文档库 最新最全的文档下载
当前位置:文档库 › 高一数学典型例题分析:指数函数

高一数学典型例题分析:指数函数

高一数学典型例题分析:指数函数
高一数学典型例题分析:指数函数

高一数学典型例题分

析:指数函数

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

指数函数·例题解析

【例1】求下列函数的定义域与值域:

(1)y 3

(2)y (3)y 1

2x

===-+---213321x x

解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,

∴值域是≤<.0y 3

【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是

[ ]

A .a <b <1<c <d

B .a <b <1<d <c

C . b <a <1<d <c

D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小:

(1)2(2)0.6

、、、、的大小关系是:.

2481632

358945

12--()

(3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<

<.22224282162133825491

2

28416212313525838949

3859=====

解 (2)0.6110.6∵>,>,

∴>.

----

45

12

451

232

32

()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6

∴ 4.54.1>3.73.6.

说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).

【例4】解

比较大小与>且≠,>.

当<<,∵>,>,

a

a a a

a

n n n n n n n

n n n

n n -+-+-=-111

1

111

1(a 0a 1n 1)0a 1n 10()

()

∴<,∴<当>时,∵>,>,∴>,>a a a n n a

a a n n n n n n n n n n n n 1111

1111

1

1()

()()--+--+-1a 1n 101

【例5】作出下列函数的图像:

(1)y (2)y 22x ==-,()1

2

1

x +

(3)y =2|x-1| (4)y

=|1-3x |

解 (1)y (264)(0)(11)y 1=的图像如图.-,过点,及-,.

是把函数=的图像向左平移个单位得到的.

()()121

2

12

1x x

+

解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.

解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).

解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)

【例6】解求函数=的单调区间及值域.

令=-+,则=是关于的减函数,而=--+y

u x 5x 6y u u x 5x

x 2

5x 622()()34

3

4u

+在∈∞,上是减函数,在∈,∞上是增函数.∴函数

=的单调增区间是∞,,单调减区间是,∞.

-+6x x y x 25x 6(][)()(][)-+-+525

2

345252

又∵=-+=≥,

函数=,在∈,∞上是减函数,所以函数=的值域是,.

-+u x 5x 6y u y 2

x 25x 6()()[)()(]x u ----+521414

341

4

340108

3

24

【例7】解求函数=+≥的单调区间及它的最大值.

=,令=,∵≥,∴<≤,又∵=是∈,+∞上的减函数,函数=y 1(x 0) y u x 00u 1u x 0)y ()()[()]()[()]()()[()

1412

1212112123412

1212

222

x x

x x x x

x u --+=-+-

+

-34012121212

1212141

2

在∈,上为减函数,在,上是增函数.但由<≤得≥,由≤≤,得≤≤,∴函数=+单调增区间是,+∞,单调减区间,u 1)0x 110x 1y 11)[01]

(][()()()()[x x x x

当x =0时,函数y 有最大值为1.

【例8】已知=>f(x)(a 1)a a x x -+1

1

(1)判断f(x)的奇偶性; (2)求f(x)的值域;

(3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R .

f(x)f(x)-==-,a a a a x x x x ---+=--+111

1

∴函数f(x)为奇函数.

(2)y y 1a 1y 1x 函数=,∵≠,∴有=>-<<,a a y y y y x x -+---=+-?11

111

10

即f(x)的值域为(-1,1).

(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)

==,∵>,<,<,++>,∴<,故在上为增函数.

a a a a a a a a a a a a x l x l x x x l x x l x x x x

x -+-+--++112121*********()()()a 1x x (1)(1)0f(x )f(x )f(x)R 12

12

相关文档