文档库 最新最全的文档下载
当前位置:文档库 › 圆形薄板在均布载荷作用下的挠度

圆形薄板在均布载荷作用下的挠度

圆形薄板在均布载荷作用下的挠度
圆形薄板在均布载荷作用下的挠度

第四节平板应力分析

3.4平板应力分析

3.4.1概述

3.4.2圆平板对称弯曲微分方程

3.4.3圆平板中的应力

3.4.4承受对称载荷时环板中的应力

3.4.1概述

1、应用:平封头:常压容器、高压容器;

贮槽底板:可以是各种形状;

换热器管板:薄管板、厚管板;

板式塔塔盘:圆平板、带加强筋的圆平板;

反应器触媒床支承板等。

2、平板的几何特征及平板分类

w/t≤1/5时(小挠度)按小挠度薄板计算

3、载荷与内力

载荷:①平面载荷:作用于板中面内的载荷

②横向载荷垂直于板中面的载荷

③复合载荷

内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形

②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形

◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所以,

大挠度分析要比小挠度分析复杂的多。

◆本书仅讨论弹性薄板的小挠度理论。

4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f

① 板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面法线w 的挠度。只有横向力载荷

②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上各点间的距离不变。

类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且仍然垂直于变形后的梁轴线。

③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 ◆研究: 弹性,薄板 / 受横向载荷 / 小挠度理论 / 近似双向弯曲问题

3.4.2 圆平板对称弯曲微分方程

分析模型

分析模型:半径R ,厚度t 的圆平板受轴对称载荷P z ,在r 、θ、z 圆柱坐标系中,

内力M r 、M θ、Q r 三个内力分量

轴对称性:几何对称,载荷对称,约束对称,在r 、θ、z 圆柱坐标系中,挠度w 只

是 r 的函数,而与θ无关。

求解思路:经一系列推导(基于平衡、几何、物理方程)→弯曲挠度微分方程(

z p w

→求w 求→内力

r M M θ

、→求应力

r θ

σσ、

微元体内力 :

径向:M r 、M r +(d M r /d r )d r 周向:M θ、 M θ

横向剪力:Q r 、Q r +(d Q r /d r )d r 微元体外力 :

上表面z P p rd dr θ=

2、几何协调方程(W~ε)

取AB dr

+两点A与B构成的微段=,径向截面上与中面相距为z,半径为r与r dr Array

板变形后:

微段的径向应变为 ()r z d z d z

dr

dr

???

?ε+-=

=(第2假设)

过A 点的周向应变为()222r z r

z

r

r

θπ?π?επ+-==(第1假设)

作为小挠度dw dr

?=-

,带入以上两式,得

应变与挠度关系的几何方程:

2

2r d w z dr

z dw r dr

θεε=-=-

(2-55)

3、物理方程

根据第3个假设,圆平板弯曲后,其上任意一点均处于两向应力状态。由广义虎克定律可得圆板物理方程为:

()

()

2

211r r r E E θθθσεμεμσεμεμ

=+-=

+- (2-56)

4、圆平板轴对称弯曲的小挠度微分方程 (2-55)代入(2-56)式:

222

2

22111r E z

d w dw dr r dr E z

dw d w r dr dr θμσμσμμ??

=-+ ?-??

??

=-

+ ?

-?? (2-57)

通过圆板截面上弯矩与应力的关系,将弯矩r M 和M θ表示成w 的形式。由式(2-57)

可见,r σ和θσ沿着厚度(即z 方向)均为线性分布,图2-31中所示为径向应力的分布图。

2

r M D dr r dr =-+ ???

同理22

1dw d w M D r dr

dr θ

μ??

'=-+ ???

(2-58b )

参照38页壳体的抗弯刚度,——“抗弯刚度”与圆板的几何尺寸及材料性能有关 (2-58)代入(2-57),得弯矩和应力的关系式为:

3

3

1212r

r M z

t M z

t

θ

θσσ==

(2-59)

(2-58)代入平衡方程(2-54),得:

3

2

3

2

2

11r Q d w d w dw dr

r dr

r

dr

D +

-

=

'

即:受轴对称横向载荷圆形薄板小挠度弯曲微分方程:

1r

Q d d d r dr r dr dr D ω????= ??

?'

???? (2-60)

Q r 值可依不同载荷情况用静力法求得

3.4.3 圆平板中的应力(圆平板轴对称弯曲的小挠度微分方程的应用)

承受均布载荷时圆平板中的应力:①简支②固支 承受集中载荷时圆平板中的应力

一、承受均

据图2-32,可确定作用在半径为r 的圆柱截面上的剪力,即:2

22

r r p pr Q r

ππ==

代入2-60式中,得均布载荷作用下圆平板弯曲微分方程为:

12d d dw pr

r dr r dr dr D ????= ??

?'

???? 对r 连续两次积分得到挠曲面在半径方向的斜率:

3

12162

C r C dw pr

dr

D r

=+

+

'

(2-61)

对r 连续三次积分,得到中面在弯曲后的挠度。

2

4

123ln 644

C r pr

w C r C D =

+

++'

(2-62)

C 1、C 2、C 3均为积分常数。

对于圆平板在板中心处(r =0)挠曲面之斜率与挠度均为有限值,因而要求积分常数C 2 =0 ,于是上述方程改写为:

3

12

413

162

644

C r dw pr dr

D C r pr

w C D =+

'

=

+

+'

(2-63)

式中C 1、C 3由边界条件确定。

下面讨论两种典型支承情况(两种边界条件) ①周边固支圆平板 ②周边简支圆平板

图2-32均布载荷作用时圆板内Q r 的确定

,0

dr

r R w == 将上述边界条件代入式(2-63),解得积分常数:

2

14

3,

864pR

C D pR

C D =-

'

=

'

代入式(2-63)得周边固支平板的斜率和挠度方程:

(2-64)

将挠度w 对r 的一阶导数和二阶导数代入式(2-58),便得固支条件下的周边固支圆平板弯矩表达式:

()()()()2222131611316r p

M R r p

M R r θμμμμ??

=+-+?

???=

+-+?? (2-65)

由此(代入2-59)弯曲应力计算试,可得r 处上、下板面的应力表达式:

()()()()2

2

22

26

2226

313831138r

r t

t

M p

R r t

M p

R r t

θ

θσμμσμμ??==+-+????==+-+??

(2-66)

周边固支圆平板下表面的应力分布,如图2-34(a )所示。 最大应力在板边缘上下表面,即()2

2max 3r pR σ=±

弯矩表达式:

()()

()()222231631316r p M R r p

M R r θμμμ=+-??

=

+-+?

? (2-68)

应力表达式:

()()

()()222

222

33833138r p R r t

p

R r t θσμσμμ=+-??=+-+?

?

(2-69)

可以看出,最大弯矩和相应的最大应力均在板中心处0r =,

()()()2

max max

316

r pR M M θ

μ==

+

()()()2

2

max

max

338

r pR t

θ

μσσ+==

周边简支板下表面的应力分布曲线见图2-34(b )。

周边简支时:,0,0

r r R w r R M ====

b . 挠度

周边固支时,最大挠度在板中心4

max

64f pR

w

D =

'

(2-70)

周边简支时,最大挠度在板中心4

m ax

5164s pR

w

D μμ+=

'

+ (2-71)

0.3

μ=简支固支

m ax m ax

50.3 4.0810.3

s

f w w +=

=+

表明: 周边简支板的最大挠度远大于周边固支板的挠度。 c . 应力

周边固支圆平板中的最大正应力为支承处的径向应力,其值为

()2

2

max

34f

r pR t

σ=

(2-72)

周边简支圆平板中的最大正应力为板中心处的径向应力,其值为

()()2

2

max

338

s

r pR t

μσ+=

(2-73)

0.3

μ≈简支固支

()()m ax m ax

3.3 1.652

s

r f

r σσ=

=

表明: 周边简支板的最大正应力大于周边固支板的应力。 内力引起的切应力:

在均布载荷p 作用下,圆板柱面上的最大剪力()m ax 2

r pR Q =(r R =处),

近似采用矩形截面梁中最大切应力公式m ax 32Q bh

τ=,

得到()m ax m ax 332

14r Q pR t

t

τ=

=?

最大正应力与()

2

R

t

同一量级;

最大切应力则与R t 同一量级。

因而对于薄板R >>t ,板内的正应力远比切应力大。

从以上可以看出:m ax σ与m ax w 圆平板的材料(E 、μ)、半径、厚度有关。 ●若构成板的材料和载荷已确定,则减小半径或增加厚度都可减小挠度和降低最大正应力。

●工程中较多的是采用改变其周边支承结构,使它更趋近于固支条件

●增加圆平板厚度或用正交栅格、圆环肋加固平板等方法来提高平板的强度与刚度 4、结论

a . 板内为二向应力状态:r θσσ、且为弯曲应力,平行于中面各层相互之间的正应力z σ及剪力r Q 引起的切应力τ均可予以忽略。

b . 应力分布: 沿厚度呈线性分布 , 且最大值在板的上下表面。沿半径呈抛物线分布,且与周边支承方式有关。工程实际中的圆板周边支承是介于两者之间的形式。

c . 强度: 简支 ()()2

max

2

max max

1.23

s

s

s

r r pR t

θ

σ

σσ====

固支 ()2

max

2

max 0.75

f

f r r R

pR t

σ

σ===

()()m a x m a x

1.65

s

r f

r σσ= d . 刚度:

∴周边固支的圆平板在刚度和强度两方面均优于周边简支圆平板 e . 薄板结构的最大弯曲应力m a x σ与()

2

R

t

成正比,而薄壳的最大拉( 压)应力m a x σ

与R t 成正比。故在相同R t

条件下,薄板所需厚度比薄壳大。

二、承受集中载荷时圆平板中的应力

挠度微分方程式(2-60)中,剪力r Q 可由图2-35中的平衡条件确定:2r F Q r

π=

采用与求解均布载荷圆平板应力相同的方法,可求得周边固支与周边简支圆板的挠度和弯矩方程及计算其应力值

3.4.4 承受轴对◆通常的环板的应力、应变,只是在内孔边缘◆当环板内其中心线(通过形心)均布力矩M 作用下,矩形截面只产生微小的转角 而无其它变形,从而在圆环上产生周向应力。这类问题虽然为轴对称问题,但不能应用上述圆平板的基本方程求解。

设圆环的内半径为i R 、外半径为o R 、形心处的半径为x R 、厚度t ,沿其中心线(通过形心)均布力矩M 的作用,如图2-37所示。文献[40]给出了导出圆环绕其形心的转角φ和最大应力max θσ(在圆环内侧两表面)

3

m ax 2

12ln

6ln

x o i x

o i i

M R

R E t R M R R t R R θφσ=

=

(2-74)

图2-37 圆环转角和应力分析

弹性薄板小挠度弯曲问题的基础变分原理(16K

第6章 弹性薄板小挠度弯曲问题的基础变分原理 平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。1850年,G.R.基尔霍夫(Kirchhoff Gustav Robert ,基尔霍夫 古斯塔夫·罗伯特,德国物理学家,1824-1887年)除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。 用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。 本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。 §6.1 基本方程与边界条件回顾 取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。由Kirchhoff 假设,可以得到 x w z z y x u ??-=),,(,y w z z y x v ??-=),,(,),(),,(y x w z y x w = (6-1) 并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为 22x w z x ??-=ε,22y w z y ??-=ε,y x w z xy ???-=γ22 (6-2) 其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即 0=εz ,0=γxz ,0=γyz (6-3) 由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩 x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称 为内力矩)与x Q ,y Q 之间的关系式。这里要注意,x M ,y M ,xy M 是单位中面宽度内的内力矩,它们的因次是千克力,x Q ,y Q 是单位中面宽度内的内力,它们的因次是千克力

挠度计算

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一) 概念和假定 薄板:板的厚度远小于中面最小尺寸的板。 荷载 纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。 横向荷载:使薄板弯曲,按薄板弯曲问题计算。 中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。 薄板弯曲的基本假设(基尔霍夫假设) (1)垂直于中面方向的正应变εz 可以不计,由?w /?z = 0得到 w = w (x , y ) 板厚度内各点具有相同的挠度。 放弃物理方程:)]([1 y x z z E σσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0 (2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=??+??x w z u ,x w z u ??-=?? 0=??+??y w z v ,y w z v ??-=?? x

放弃物理方程:xz xz E τμγ)1(2+= ,yz yz E τμγ) 1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。 只有三个物理方程 )(1 y x x E μσσε-= )(1 x y y E μσσε-= xy xy E τμγ) 1(2+= 与平面应力问题相同。 (3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。 弹性曲面微分方程 按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由 x w z u ??-=??,y w z v ??-=?? 积分得到:),(1y x f z x w u +??- =,),(2y x f z y w v +??-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ??- =,z y w v ??-= 则: z x w x u x 22??-=??=ε,z y w y v y 22??-=??=ε,z y x w x v y u xy ???-=??+??=22γ 将应力分量σx 、σy 、τxy 用w 表示 ??? ? ????+??--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ

挠度计算公式

挠度计算公式 挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公 式: 均布荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载准绳值(kn/m). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:

Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn). 你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 实行反算,看能餍足的上部荷载要求!

简支梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 210000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

第五章弹性薄板小挠度弯曲问题的变分原理(16K)

第五章 弹性薄板小挠度弯曲问题的变分原理 平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。1850年,G .R.Kirchhoff 除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。 用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。 本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。 §5.1 基本方程与边界条件回顾 取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。由Kirchhoff 假设,可以得到 x w z z y x u ??-=),,(,y w z z y x v ??-=),,(,),(),,(y x w z y x w = (5-1) 并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为 22x w z x ??-=ε,22y w z y ??-=ε,y x w z xy ???-=γ22 (5-2) 其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即 0=εz ,0=γxz ,0=γyz (5-3) 由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩 x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称为内力矩)与x Q ,y Q 之间的关系式。这里要注 意,x M ,y M ,xy M 是单位中面宽度内的内力矩,它们的因次是千克力,x Q ,y Q 是单位中

圆形薄板在均布载荷作用下的挠度

第四节平板应力分析平板应力分析 3.4.1概述 3.4.2圆平板对称弯曲微分方程 3.4.3圆平板中的应力 3.4.4承受对称载荷时环板中的应力 3.4.1概述 1、应用:平封头:常压容器、高压容器; 贮槽底板:可以是各种形状; 换热器管板:薄管板、厚管板; 板式塔塔盘:圆平板、带加强筋的圆平板; 反应器触媒床支承板等。 2、平板的几何特征及平板分类 几何特征:中面是一平面厚度小于其它方向的尺寸。 t/b≤1/5时(薄板) w/t≤1/5时(小挠度)按小挠度薄板计算 3、载荷与内力

载荷:①平面载荷:作用于板中面内的载荷 ②横向载荷垂直于板中面的载荷 ③复合载荷 内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形 ②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形 ◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所以, 大挠度分析要比小挠度分析复杂的多。 ◆本书仅讨论弹性薄板的小挠度理论。 4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f ①板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面法 线w的挠度。只有横向力载荷 ②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线上 各点间的距离不变。 类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且仍 然垂直于变形后的梁轴线。 ③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 ◆研究:弹性,薄板/受横向载荷/小挠度理论/近似双向弯曲问题 3.4.2圆平板对称弯曲微分方程 分析模型

扰度计算公式(全)

扰度计算公式(全) -CAL-FENGHAI.-(YICAI)-Company One1

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = ^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).

式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求! 机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构 件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件 下截面上的最大应力。根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为√(C+W)√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

挠度定义

挠度 挠度定义:结构构件的轴线或中面由于弯曲引起垂直于轴线或中面方向的线位移。 应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 挠度(德语 Durchbiegung,法语la flèche)——弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠度,用y表示。简言之就是指梁、桁架等受弯构件在荷载作用下的最大变形,通常指竖向方向y轴的,就是构件的竖向变形。 挠曲线——如图,平面弯曲时,梁的轴线将变为一条在梁的纵对称面内的平面曲线,该曲线称为梁的挠曲线。 挠度与荷载大小、构件截面尺寸以及构件的材料物理性能有关。 挠度——弯曲变形时横截面形心沿与轴线垂直方向的线位移称为挠 度,用 y表示。 转角——弯曲变形时横截面相对其原来的位置转过的角度称为转角,用θ表示。 挠曲线方程——挠度和转角的值都是随截面位置而变的。在讨论弯曲变形问题时,通常选取坐标轴x向右为正,坐标轴y向上为正。选定坐标轴之后,梁各横截面处的挠度y将是横截面位置坐标x的函数,其表达式称为梁的挠曲线方程,即 y = f ( x ) 。 显然,挠曲线方程在截面x处的值,即等于该截面处的挠度。 根据微积分知识,挠曲线的斜率为 因工程实际中梁的转角θ之值十分微小,可近似认为 可见,挠曲线在截面位置坐标x处的斜率,或挠度y对坐标x的一阶导数,等于该截面的转角。 关于挠度和转角正负符号的规定:在如图6-1选定的坐标系中,向上的挠度为正,逆时针转向的转角为正。

挠度的检测方法 传统的桥梁挠度测量大都采用百分表或位移计直接测量,目前在我国桥梁维护、旧桥安全评估或新桥验收中仍广泛应用。该方法的优点是设备简单,可以进行多点检测,直接得到各测点的挠度数值,测量结果稳定可靠。但是直接测量方法存在很多不足,该方法需要在各个测点拉钢丝或者搭设架子,所以桥下有水时无法进行直接测量;对跨线桥,由于受铁路或公路行车限界的影响,该方法也无法使用;跨越峡谷等的高桥也无法采用直接方法进行测量;另外采用直接方法进行挠度测量,无论布设还是撤消仪表,都比较繁杂耗时较长。

挠度计算公式

挠度计算公式 默认分类 2009-08-20 12:46 阅读2447 评论1 字号:大中小 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

横向变形挠度

横向变形挠度 1.原理 本试验通过测定300 x 50 x 3mm砂浆棱柱试件的挠度,评定砂浆的变形性能。 2.试验器具 ⑴试验机:以2mm/min的速度进行试验的压力机。 ⑵试验测试头:该测试头的金属构造和尺寸见下图3-1。 图3-1 测试头的金属构造和尺寸 ⑶试验支架:两个直径为(10±0.1)mm,最小长度为60mm的圆形支架,其中心距为(200±1)mm ,见图3-2。 1-圆柱型支架,直径为(10±0.1)mm,最小长度为60mm。 2-胶粘剂厚度为(3±0.3)mm。 图3-2 试验支架 ⑷试验模具 一个刚性光滑防粘的矩形框架,其内部尺寸为(280±1)mm×(45±1)mm,厚度为(3±0.1)mm,由聚四氟乙烯(PTFE)制成。见图3-3。

注:建议在内部每个角落钻一个直径为2mm的圆洞以方便制备测试样品,见图3-3。 图3-3 试验模具 ⑸实验天平:精确度:± 0.1g。 ⑹砂浆搅拌机:满足JC/T681-2005行星式水泥胶砂搅拌机的要求。 ⑺秒表。 3.辅助材料 ⑴试验用基材:厚度最小为0.2mm的聚乙烯薄膜。 ⑵试验用密封袋:一定尺寸的聚乙烯袋,与试件有100mm的间隙。 4.备样 ⑴拌合过程 ①将水或液体倒入锅中。 ②将干粉撒入。 ③低速搅拌30秒; ④取出搅拌叶; ⑤60秒内清理搅拌叶和搅拌锅壁上的胶粘剂; ⑥重新放入搅拌叶,再低速搅拌60秒。 ⑦放置5min使胶粘剂熟化,然后继续搅拌15秒。 ⑵制备 ①试验基材准备 将聚乙烯膜固定在刚性垫座上,确保胶粘剂将要粘贴的表面不会发生扭曲变形,即没有皱纹。 ②试件制备 将模具紧密压在聚乙烯膜上。将足够的胶粘剂涂抹在模具内,然后涂抹均匀,使其完全平整地装填入模具内,最后小心地垂直移走模具。对每一种胶粘剂制备三块试件。根据试验要求将试件在标准试验条件下养护。

薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题 一.内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二.重点 1. 基尔霍夫假设; 2. 薄板的应力、广义力和广义位移; 3. 薄板小挠度弯曲问题的基本方程; 4. 薄板的典型边界条件及其简化。 知识点 薄板的基本概念、薄板的位移与应变分量、薄板广义力、薄板小挠度弯曲问题基本方程、薄板自由边界条件的简化、薄板的莱维解、矩形简支薄板的挠度、基尔霍夫假设、薄板应力、广义位移与薄板的平衡、薄板的典型边界条件、薄板自由边界角点边界条件、挠度函数的分解

§12.1 薄板的基本概念和基本假设 学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤ /b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1. 薄板基本概念; 2. 基尔霍夫假设; 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。

相关文档
相关文档 最新文档