J r r r r i ψψψψμ??= ?-?? ? 显然是这个J 与时间无关. 2.2. 由下列两定态波函数计算几率流密度; (1) ,e r ikr 11= ψ (2) ikr e r -=1 2ψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点)传播的球面波. 解: 在球坐标中,梯度算符为 1ψ和2ψ只是r 的函数,与?θ,无关,所以 , ()* *1 1211e e e ikr r r r e r ik ik r r r r ψψψ-???? ??==-+=-+ ? ????? ? ()*222111e e e ikr r r r e r ik ik r r r r ψψψψ-???? ??==-+=-+=? ? ????? ? ()()**2 21111ikr r r r e r ik ik r r r r r ψψψψ???? ??==-=-=? ? ????? ?e e e 将以上四式代入 ()()()()** 2J r r r r i ψψψψμ ??=?-??? (1) 对于ikr e r 11=ψ 12222 111122r r r i k p ik r r r r μμμμ??=-===????p J e e e (2) 对于ikr e r -=12ψ

212222 1111 22r r r i k p ik r r r r μμμμ??= =-=-=-=-???? p J e e e J 计算的结果已经很清楚ikr e r 11=ψ这样的球面波,是沿r e 方向传播的波, 121p J e r r μ=.而球面 波ikr e r -= 12ψ传播方向与1ψ相反,即21J J =- 2.3. 一粒子在一维势场 ()?? ? ??>∞≤≤<∞=a x a x x x U 00 中运动,求粒子的能级和对应的波函数. 解: 从定态薛定谔方程 02222=+ψμψ E dx d 即 02 =+''ψψk ()2 0k E = > 可知,其解为 ikx ikx Be Ae -+=ψ 在0≤x 和a x ≥处,波函数为 0)(=x ψ, 在a x ≤≤0处, 波函数为 ikx ikx Be Ae -+=ψ 从()00=ψ得 0=+B A 即 B A -= 因此有 () 2sin sin ikx ikx A e e iA kx C kx ψ-=-== 从()0=a ψ得 sin 0ka = 即要求 321,,n n ka ==π 所以 sin 1,2,3n n C x n a π ψ== 2 2 222a n E n μπ = 归一化条件 1*=?dx ψψ可得 a C 2 = ()()2222 11sin 1cos 2,cos 1cos 222αααα ??=-=+???? 所以 1,2,30n n x n x a a πψ= =≤≤ 综合得: 000n n x x a a x x a πψ≤≤=<>? 或 2.4. 证明()sin 20n n A x a x a a x a π ψ?'+

量子力学习题.(DOC)

量子力学习题 (三年级用) 山东师范大学物理与电子科学学院 二O O七年

第一部分 量子力学的诞生 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能 量可能值。

第二部分 波函数与Schr?dinger 方程 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的 结论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三部分 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+=

(完整版)量子力学总结

量子力学总结 第一部分 量子力学基础(概念) 量子概念 所谓“量子”英文的解释为:a fixed amount (一份份、不连续),即量子力学是用不连续物理量来描述微观粒子在微观尺度下运动的力学,量子力学的特征简单的说就是不连续性。 描述对象:微观粒子 微观特征量 以原子中电子的特征量为例估算如下: ○1“精细结构常数”(电磁作用常数), 1371~ 10297.73 2-?==c e ηα ○ 2原子的电子能级 eV a e me c e mc E 27~~02242 2 2==??? ? ??ηη 即:数10eV 数量级 ○ 3原子尺寸:玻尔半径: 53.0~2 2 0me a η=?,一般原子的半径1?

○4速率:26 ~~ 2.210/137 e c V c m s c ?-?h ○5时间:原子中外层电子沿玻尔轨道的“运行”周期 秒 160 0105.1~2~-?v a t π 秒 角频率160 102.4~~?a v c ω, 即每秒绕轨道转1016圈 (电影胶片21张/S ,日光灯频率50次/S ) ○6角动量:ηηη=??2 2 20~~e m me mv a J 基本概念: 1、光电效应 2、康普顿效应 3、原子结构的波尔理论 波尔2个假设: 定态轨道 定态跃迁 4、物质波及德布洛意假设(德布洛意关系)

“任何物体的运动伴随着波,而且不可能将物质的运动和波的传播分开”,认为物体若以大小为P 的动量运动时,则伴随有波长为λ的波动。 P h =λ,h 为普朗克常数 同时满足关系ωη==hv E 因为任何物质的运动都伴随这种波动,所以称这种波动为物质波(或德布罗意波)。 称P h h E v ==λ 德布罗意波关系 例题:设一个粒子的质量与人的质量相当,约为50kg ,并以12秒的百米速度作直线运动,求粒子相应的德布罗意波长。说明其物理意义。 答:动量v p μ= 波长m v h p h 3634101.1)1250/(1063.6)/(/--?=??===μλ 晶体的晶格常数约为10-10m ,所以,题中的粒子对应的德布罗意波长<<晶体的晶格常数,因此,无法观测到衍射现象。 5、波粒二象性 (1)电子衍射实验 1926年戴维逊(C ·J ·Davisson )和革末(L ·H ·Gevmer )第一个观察到了电子在镍单晶表面的衍射现象,证实了电子的波动性,求出电子的波长λ

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

量子力学 一维无限深势阱

55 §2.6一维无限深势阱(Potential Well )(理想模型) 重点:一维无限深势阱中粒子运动的求解 难点:对结果的理解 实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。 一、写出本征问题 势场为:? ??≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 2 2 2ψ=ψμ?h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dx d 2()III (II )III (II 022 2ψ=ψ+μ?h (2) 其中∞=0U 。 波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I ?ψ=?ψ (3) 二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h ?μ=α (4) 则:)x (E )x (dx d 2I I 2 2 2ψ=ψμ?h 的解为: x i x i I Be Ae )x (αα?+=ψ a x < (5)

56 )x (E )x ()U dx d 2()III (II )III (II 022 2ψ=ψ+μ?h 的解为: x 'x 'II e 'B e 'A )x (αα?+=ψ a x ≥ (6) x 'x 'III e ''B e ''A )x (αα?+=ψ a x ?≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即: x 'II e 'A )x (α?=ψ a x ≥ x 'III e ''B )x (α=ψ a x ?≤ 又由于∞=0U ,则:∞=?μ=α20) E U ( 2'h 于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I ?ψ=?ψ;x i x i I Be Ae )x (αα?+=ψ 则:???=+=+α?ααα?0Be Ae 0 Be Ae a i a i a i a i (9) 于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i a i a i =α?ααα?, 即:0)a 2sin(=α 解之得:a 2n π =α,,....2,1,0n ±±= (10) 将其代入到???=+=+α?ααα?0Be Ae 0Be Ae a i a i a i a i ,得:0Be Ae 2 /in 2/in =+ππ? 即:B )1(A 1n +?= 代入x i x i I Be Ae )x (αα?+=ψ中,得:

一维无限深势阱 (2)

论文题目:一维无限深势阱简述 制作人:刘子毅(应用物理(1)) 学号:09510113

一维无限深势阱 一、引言 Hu = Eu, ,2222Eu Vu dx u d m =+- (1) 在图中Ⅰ区,-a/2a/2, V=∞. 现在解Ⅰ区情况的方程,V=0,(1)式成为

.2,22 2 22 mE k u k u mE dx u d =-=-= 设ax e u =,那么u a u n 2 =,代入上式, u k u a 22-= ik a ±= 所以 ikx ikx Be Ae u -++= kx D kx C u sin cos += (2) (2)式是Ⅰ区的通解。 2、一维无限深阱电子的基态 2 2 22 22 282n md h n md E n == π n=1、2、3…… 无量纲处理:以波尔半径2 2 00m e a ε= 里德伯2024 2ε me R y =分别为长度和能量单位 能量可化为2 1 d E π 3、数值模拟 当n=1时,1E 和d 的一组数值用计算机编程模拟如下: 设d 从0.3 3.0 include ?stdio.h ? include ?math.h ?

main() { double e,d,c; int i; c=3.14,d=0.3; for(i=0;i ?10;i++) { e=c/(d*d); printf(“%lf ”,&e); d=d+0.3;} } d 的取值利用画图软件描绘出横坐标为d ,纵坐标为E 的曲线 设d 从0.3 3.0,能量化简为:2 1d E π = 模拟如下:

第17讲 一维无限深方势阱中的粒子

近代物理第五周学习内容第17讲一维无限深方势阱中的粒子第18讲一维方势垒势垒贯穿 第19讲简谐振子 第20讲氢原子 第21讲电子自旋

)()()()(r E r r U r m ψψψ=+?-22 2定态薛定谔方程 2 2 22 22 2 z y x ??+??+??=?

定态薛定谔方程的应用 定态条件:U = U (x ,y ,z )不随时间变化。 (1) 一维自由运动微观粒子 U = 0 (2) 一维无限深势阱中粒子 (3) 谐振子 2 22 22x m kx x U ω==)((4) 氢原子 r e r U 02 π4ε- =)(?? ?≥≤∞<<=a x x a x x U 0 0 0,)(

结论 一维无限深方势阱中粒子 氢原子 (1) 能量量子化 谐振子 )( 2 1 0 21,,,=??? ??+=n h n E n ν)()( 3 2 1 eV 6 .132 ,,,=-=n n E n )( 3 2 1 2π2 2 22,,,==n n ma E n

一维无限深方势阱中粒子 谐振子 氢原子 E a x E 1 n = 1 4E 1 n = 2 9E 1 n = 3 0 E n (eV ) r -13.6 -3.4 -1.5 E 0 E 4 E 3 E 1 E 2 ω E 2 ω (2) 能级分布图

(3)一维无限深方势阱中的粒子的定态物质波相当 于两端固定的弦中的驻波,因而势阱宽度a 必须等于德布罗意波的半波长的整数倍。 λ n n= a 2 (4)能级跃迁 从基态跃迁到激发态时,所需能量称为激发能。

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

大学物理(下)习题精选

1. 磁场复习题 1、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。(提示:无限长载流平板可看成许多无限长的载流直导线组成) 解:利用无限长载流直导线的公式求解。 (1)取离P 点为X 宽度为dx 的无限长载流细条,它的电流 di=δdx (2)这载流长条在P 点产生的磁感应强度 x dx x di dB o o πδμπμ22== 方向垂直纸面向里。 (3)所有载流长条在P 点产生的磁感应强度的方向都相同,所以载流平板在P 点产生的磁感应强度 ?? +===+b b a x x dx dB B o b a b ln 22πδμπ δ μο ,方向垂直纸面向里。 2、书上习题7-16 解:(1)取半径为r 的园为回路 ( ) () 2 22 22a r a b I rB -?-=ππμ π 所以, ( ) r a r a b I B 2 22 202-?-=πμ (2) ? ?= b a rdr j I π2? ?=b a rdr Kr π23 23 3a b K -?=π 因此,() 3 323a b I K -= π 又根据环路定理,???=r rdr Kr rB απμπ2203 23 30a r K -?=πμ 故有 3 33303 3023a b a r r I a r r K B --?=-? =∴πμμ

3、如图所示,长直导线中通有电流I=5A ,另一矩形线框共1000匝,宽a =10cm ,长L=20cm , 以s m v /2=的速度向右平动,求当cm d 10=线圈中的感应电动势。 解:x I B πμ20= ,设绕行方向为顺时针方向,则BLdx BdS d ==φ y a y IL x ILdx d a y y a y y +===? ? ++ln 2200πμπμφφ =-=dt d N φε) (20a y y va IL N +πμ 当cm d y 10==时 , mV 21 .0)1.01.0(2 1.02104 2.0510007=+?????=-ππε *上题中若线圈不动,而长导线中通有交变电流t i π100sin 5=A, 线圈内的感应电动势为多大? 解:同上有: y a y IL x ILdx d a y y a y y +===?? ++ln 2200πμπμφφ =-=dt d N φε t y a y t L N πππμ100cos 1 .02 .0ln 2.010********ln 100cos 25070?????-=+?-=- t π100cos 104.42-?-=V *上题中若线圈向右平动,而长导线中仍有交变电流,则线圈内感应电动势又为多大? 线圈在向右平动的同时,电流也在变化,则有 =-=dt d N φεy a y dt Ldi N +-ln 2/0πμ+) (20a y y va iL N +πμ t π100cos 104.42-?-=+t π100sin 100.23-? I

量子力学作业习题

第一章量子力学的诞生 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 )经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级围, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;( 5 ) Compton 散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. (2;(3)hc [6]验算三个系数数值:(1

相关文档
相关文档 最新文档