文档库 最新最全的文档下载
当前位置:文档库 › 基于PC机Windows平台的SystemView动态系统仿真

基于PC机Windows平台的SystemView动态系统仿真

基于PC机Windows平台的SystemView动态系统仿真
基于PC机Windows平台的SystemView动态系统仿真

1引言

通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。

有调制器,接收端要有解调器,这就用到了调制技术,调制可分为模拟调制和数字调制。模拟调制常用的方法有AM调制、DSB调制、SSB调制;数字调制常用的方法有BFSK调制等。经过调制不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响。调制方式往往决定着一个通信系统的性能。

随着通信技术的发展日新月异,通信系统也日趋复杂。因此,在通信系统的设计研发过程中,通信系统的软件仿真已成为必不可少的一部分。目前,电子设计自动化EDA(Electronic Design Automatic)已成为通信系统设计的主潮流。为了使复杂的设计过程更加便捷高效,使得分析与设计所需的时间和费用降低。美国Elanix 公司推出的基于PC机Windows平台的SystemView动态系统仿真软件,是一个比较流行的,优秀的仿真软件。

SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。SystemView借助大家熟悉的Windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。SystemView仿真系统的主要特点有:能仿真大量的应用系统;能快速方便地进行动态系统设计与仿真;在本文中可以方便地加入SystemView的结果;完备的滤波和线性设计;先进的信号分析和数据处理;完善的自我诊断功能等。SystemView由两个窗口组成,分别是系统设计窗口的分析窗口。系统设计窗口,包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计工作区。所有系统的设计、搭建等基本操作,都是在设计窗口内完成。分析窗口包括标题栏、菜单栏、工具条、流动条、活动图形窗口和提示信息栏。提示信息栏显示分析窗口的状态信息、坐标信息和指示分析的进度;活动图形窗口显示输出的各种图形,如波形等。分析窗口是用户观察SystemView数据输出的基本工具,在窗口界面中,有多种选项可以增强显示的灵活性和系统的用途等功能。在分析窗口最为重要的是接收计算器,利用这个工具我们可以获得输出的各种数据和频域参数,并对其进行分析、处理、比较,或进一步的组合运算。例如信号的频谱图就可以很方便的在此窗口观察到。

2 软件SystemView的介绍

SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。SystemView借助大家熟悉的Windows窗口环境,以模块化和交互式的界面,为用户提供一个嵌入式的分析引擎。

SystemView由两个窗口组成,分别是系统设计窗口的分析窗口。系统设计窗口,包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计工作区。所有系统的设计、搭建等基本操作,都是在设计窗口内完成。分析窗口包括标题栏、菜单栏、工具条、流动条、活动图形窗口和提示信息栏。提示信息栏显示分析窗口的状态信息、坐标信息和指示分析的进度;活动图形窗口显示输出的各种图形,如波形等。分析窗口是用户观察SystemView数据输出的基本工具,在窗口界面中,有多种选项可以增强显示的灵活性和系统的用途等功能。在分析窗口最为重要的是接收计算器,利用这个工具我们可以获得输出的各种数据和频域参数,并对其进行分析、处理、比较,或进一步的组合运算。例如信号的频谱图就可以很方便的在此窗口观察到。System View主界面如图2-1所示:

图2-1 system view 主界面

使用SystemView,我们不用关心项目的设计思想和过程,而不用花费大量的时间去编程建立系统仿真模型。我们只用鼠标点击器图标即可完成系统的建模、设计和测试,而不用学习复杂的计算机程序编制,也不必担心程序中是否存在编程错误。

SystemView仿真系统具有许多的优点:

1.能仿真大量的应用系统

能在DSP、通讯和控制系统应用中构造复杂的模拟、数字、混合和多速率系统。具有大量的可选择的库,允许用户有选择地增加通讯、逻辑、DSP和射频/模拟功能模块。特别适合于无线电话、无绳电话、调制解调器以及卫星通信系统等的设计;课进行各种系统是与/频域分析和谱分析;对射频/模拟电路进行理论分析和失真分析。

2.快速方便的动态系统设计与仿真

SystemView图标库包括几百种信号源、接收端、操作符合功能块,提供从DSP、通信、信号处理、自动控制、直到构造通用数学模型等应用。信号源和接收端图标允许在SystemView内部生成和分析信号,并提供可外部处理的各种文件格式和输入/输出数据接口。

3.在报告中方便地加入SystemView的结论

SystemView通过Notes(注释)很容易在屏幕上描述系统,生成的SystemView系统饿输出的波形图可以很方便地使用复制和粘贴命令插入微软word等文字处理器。

4.提供基于组织结构图方式的设计

通过利用SystemView中的图符和MetaSystem(子系统)对象的无限制分层结构功能,SystemView能很容易地建立复杂的系统。

5.多速率系统和并行系统

SystemView允许合并多种数据采样率输入的系统,以简化FIR滤波器的执行。这种特性尤其适合于同时具有低频和高频部分的痛ixnxitongd而设计于仿真,有利于提供整个系统的仿真速度,而在局部又不会降低仿真的精度。同时还可以降低对计算机硬件配置的要求。

6.完备的滤波器和线性系统设计

SystemView包含一个功能强大的、很容易使用的图形模板设计模拟和数字以及离散和连续时间系统的环境,还包含大量的FIR/IIR滤波类型和FFT类型,并提供易于用DSP实现滤波器或线性系统的参数。

7.先进的信号分析和数据块处理

SystemView提供的分析窗口是一个能够提供系统波形详细检查的交互式可视环境。分析窗口还提供一个能岁仿真生成数据进行先进的块处理操作的接受计算器。

SystemView还提供了一个真实而灵活的窗口用以检查系统波形。内部数据的图形放大、缩小、滚动、谱分析、标尺以及滤波等,全部都是通过敲击鼠标器实现的。

8.可扩展性

SystemView允许用户插入自己用C/C++编写的用户代码库,插入的用户库自动

集成到SystemView中,如同系统内建的库一样使用。

9.完善的自我诊断功能

SystemView能自动执行系统连接检查,通知用户连接出错并通过显示指出出错的图符。这个特点对用户系统的诊断是十分有效的。

总之,SystemView的设计者希望它成为一种强大有力的基于个人计算机的动态的通信系统仿真工具,以实现在不具备先进仪器的条件下同样也能完成复杂的通信系统设计与仿真。

()t m ()t s m ()t c ωcos 乘法器 ()t h 图3-1线性调制系统的一般模型 3 模拟调制系统的设计与分析

模拟调制系统可分为线性调制和非线性调制,本课程设计只研究线性调制系统的设计与仿真。线性调制系统中,常用的方法有AM 调制,DSB 调制,SSB 调制。

线性调制的一般原理:

载波:)cos()(0?ω+=t A t s c 。

调制信号:)cos()()(0?ω+=t t Am t s c m 式中()t m —基带信号。

线性调制器的一般模型如图3-1所示:

在该模型中,适当选择带通滤波器的冲击响应()t h ,便可以得到各种线性调制

信号。

线性解调器的一般模型如图3-2所示:

图3-2线性解调系统的一般模型 其中()t s m —已调信号,()t n —信道加性高斯白噪声

3.1 DSB 调制解调系统

3.1.1 DSB 调制解调原理

设计的DSB 调制及解调模型如图3-3所示。 ()t m ()t S D S B

()t S D S B ()t m 0 ()t n i t c ωcos ()t n t c ωcos

图3-3 DSB 调制与解调模型

如果输入的基带信号没有直流分量,且()t h 是理想带通滤波器,则得到的输出信号便是无载波分量的双边带信号,或称双边带抑制载波(DSB-SC)信号,简称DSB 信号,其时域表示式为

解调器 带通滤波器 加法器 乘法器 信道 BPF 乘法器

低通滤波器

()()0cos ?ω+=t A t s c m

3.1.2 DSB 调制解调仿真图

根据以上原理用System View 软件仿真出来的电路图如图3-4所示:

图3-4 DSB 调制解调仿真图

具体参数如下:基带信号幅度1V ,频率100HZ ,载波幅度1V ,频率2000HZ,低通滤波器截止频率为300HZ 。

3.1.3 DSB 调制解调仿真波形

仿真后的波形如图3-5所示:

图3-5 DSB 调制解调后仿真图

上图3-5中,w0为基带信号的波形,w1为载波信号的波形,w2为经过DSB 调

制后的波形,w3为经解调后的波形。

其中,基带信号,载波,调制信号和解调后信号的频谱分析图如图3-6所示:

图3-6 DSB 调制解调系统频谱分析图

3.1.4 DSB 调制解调仿真结果分析

DSB 调制为线性调制的一种,由图3-5可以看出,在波形上,已调信号的幅值随基带信号变化而呈正比地变化;由图3-6可以看出,在频谱结构上,它完全是基带信号频谱结构在频域内的简单搬移。且由频普图可看出没有载波分量,从而实现发送功率的提高。用相干解调法解调出的信号与基带信号基本一致,只是在时域上有一定的延时,但也实现了无失真传输。

3.2 SSB 调制解调系统

双边带已调信号包含有两个边带,即上、下边带。由于这两个边带包含的信息相同,因而,从信息传输的角度来考虑,传输一个边带就够了。所谓单边带调制就是只产生一个边带的调制方式。

3.2.1 SSB 调制解调原理

利用图3-4所示的调制器一般模型,同样可以产生单边带信号。若加高通滤波器,能产生上边带信号;若加低通滤波器,则产生下边带信号。下边带时域表达式为

()()()t t m

t t m t s c c m ωωsin ?5.0cos 5.0+= 上边带SSB 信号时域表达式为:

()()()t t m

t t m t s c c m ωωsin ?5.0cos 5.0-= 3.2.2 SSB 调制解调仿真图

根据以上原理可以得到如图3-7所示的SSB 调制解调仿真图:

图3-7 SSB 调制解调系统仿真电路图

具体参数:基带信号幅度1V ,频率100HZ ,载波频率2000HZ ,幅度1V ,低通滤波器截止频率300HZ 。

3.2.3 SSB 调制解调仿真波形

利用System View 对图3-7仿真图进行仿真得到的波形如图3-8所示:

图3-8 SSB 调制解调后得到的波形

上图3-8中,w0是经SSB 调制后上边带信号波形,w1是经SSB 调制后的下边

带信号波形,w2是下边带信号经相干解调后得到的波形,w3是基带信号的波形。

其中对于SSB系统的基带信号,调制信号以及解调信号的频谱分析如图3-9所示:

图3-9 SSB调制解调系统频谱分析图

上图3-9中,w7是基带信号的频谱波形图,w6是经SSB调制解调后恢复的波形的频谱波形图,w4是上边带信号频谱波形图,w5是下边带信号频谱波形图。

3.2.4 SSB调制解调系统仿真结果分析

SSB线性调制的一种,由图3-8及图3-9可以看出,在波形上,已调信号的幅值随基带信号变化而呈正比地变化;在频谱结构上,功率谱密度与理论相符,解调信号与原信号基本相同,实现无失真传输。

3.2.5 SSB调制解调系统与DSB调制解调系统比较

假设所有系统在接收机输入端具有相等的输入信号功率()t s i,且加性噪声都是均值为0、双边功率谱密度为2/

n的高斯白噪声,基带信号()t m的带宽均为m f。

假设()t m为正弦波信号。

1.抗噪声性能

由以上各调制波形及解调波形可以看出,DSB调制系统抗噪声性能优于SSB 系统。

2.频带利用率

SSB的带宽最窄,和基带信号的带宽一致,即其频带利用率最高,而DSB调制系统的带宽是基带信号带宽的2倍。

3.特点与应用

DSB 调制的优点是功率利用率高,且带宽是基带信号的2倍,但接受要求同步解调,设备较复杂。应用较少,一般只用于点对点的专用通信。

SSB 调制的优点是功率利用率和频带利用率都较高,抗干扰能力优于DSB ,而带宽只有DSB 的一半;缺点是发送和接受设备都很复杂。鉴于这些特点,SSB 长用于频分多路复用系统中。

3.3 AM 超外差收音机的设计

3.3.1 AM 超外差接收机的工作原理

超外差接收技术广泛用于无线通信系统中。图3-10所示的是一个基本的超外差收音机AM 超外差收音机的原理方框图。

图3-10超外差收音机原理框图

通常的AM 中波广播收音机覆盖的频率范围为540-1700KHz ,中频IF 频率为455KHz 。商业广播发射采用常规调幅,调制度为1,且发射功率大,因此收音机为节省成本、减小体积,一般解调器采用最佳简单的二极管包络检波。本地振荡的典型设置都高于所希望的RF 信号,即所谓的高边调谐。输入滤波器用于拟止所不希望的信号和噪声,更重要的是去除与期望频率解调中频IF f 有关的镜像频率2IF f 信号。实际电路使用陶瓷滤波器能得到很好的性能,增加一级增益后再检波。

3.3.2 AM超外差收音机的SystemView仿真

一个基本的AM收音机的系统仿真框图如图3-11所示。

图3-11 AM超外差收音机仿真图形

AM超外差收音机仿真波形图如图3-12所示:

图3-12 AM差外差收音机仿真波形

本图主要说明超外差AM收音机的工作原理及信号解调过程。为节省仿真时间,没有按实际的540-1700KHz的频率覆盖范围和455KHz中频频率设计,而采用了20KHz作为IF。另外设了30KHz,40KHz,50KHz三个载波频率的发射信号(模拟三个电台),模拟调制信号的带宽为5KHz以下。并设希望接受的频率为第二个

电台的频率40KHz ,收音机使用高边调谐,则本振应为40+20=60 KHz ,且存在一个镜像干扰频率为40+2*20=80 KHz 。

3.3.3 AM 超外差收音机仿真参数的分析

收音机仿真参数的测量,可以通过SystemView 测量经过IF 滤波器后输出的希望信号与非希望信号的功率比来求得。但该测量必须通过两次特殊的仿真才能进行。首先先关闭所有干扰滤波,即把30KHz 和50KHz 的信号源幅度设置为零,使用分析窗口的窗口统计功能求IF 的输率。

3.4双路FM 语音通信系统

3.4.1非线性调制

如果由调制信号去控制载波的角度参量,正弦载波的角度将与调制信号具有固定的相应关系,于是已调载波以角度参量“载荷”要传送的有用信息,此种调制方式称为角度调制。由于它不像线性调制那样,调制后的频谱是基带信号频谱的线性位移。它的调角波频谱与调制信号毫无共点,即呈非线性特征。

3.4.2 FM 调频信号

由载波==)(cos

)(0t A t c ψ)](cos[0t t A ?ω+实施角度调制分两种具体方式——频率调制(FM )和相位调制(PM )。

FM 方式是使载波在某一固定载频0f 条件下,以调制信号)(t f 去控制载波频率,在0f 基础上的增减“频偏”与信号)(t f 成正比变化。即FM 一般表达式为:

]d )(cos[FM 00FM ?+=t t f k t A s ω

3.4.3 调频信号的产生

产生调频波的方法通常有两种:直接调频法和间接调频法。

1、直接法,直接法就是用调制信号直接控制振荡器的电抗元件参数,使输出信号的瞬时频率随调制信号呈线性变化。目前人们多采用压控振荡器(VCO )作为产生调频信号的调制器。振荡频率由外部电压控制的振荡器叫做压控振荡器(VCO ),它产生的输出频率正比于所加的控制电压。

直接法的主要优点是在实现线性调频的要求下,可以获得较大的频偏。缺点是频率稳定度不高,往往需要附加稳频电路来稳定中心频率。

2、间接法,间接法又称倍频法,它是由窄带调频通过倍频产生宽带调频信号的方法。

其原理框图如图3-13所示。

图3-13 间接产生WBFM 的框图

3.4.4 非相干解调

非相干解调器由限幅器、鉴频器和低通滤波器等组成,其方框图如图3-14所示。限幅器输入为已调频信号和噪声,限幅器是为了消除接收信号在幅度上可能出现的畸变;带通滤波器的作用是用来限制带外噪声,使调频信号顺利通过。

鉴频器中的微分器把调频信号变成调幅调频波,然后由包络检波器检出包络,最后通过低通滤波器取出调制信号。

3.4.5相干解调

由于窄带调频信号可分解成正交分量与同相分量之和,因而可以采用线性调制中的相干解调法来进行解调。其原理框图如图3-15所示。图中的带通滤波器用来限制信道所引入的噪声,但调频信号应能正常通过。

图3-14 调频信号的非相干解调

图3-15 调频信号的非相干解调

3.4.6 双路FM语音通信系统仿真

根据以上原理用SystemView仿真图如图3-16。

图3-16 双路FM语音通信系统仿真

3.4.7双路FM语音通信系统仿真波形

经过双路FM语音通信系统仿真得到的波形如图3-17所示:

图3-17 双路FM语音通信系统仿真波形图

仿真结果分析,上图3-16中,以语音波形文件(后缀名为“.wav”)作为信号源,

频率调制直接使用SystemView 函数库FM ,解调使用延时相乘结构来实现,信道用高斯白噪声来模拟,接收端分别解调出相应的语音信号。此次设计采用的两路信号频率均为22050Hz。低通滤波器的截止频率分别为5000Hz和10000Hz,所对应的Fm分别为5000Hz和10000Hz,高斯噪声为10000Hz,延时器的参数分别为0.25ms和0.5ms,放大倍数均为200倍。由于本次设计采用的是语音信号的双声道的信号,所以输入信号和接受信号的波形图相差较大,只接收到了其中一个声道的信号,但大致与理论值是相符的。

4 数字调制系统的设计与分析

数字信号的传输方式分为基带传输和带通传输。然而,实际中的大多数信道因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术有两种方法:(1)利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;(2)利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法。对载波的幅度进行键控得到振幅键控信号;对载波的频率进行键控得到频移键控信号;对载波的相位进行键控得到相移键控信号。

4.1抽样定理的仿真与分析

抽样定理是模拟信号数字化的理论基础,它告诉我们:如果对某一带宽的有限时间连续信号(模拟信号)进行抽样,且抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢复原信号,也就是说,要传输模拟信号不一定传输模拟信号本身,只需要传输按抽样定理得到的抽样值就可以了。根据要进行抽样的信号形式的不同,抽样定理可分为低通信号的抽样定理和带通信号的抽样定理。本次课程设计主要介绍低通信号的抽样定理。

4.1.1低通信号的抽样定理

均匀抽样定理指出:对一个带限在()H 0f ,内的时间连续信号()t m ,如果以()H f 2/1的时间间隔对其进行等间隔抽样,则()t m 将被所得到的抽样值完全确定。即抽样速率大于等于信号带宽的两倍就可保证不会产生信号的混迭。()H f 2/1是抽样的最大间隔,也称为奈奎斯特间隔。

4.1.2信号的抽样与恢复仿真原理

如图4-1所示,是低通信号采样与恢复的原理图。

4.1.3信号的抽样与恢复仿真图

根据图4-2所示的原理图,对应的SystemView 仿真图如图12所示:

图4-2信号抽样与恢复仿真电路

4.1.4信号的抽样与恢复仿真波形

信号的抽样与恢复仿真波形如图4-3所示:

图4-3 抽样与恢复仿真波形

如上图4-3所示,w0为经过恢复后的波形,w1是经过抽样后的波形,w2是基图4-1 信号的采样与恢复原理图

信号源

信号处理器 抽样定理

低通滤波器 恢复信号

相乘器

带信号的波形,w3是抽样信号波形。

4.1.5信号的抽样与恢复仿真结果分析

由实验结果可以观察到,当采样频率小于奈奎斯特频率时,在接收端恢复的信号失真比较大,这是因为产生了信号混迭;当采样频率大于或等于奈奎斯特频率时,恢复信号与原信号基本一致。理论上,理想的抽样频率为2倍的奈奎斯特带宽,但实际工程应用中,带限信号绝不会严格限带,且实际滤波器特性并不理想,通常抽样频率为5~7倍的H f 以避免失真。

4.2增量调制的设计与分析

增量调制是可以看成PCM 的一个特例 ,但是在PCM 中,信号的代码表示模拟信号的抽样值,而且为了减小量化噪声,一般需要较长的代码和较复杂的编译设备。而增量调制是将模拟信号变换成仅由一位二进制码组成的数字调制序列,并且在接受端也只需要一个线性网络,便可复制出原模拟信号。

另方面,可以从DPCM 系统的角度看待增量调制,即当DPCM 系统的量化电平取为2和预测器时一个延迟为T 的延迟时,该DPCM 系统被称为增量调制系统。

4.2.1(ΔM 或 DM )增量调制原理

1.?M 的译码问题

接收端只要收到一个“1”码就是输出上升一个σ值,每收到一个“0“码就下降一个σ值,连续收到“1”码(或“0”码)就是输出一直上升或下降,这样就可以近似的复制出阶梯波形。这种功能的译码器可以由一个积分器来完成,积分器遇到一个“1”就上升一个?E ,并让?E 等于σ,遇到“0”码所示的-E 脉冲就下降一个?E.

2.?M 的编码原理

一个简单的?M 编码器由相减器,抽样判决器,发端译码器及抽样脉冲产生器组成。抽样判决器将在抽样脉冲到来时刻对输入信号的变化做出判决,并输出脉冲。

这种编码器的工作过程如下:将模拟信号()t m 与发端译码器输出阶梯波形()t m ‘进行

比较,即先进行相减,然后在抽样脉冲作用下将相减结果进行抽样判决。如果在给定时刻i t 有()()0'>=-=i i t t t m t t t m 则判决器输出为“1”码。如果()()0.<=-=i i t t t m t t t m 则发“0”码。从上述讨论可以看出,?M 信号是按台阶σ来量化的,因而同样存在量化噪声问题。?M 系统中的量化噪声有两种形式:一种称为过载量化噪声,另一种为一般量化噪声。

设抽样时间间隔?t ,则一个台阶上最大斜率K 为

s K t f σσ==

它被称为译码器最大跟踪斜率,当译码器实际斜率超过这个最大跟踪斜率时,则将造成过载噪声。

4.2.2增量调制解调仿真图

增量调制解调的仿真图如图4-4所示:

图4-4 增量调制解调系统仿真电路图

经过增量调制解调后具体波形如图4-5所示:

图4-5 增量调制解调后仿真波形图

在图4-4中,信号源为一个最大幅度为1V,最大频率为128000HZ的高斯噪声。符号13显示的波形是信号源的波形图,符号12现实的波形图是信源经低通滤波器后再经过延时器后的波形图,符号2显示的是经过比较器得到的对信源的编码图形,符号14是经过增量调制系统后的调制波形图,符号4是经过解码器后的波形图。

4.2.3增量调制结果分析

由仿真结果,我们可以得出,增量调制要求的抽样频率达到几十kb/s以上,且在接收端阶梯电压如果通过一个理想的低通滤波器平滑后,就可以得到十分接近编码器原输入的模拟信号。但它的缺点是当增量调制器的输入信号斜率超过阶梯波的最大可能斜率值时,将发生过载量化噪声。所以,为了避免发生过载量化噪声,必须使量化台阶和抽样频率的乘积足够大,使信号的斜率不会超过这个值。

4.3 数字基带传输系统的仿真

在数字传输系统中,其传输对象主要是二进制数字信息。它可能来自计算机,网络或其他数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。对于数字传输系统可以考虑选择一组有限的离散的波形来表示数字信息。这些离散的波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。由于未经调制的的脉冲信号所占据的频带通常是从直流和低频开始,因而称为数字基带信号。

4.3.1数字基带信号传输无失真的条件

原始二进制数字基带信号波形多数都是矩形波,在画频谱图时通常只画出其能量最集中的范围,但这些基带信号在频域内实际上是无穷延伸的,如果直接采用矩形脉冲的基带信号作为传输码型,由于实际信道的频带是有限的,则传输系统接收端所得的信号频谱必定与发送端不同,这就会使接收端数字基带信号的波形失真。大多数有线传输情况下,信号频带不是陡然截止的,而且基带频谱也是逐渐衰减的,采用一些相对较简单的补偿措施,则可以将失真控制在比较小的范围内。较小的波形失真对于二进制基带信号影响不大,只是使其抗噪声性能稍有下降,但对于多元信号,则可能造成严重的传输错误。为了研究波形传输是真的问题,我们首先来看一下基带信号传输系统的典型模型,如图4-6所示:

图4-6 基带信号传输系统方框图

在发送端,数字基带信号X(t)是经滤波器输入到信道,发送滤波器的作用是限制发送频带,阻止不必要的频率成分干扰信道。

传输基带信号收到约束的主要因素是系统的频率特性。当然可以有意的加宽传

SystemView仿真

---------------------------------------------------------------最新资料推荐------------------------------------------------------ SystemView仿真 二进制振幅键控2ASK systemvi ew仿真院(系): 班级: 学号: 姓名: 指导老师: 二进制振幅键控 2ASK 1、调制系统: 实验原理: 2ASK 的实现二进制不归零信号图 2: 2ASK 调制器原理框图在幅移键控中,载波幅度是随着调制信号而变化的。 一种是最简单的形式是载波在二进制调制信号 1 或 0 控制下通或断,这种二进制幅度键控方式称为通断键控(OOK)。 二进制振幅键控方式是数字调制中出现最早的,也是最简单的。 这种方法最初用于电报系统,但由于它在抗噪声的能力上较差,故在数字通信用的不多。 但二进制振幅键控常作为研究其他数字调制方式的基础。 二进制振幅键控信号的基本解调方法有两种: 相干解调和非相干解调,即包络检波和同步检测。 非相干解调系统设备简单,但信噪比小市,相干解调系统的性能优于相干解调系统。 1 / 3

2ASK 解调器原理框图: 图 3 乘法器coscte2ASK(t)(a)模拟调制法(相乘器法)cosct开关电路s(t)e2ASK(t)(b)通-断键控(OOK,On-Off Keying) s(t)e2ASK(t)BPF全波整流器LPF抽样判决器输出abcd定时脉冲(a)非相干解调(包络检波法)e2ASK(t)BPF相乘器LPF抽样判决器定时脉冲输出Cosct(b)相干解调(同步检测法)系统的相关参数:基带信号 amplitu=0. 5, offset=-0. 5, rate=10。 图 4 输入的调制信号: 图 5 已调信号: 图 6 2 调制解调系统: 系统相关参数: 基带信号频率=50HZ,电平=2,偏移=1,载波频率=1000HZ 模拟低通频率=225HZ,极点数为 3. 系统运行时间为 0. 3S,采样频率=20190HZ。 图 7 模块 3 为原始信号: 图 8 模块 8 为解调后信号: 图 9 模块 4 为已调信号: 图 1 0 功率谱图: Sink3 输入信号图 1 1 Sink8 输出信号: 图 1 2 2ASK 系统调制解调图对比: 图 1 3 图 14 3 系统仿真结果分析: 如图所示调制信号

系统仿真示例

Flexsim应用案例示例 示例一港口集装箱物流系统仿真 (根据:肖锋,基于Flexsim集装箱码头仿真平台关键技术研究,武汉:武汉理工大学硕士学位论文,2006改编) 1、港口集装箱物流系统概述与仿真目的 1.1港口集装箱物流系统概述 1.2港口集装箱物流系统仿真的目的 2、港口集装箱物流系统的作业流程 2.1港口集装箱物流系统描述 2.2港口集装箱物流系统作业流程 2.3港口集装箱物流系统离散模型分析 3、港口集装箱物流系统仿真模型 3.1港口集装箱物流系统布局模型设计 3.2港口集装箱物流系统设备建模 3.3港口集装箱物流系统仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据的结果分析 小结与讨论 示例二物流配送中心仿真 (根据:XXX改编) 1、物流配送中心概述与仿真目的 1.1物流配送中心简介 1.2仿真目的 2、配送中心的作业流程描述 2.1配送中心的功能 2.2配送中心的系统流程

3、配送中心的仿真模型 3.1配送中心的仿真布局模型设计 3.2配送中心的设备建模 3.3配送中心的仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据结果分析 4.3系统优化 小结与讨论 “我也来编书”示例 示例一第X章排队系统建模与仿真学习要点 1、排队系统概述 2、排队系统问题描述 3、排队系统建模 4、排队系统仿真 5、模型运行与结果分析 小结 思考题与习题(3-5题) 参考文献 1、李文锋,袁兵,张煜.2010.物流系统建模与仿真(第6章) 北京:科学出版社 2、王红卫,谢勇,王小平,祁超.2009.物流系统仿真(第6章) 北京:清华大学出版社 3、马向国,刘同娟.2012.现代物流系统建模、仿真及应用案例(第5章)

法学虚拟仿真实训平台软件

法源法律实务综合模拟软件 一、产品名称及规格型号 法源法律实务综合模拟软件V1.0 二、产品说明 (一)系统介绍 法源法律实务综合模拟软件是完全模拟诉讼实务中的程序和标准的法律案件审理程序的整个过程的一套训练系统。系统覆盖现今所有法律机构办案流程,通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。系统内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解的四十余种诉讼与非讼业务流程。 (二)系统价值 1、通过软件的案件和流程设置,学生通过模拟了解法院、检察院、公安机关、仲裁、行政机构如何进行案件审理,以及在整个诉讼、侦查等过程中,如何去实现自己的诉讼权利等等。 2、软件内置的业务涉及法院、检察院、公安侦查、仲裁、行政复议(处罚)、调解等。 3、软件内置的教学案例为真实的案例,并且在教师端可以进行自由添加删除修改。所谓的真实案例是该案件要求附带整套证据扫描件。 4、教师端可以进行实时庭审的监控以及对实验的所有学生进行实验进度的监控和评分。 5、管理员端可以进行班级、账号的添加,可以对软件的数据进行添加修改(如添加视频)。 6、学生端可以完成老师安排的实验也可以自行添加实验进行练习(实验的业务详见参数),可以进行单人多角色模式和多人互动模式进行操作,庭审中即可用语言视频操作也可以用文字录入模式进行操作。 7、业务流程以流程图式和 flash两种方式嵌入,即让学生和教师快速清楚了解诉讼侦查等业务的整个概况,又增加了趣味性。

8、考核功能:具有主观与自动评分相结合来(实验完成的时间、完成程度、教师预先设定的实验要求)考核学生的整个实验。 9、诉讼流程:系统用流程图跟踪颜色变动方式来显示,可以清楚直观的显示学生的实验情况,以及教师对其的监控。 10、实验数据:实验数据可以在教师端口导出所有学生的所有已完成实验的案件文书,可保存WORD打印。 11、软件数据: (1)真实案件 50 例; (2)文书模版:内置 1400 份各类型的法律文书模板; (3)司法案例,内置上千例司法案例、两高公报等; (4)合同模板:内置上千份合同模板库。 (5)法律法规:内置40余万的法律法规、司法解释等 12、软件为B/S架构网络版,客户端没有站点限制。 三、系统优势 A功能: 1、操作模式: 单人模式:单帐号扮演案件中的所有角色,让学生独立完成实验,方便其熟悉诉讼中的每个环节。 多人模式:多帐号互动扮演案件中的角色,让学生之间互动操作来配合完成实验,可根据分析案情、证据、焦点等全面提高法律技能。 2、实验流程: (1)法院: 民事诉讼 A民事一审程序、B民事一审反诉程序、C民事二审程序、D民事非诉特别程序:督促程序、E民事非诉特别程序:公示催告程序F民事非诉特别程序:企业破产程序、G民事特别程序:选民资格案件程序H民事特别程序:宣告公民失踪和宣告公民死亡案件程序、I民事特别程序:认定公民无行为能力或者限制行为能力案件程序、J民事特别程序:认定财产无主案件程序K民事特别程序:宣告婚

System View通信系统仿真实验

第四部分System View通信系统仿真实验SystemView及其操作简介 美国ELANIX公司于1995年开始推出SystemView软件工具,最早的1.8版为16bit教学版,自1.9版开始升为32bit专业版,目前我们见到的是4.5版。SystemView是在Windows95/98环境下运行的用于系统仿真分析的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化系统软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 一、SystemView的基本特点 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后,运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。SystemView的库资源十分丰富,主要包括:含有若干图符库的主库(MainLibrary)、通信库(Communications Library)、信号处理库(DSP Library)、逻辑库(LogicLibrary)、射频/模拟库(RF Analog Library)、Matlab连接库(M-Link Library)和用户代码库(Costum Library)。 二、SystemView系统视窗 1、主菜单功能 图1 系统视窗

遵循以下步骤进入SystemView系统视窗: (1)双击SystemView图标,开始启动系统。 (2)首先会出现SystemView License Manager窗口,可用来选择附加库。本实验中选择Selectlall再左键单击OK结束选择。 (3)然后会出现Recent SystemView Files窗口,可用来方便的选择所需打开的文件。在本实验中,左键单击Close结束选择。 完成以上操作,即可进入SystemView系统视窗。如图1所示。 系统视窗最上边一行为主菜单栏,包括:文件(File)、编辑(Edit)、参数优选(Preferences)、视窗观察(View)、便签(NotePads)、连接(Connections)、编译器(Compiler)、系统(System)、 图符块(Tokens)、工具(Tool)和帮助(Help)等11项功能菜单。 执行菜单命令操作较简单,例如,用户需要清除系统时,可单击“File”菜单,出现一个下拉菜单,单击其中的“Newsystem”工具条即可。为说明问题简单起见,将上述操作命令记作:File>>Newsystem,以下类同。各菜单下的工具条及其功能如下表所示: 表1 SvstemView4.5个菜单下的工具条及其功能

系统仿真测试平台

仿真测试系统 系统概述 FireBlade系统仿真测试平台基于用户实用角度,能够辅助进行系统方案验证、调试环境构建、子系统联调联试、设计验证及测试,推进了半实物仿真的理论应用,并提出了虚拟设备这一具有优秀实践性的设计思想,在航电领域获得了广泛关注和好评 由于仿真技术本身具备一定的验证功能,因此与现有的测试技术有相当的可交融性。在航电设备的研制和测试过程中,都必须有仿真技术的支持:利用仿真技术,可根据系统设计方案快速构建系统原型,进行设计方案的验证;利用仿真验证成果,可在系统开发阶段进行产品调试;通过仿真功能,还可对与系统开发进度不一致的子系统进行模拟测试等。 针对航电设备产品结构和研制周期的特殊性,需要建立可以兼顾系统方案验证、调试环境构建、子系统联调联试、设计验证及测试的系统仿真平台。即以半实物仿真为基础,综合系统验证、系统测试、设备调试和快速原型等多种功能的硬件平台和软件环境。 目前,众多研发单位都在思索着如何应对航电设备研制工作日益复杂的情况。如何采取高效的工程技术手段,来保证系统验证的正确性和有效性,是航电设备系统工程的重要研究内容之一,FireBlade 系统仿真测试平台正是在这种大环境下应运而生的。 在航电设备研制工程中的定位设备可被认为是航电设备研制工程中的终端输出,其质量的高低直接关系到整个航电设备系统工程目标能否实现。在传统的系统验证过程中,地面综合测试是主要的验证手段,然而,它首先要求必须完成所有分系统的研制总装,才能进行综合测试。如果能够结合面向设备的仿真手段,则可以解决因部分设备未赶上研发进度导致综合测试时间延长的问题。在以往的开发周期中,面向设备的仿真技术并没有真正得到重视: (1)仿真技术的应用主要集中在单个测试对象上,并且缺乏对对象共性的重用; (2)仿真技术缺乏对复杂环境与测试对象的模拟; (3)仿真技术的应用缺乏系统性,比如各个阶段中仿真应用成果没有实现共享,

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

Systemview仿真

通信仿真实训总结Systemview软件仿真实验 姓名:邱永锋 班级:信息123班 学号:1213260142 指导老师:崔春雷

一、 实训目的 利用System View ,构造ASK 、FSK 、PSK 、AM 、FM 的信号仿真,从System View 配置的图标库中调出有关图标并进行参数设置,完成图标间的连线,然后运行仿真操作,最终以时域波形、眼图、功率谱等形式给出系统的仿真分析结果。 二、幅移键控ASK (一)、ASK 产生二进制振幅键控信号的方法主要有两种: 方法1:采用相乘电路,用基带信号A(t)和载波tcos(wt)相乘就得到已调信号输出; 方法2:采用开关电路,这里的开关由输入基带信号A(t)控制,用这种方法可以得到同样的输出波形。 (二)、原理及框图 1. 调制部分:设信息源发出的是由二进制符号0、1组成的序列,则一个二进制的振幅键控信号可以表示成一个单极性矩形脉冲序列与一个正弦载波的相乘,。所以二进制幅度键控调制器可用一个相乘器来实现、 OOK 信号表达式: S ook (t)=a(n)?Acos(ω0t) A: 载波幅度 ω0:载波频率 a(n):二进制数字信号 原理框图: 基带信号 a(n) 相乘器 调制信号Sook(t) 载波 Acos (ω0t) 2、电路图

2.2ASK 解调原理 1.解调部分:解调有相干和非相干两种。非相干系统设备简单,但在信噪比较小时,相干系统的性能优于非相干系统。这里采用相干解调。 原理框图: Sook(t) 相乘器低通滤波器解调信号a(n) 载波Acos( t) 2.信号图: 三.FSK的调制与解调 (二)、原理及框图 FSK是用数字基带信号去调制载波的频率。因为数字信号的电平是离散的,所以,载波频率的变化也是离散的。在本实验中,二进制基带信号是用正负电平表示。对于2FSK,载波频率随着调制信号1或-1而变,1对应于载波频率F1,-1对应于载频F2。

动态系统建模与仿真

摘要:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性学科。本文对建模与仿真技术发展趋势作了比较全面的分析。仿真建模方法更加丰富,更加需要仿真建模具有互操作性和可重用性,仿真建模与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域更加丰富,向复杂系统领域发展,并将更将贴近人们的生活。 经过半个多世纪的发展,仿真技术已经成为人类社会发展进步具有重要影响的一门综合性学科。仿真技术的领域不在局限于某些尖端学科技术研究领域,而成为一项被众多学科领域广泛采用的通用型技术。半个世纪以来,仿真救赎一方面始终是建模技术、计算技术和其他信息技术最先的应用者,另一方面是对计算技术和网络技术等的发展不断提出新的挑战。 在我国建模与仿真方法是随着应用需求的发展不断的进步,近十年来仿真技术发展是沿着以应用需求牵引建模与仿真系统开发、以建模与仿真系统带动建模与仿真技术突破、以建模与仿真技术促进建模与仿真系统发展、将建模与仿真系统又服务于应用良性循环的道路向前发展。 仿真技术研究人员一方面不断地扩展仿真应用领域,另一方面,其他领域研究的丰富成果与不断促使仿真技术人员从新的角度、新的高度、新的广度认识建模与仿真。在近半个世纪的积累和近十年的快速发展的基础上,建模与仿真技术已经成为以相似原理、模型理论、系统技术、信息技术以及仿真应用领域的有关专业技术为基础,以计算机系统、与应用相关的物理效应设备及仿真器为工具,利用模型对已有的或设想的系统进行研究、分析、实验与运行的一门综合性技术。 仿真建模的发展 仿真是基于建模的活动,模型建立、实现、验证、应用是仿真过程不变的主题。随着时代的发展,仿真模型包含的内容大大扩展,建模方法日益多样,模型交互性和重要性变的越来越重要,模型的校核与验证的成功为仿真中必要步骤。 -----------------------------------系统仿真学报杨明张冰王子才哈尔滨工业大学,哈尔滨150001 基本概念 系统:按照某些规律结合起来,互相作用、互相依存的所有实体的集合或总和。模型:从特定应用角度,表达对象系统特征与特性的形式。仿真:用物理模型或数学模型代替实际系统进行实验和研究。 对象系统:仿真、分析与研究的对象。仿真系统:实施仿真的系统。 仿真分类:

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

DMAS飞行系统仿真平台

DMAS 大型专业飞行系统仿真平台 DMAS—专业、大型飞行系统仿真平台 DMAS(Design Model Acquisition and Simulation System for Aircraft)是中仿科技将航空航天 仿真技术与虚拟现实技术有机结合,创新研发出的具有自主知识产权的飞行系统仿真产品,由飞行器设计与仿真系统、飞行器数据记录与分析软件、飞行模拟器等组成大型综合研究和应用一体化软硬件系统平台,支持当前主流航空系统,满足飞行器研制试验、飞行模拟训练、科研教学等多种需求。DMAS综合应用平台综合技术性能达到国际领先水平,属国内首创。 DMAS应用领域: DMAS飞行系统仿真平台满足固定翼飞机、直升机、无人机等多种飞行器研制试验、飞行训练、科研教学的需求,遵循CAD、CAE、CAM产品全生命周期PLM构架,有效解决设计、仿真、模拟等系统问题。DMAS 采用创新技术,高端的系统仿真技术不再是科研院所独享的,飞速更新的专业虚拟现实技术的引入,则将工程师们从繁重的底层设计工作中解脱出来,有更多的时间创新思考,使得航空技术实现跨越式的发展。 飞机研究院所工程师、大学教师及学生、飞机设计及改装爱好者、专业的飞机拥有者、飞行员、飞 行教练或考官等用户均可应用DMAS完成飞机开发、仿真实验、任务演示验证、飞行训练模拟等多种任务。?研制试验 飞机总体设计:概念设计、系统设计、结构设计、翼型设计、发动机设计、费效设计、性能优化设计; 飞行模拟测试:动力学特性仿真测试,飞行模拟数据分析,仿真与试验数据对比分析,飞机特性分析与表征; 飞行任务模拟:遥测照相、侦测雷达、GPS导航预测、航空通讯、防空模拟、C4ISR系统;飞行安全事件现 场重建分析。 ?教学科研 理论基础教学:航空航天概论、飞行理论、飞行动力学、飞机性能分析、飞行控制等; 新概念飞机开发:各种新概念飞机设计、人机工程学、飞行姿态控制、航电设计、通讯设计、雷达设计、 航线设计、飞行软件开发等。 ?飞行训练 飞行操纵训练:固定翼飞机、直升机、UAV无人机操作训练,VFR/IFR飞行训练; 飞行执照备考:飞行员培训、私人飞机驾驶执照、商业飞机驾驶执照、民航飞行驾驶执照;

动态仿真实验报告

动态系统建模仿真实验报告 实验二,实验四

实验二直流电动机-负载建模及仿真实验 1实验内容 在运动控制系统中电机带动负载转动,电机-负载成为系统的被控对象。本实验项目要求根据电机工作原理及动力学方程,建立模型并仿真。 2实验目的 掌握直流电动机-负载的模型的建立方法; 3实验器材 (1)硬件:PC机。 (2)工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 在很多应用场合中,直流电动机的输出轴直接与负载轴相连,转动部件固定在负载轴上,即为常见的电机直接驱动负载形式。如果不考虑传动轴在转动过程中的弹性形变,即把传动轴的刚度看作无穷大,就可以在系统设计过程中,将执行电机和负载视为一个整体对象,这样被控对象的模型就可以用如图2.1所示的 框图来表示。其中 U表示控制电压;a U,a L,a R分别表示电机的电枢电压,电 r 枢电感和电枢电阻; J为电机的转动惯量,L J为负载的转动惯量,包括由电机 m 驱动的转动体、轴承内圈、转动轴、轴套、速度测量元件、角度测量元件以及被测试件折合到电机轴上的转动惯量等; D、L D分别表示电机和负载的粘性阻尼 m 系数; k为电机的电磁力矩系数;e k为电机的反电势系数;mθ为电机-负载的转 m 角, θ 为电机-负载的角速度。 m 在这一实验中,认为电机与负载的转角是相同的,并考虑了电机及负载转动中产生的粘滞阻尼力矩,所以其电压方程、力矩方程变为如下形式

?????+=+--=+=-s s J J D D M s I k s k s E s s I T s I Ra s E s Ua m l m L m l m m e l )()()()()()())()(()()(θθ (2.1) 由方程组(2.1)可以得到相应的结构框图如图1所示。 图1直流电动机-负载数学模型结构框图 5实验要求: (1)建立从a u 到m θ 的传递函数模型,求其频率特性,并与项目1中的电机频率特性进行对比。 (2)分别取(Dm+D L )1=0.1(Dm+D L )和(Dm+D L )2=0.01(Dm+D L ),编制MATLAB 或simulink 程序,比较阻尼系数不同时电机-负载模型的频率特性。 (3)分别取J L1=0.1J L 和J L 2=10J L ,编制MATLAB 或simulink 程序,比较电机-负载模型的频率特性。 实验所需具体参数如下表。

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

校级综合智慧能源实验平台技术需求

校级综合智慧能源实验平台技术需求 1、平台定位与目标 本平台目标是一个建设成一个跨学科、高水平的实验研发平台。 (1)跨学科:该平台能够涵盖我校电气、能源动力、自动化、计算机、经管等主干学科方向; (2)先进性:聚焦当前国内外能源互联网、综合能源系统领域的关键方向的前沿技术,打造涵盖诸多先进技术并将我校重点研发技术与成果充分融合的综合智慧能源实验研发平台。 (3)应用性:以当前在能源互联网领域开展应用或者具有应用潜力的技术为导向。 (4)人才培养:为我校与行业培养研究型、工程型的复合人才。 2、平台的基本形式 平台以物理仿真为主(动模实验平台),可以与软件仿真平台相结合,构成数字物理仿真平台,但二者之间必须紧密结合。 3、平台的主要特色 3.1模块化设计与灵活组合 实现电、冷热、气各部分可以相互独立运行但又彼此联系,整个实验平台构成不同功能模块,模块之间灵活组合,形成不同复杂程度的实验系统。另一方面,通过固定与灵活接线配合,模拟不同运行场景。 3.2平台的高水平与可扩展性 平台应尽可能考虑多种能源电力前沿技术的实验、研究与开发;关键技术与设备尽可能做到成熟产品与开源设备组合接入;配置一定端口,方便中试模块与后期研究设备接入。 4、平台的主要技术特征 (1)多种能源形式互补 平台需要考虑冷、热、电、气以及其他能源形式的协调控制与调度。考虑到

当前能源互联网与综合能源系统中电能是主要能源形式,围绕该领域的前沿技术交叉科研方向最多、技术发展最快,因此,平台的能源形式以电能为主,其他多种能源形式互补协同。 结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的能源形式。 (2)源网荷储协调 平台要考虑异质能量流在源网荷储整个环节的控制、优化与各种高级应用功能的实现。考虑到现实中源、网、储、荷四个主要环节中主要是通过电能形式进行能量的生产、传输、储存、使用。因此这种协调大多数情况下主要是以电能流为主、其他能流为辅的协调。 (3)新技术新设备应用 本项目希望尽可能将前沿的技术、理念应用到本平台,以确保平台的跨学科与高水平特色。 考虑将综合能源、能源互联网领域的前沿技术如5G通信、PMU、虚拟同步机等技术应用到本实验平台,并设计相应的实验场景与内容。其他相关的前沿技术如有可能也可以论证应用到本平台的可能性并进行应用。 5、平台的各层级特点与要求 本次方案设计按照能源层、信息层与高级应用层予以设计,其中能源层集成了包含冷热电气等不同类型的源网荷储设备,是整个平台的基础;信息层则涵盖整个平台的信息感知、量测、控制等环节,实现整个平台的稳定运行,是整个实验研发平台的中枢;高级应用层则实现整个实验研发平台的优化、实验与高级应用模块,是整个平台的大脑。 5.1能源层 5.1.1源侧 源侧需要结合我校已有并准备应用于本平台的实验设备,并在此基础上提出目前行业广泛使用或者具有重要科研意义的源侧模拟装置,并进行设计。 5.1.2网侧 主要是围绕区域(园区)级能源互联网或综合能源系统的特点,开展电网、冷/热网、气网的规划设计。

基于Systemview的通信系统的仿真

存档资料成绩: 华东交通大学理工学院 课程设计报告书 所属课程名称现代通信原理 题目基于Systemview的通信系统的仿真 分院电信分院 专业班级11级通信工程2班 学号20110210420226 学生姓名杨晨 指导教师杨小翠 2014年6月27日

华东交通大学理工学院 课程设计(论文)任务书 专业11通信工程班级2班姓名杨晨 一、课程设计(论文)题目基于Systemview的通信系统的仿真 二、课程设计(论文)工作:自2014 年6 月26 日起至2014 年6 月28 日止。 三、课程设计(论文)的内容要求: 1、对调制解调的通信系统进行仿真研究。 2、掌握振幅键控,频移键控,相移键控三种基本的数字调制方式。 3、掌握数字信号的传输方式。 4、通过Systemview仿真软件,实现对2ASK,2FSK等数字调制系统的仿真。 5、熟练掌握Systemview的用法。 学生签名:( 杨晨) 2014年6月27日

课程设计(论文)评阅意见 评阅人职称 20 年月日 序号项目 等级 优秀良好中等及格不及格 1 课程设计态度评价 2 出勤情况评价 3 任务难度评价 4 工作量饱满评价 5 任务难度评价 6 设计中创新性评价 7 论文书写规范化评价 8 综合应用能力评价 综合评定等级

目录 第一章课程设计目的 (5) 第2章SystemView的基本介绍 (6) 第3章二进制幅移键控(2ASK) (8) 3.1 调制系统 (8) 3.2解调系统 (10) 3.3 功率谱图: (12) 3.4 2ASK系统调制解调图对比 (13) 第四章二进制频移键控 (2FSK) (14) 4.1 调制系统 (14) 4.2 解调系统 (17) 4.3 功率谱图: (19) 4.4 2FSK系统调制解调图对比 (20) 第五章实验总结 (21) 第六章参考文献 (22)

【CN210295481U】虚拟仿真实训平台【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920645642.5 (22)申请日 2019.05.05 (73)专利权人 深圳市同立方科技有限公司 地址 518000 广东省深圳市龙岗区布吉街 道甘李二路9号金苹果创新园A栋22楼 (72)发明人 丁丁 黄崇富 李斌 熊飞  傅以盘 刘保亮 孙建龙 尚红振  (74)专利代理机构 深圳市惠邦知识产权代理事 务所 44271 代理人 满群 (51)Int.Cl. G09B 9/00(2006.01) (54)实用新型名称虚拟仿真实训平台(57)摘要本实用新型属于虚拟仿真教学技术领域,具体涉及一种虚拟仿真实训平台,包括桌面以下的台座和桌面以上的台体,所述台体框架由焊接成一体的钣金件构成,所述台体框架将所述台体正面划分成左、中、右三个区域,所述台体正面左区域内设有火灾报警控制器安装位及火灾报警控制器接线板、所述台体正面中区域设有DDC控制器、中间继电器、开门按钮、编程键盘、卡通发行器、门禁控制器各模块的安装位及对应模块的接线端子,所述台体正面右区域由上至下设有防盗报警主机、虚拟仿真一体机安装位,所述虚拟仿真一体机安装位下方为电源模块接线区域、继电器端子区域、显示器和电脑主机接口区域。本实用新型结构设计紧凑, 安装位布置合理。权利要求书1页 说明书2页 附图4页CN 210295481 U 2020.04.10 C N 210295481 U

权 利 要 求 书1/1页CN 210295481 U 1.一种虚拟仿真实训平台,其特征在于,包括桌面以下的台座和桌面以上的台体,所述台体框架由焊接成一体的钣金件构成,所述台体框架将所述台体正面划分成左、中、右三个区域,所述台体正面左区域内设有火灾报警控制器安装位及火灾报警控制器接线板、所述台体正面中区域设有DDC控制器、中间继电器、开门按钮、编程键盘、卡通发行器、门禁控制器各模块的安装位及对应模块的接线端子,所述台体正面右区域由上至下设有防盗报警主机、虚拟仿真一体机安装位,所述虚拟仿真一体机安装位下方为电源模块接线区域、继电器端子区域、显示器和电脑主机接口区域。 2.根据权利要求1所述的虚拟仿真实训平台,其特征在于,所述台体的左右两侧均设有摄像机安装孔、86电源插座面板。 3.根据权利要求1所述的虚拟仿真实训平台,其特征在于,所述台体右侧设有显示器支架安装孔。 4.根据权利要求1所述的虚拟仿真实训平台,其特征在于,所述台座包括左柜、右柜及左柜和右柜之间的键盘托,所述左柜的左右两侧内壁上设有若干组相对的层板安装孔,所述右柜内上部设有带滑轨的带锁抽屉,下部用于放置电脑主机。 5.根据权利要求4所述的虚拟仿真实训平台,其特征在于,所述左柜和右柜的背面均设有后门,便于维修。 6.根据权利要求1所述的虚拟仿真实训平台,其特征在于,所述台体背面设有与左、中、右三个区域位置对应的门,打开相应位置的门便于对台体内部进行维修。 2

基于PLC的控制系统仿真平台的应用

龙源期刊网 https://www.wendangku.net/doc/886283575.html, 基于PLC的控制系统仿真平台的应用 作者:罗卫东 来源:《卷宗》2012年第02期 摘要:仿真软件在PLC设计中占有举足轻重的地位,因为对于PLC系统的新编程序来说实际操作会有很大的风险,PLC的一个错误指令就会造成设备和操作人员不可预计的伤害。在网络上,用户可以安装这种软件,从开放式的资料库中获取所需要的各种功能部件。本文就从仿真软件在网络以及PLC设计中的应用方面来进行探索。 关键词:仿真软件;网络应用;PLC设计 仿真软件是通过建立网络设备和网络链路达到网络应用的标准,这是种通过模拟网络流量就可以获取到网络设计中所需要的相关数据的仿真软件。现阶段,我国工业发展都朝着高速大型化和自动化的方向发展,重大生产设备的运用使得成本日益增高,对运行操作人员素质要求也日益提高。由于仿真系统可以近乎真实的贴近现场实际,同时因为不需要到现场实际节省了很大的操作空间,而快速提高了现场的调试效率,降低了用于调试系统的费用和风险。 一、仿真软件的功能 1、控制程序运行 在PLC设计中仿真软件可以仿真其过程映像的输入输出,在仿真窗口改变运行程序的输入变量的ON/OFF状态进行控制程序,观察输出的变量状态能否符合要求、程序运行能否达到正确运行的目标,起到监视程序运行结果的作用。 2、防止程序出错 在程序运行过程中,仿真软件会通过对程序的检测修改定时器、计数器等。也可以通过程序自动运行或手动复位定时器。这样的检测不仅能够发现程序中的错误和缺陷,还可以使PLC 设计更加的完美。也可以在PLC设计过程中使用软件来改变它的控制过程,而PLC使用者对程序的编写和调试是必不可少的。 3、拥有储存记忆功能 仿真软件模拟是针对软元件、缓冲存储器、外设输入/出的读写。它的这项功能既可以存储PLC内的软元件、存储器的缓冲存储器的数据,并可以将这种数据使用到以后的调试工作中。如果用户想要收集相关网络设备中的某些特殊代码时,可以通过层次上的编程来收集自己感兴趣的网络代码。但在网络信息相对复杂的环境下,使用者的程序必须进行现场调试,而在这个过程中往往会出现一些差错,使用者直接将程序应用到实际操作系统中进行控制调试的话,会被设备带来一定的未知风险。

浅谈当前动态仿真发展的发展现状及趋势

液压成形按成形方式可分为管道液压成形和板材液压成形,按有无模具分可分为有模液压成形和无模液压成形。而板材液压成形是金属塑性成形的一种新工艺,它采用液体代替传统的刚性凹模或凸模,使坯料在液体的高压作用下贴合凸模或凹模表面成形。板材液压成形能克服传统刚性凸、凹模成形工艺的不足,具有制模简单、成本低、成形极限高、成形质量好等特点,可在一道工序内成形具有复杂形状的零件,是实现汽车轻量化的重要途径之一。 最早出现的板材液压成形工艺是橡皮膜液压成形,后又发展为充液拉延工艺(又称对向液压拉延)。欧、美、日本等国家较早地开展了工艺试验研究及设备的开发工作,随后虽有一些工业应用的实例,但应用范围仍不广。二十世纪70年代中期以后,日本学者对这项工艺进行了较为细致的试验研究,提出了一些抑制破裂等成形缺陷的措施,使充液拉延工艺在日本进入了实用阶段,广泛用于反光罩、航空部件及汽车覆盖件的生产。充液拉延工艺在不断发展中形成了多种新工艺。目前日本、德国、美国等对该技术做了大量研究,已广泛应用于航空、航天、汽车、化工、机械、民用等领域。 板材液压成形技术与普通成形技术相比主要具有以下特点及优点: 1) 仅仅需要一套模具中的一半(凹模或凸模),流体介质取代凹模或凸模来传递载荷以实现板材成形,这样不仅降低了模具成本,而且缩短了生产准备周期。 2) 提高产品质量,显著提高产品性能:质量轻、刚度好、尺寸精度高、承载能力强、残余应力低、表面质量优良。 3) 可以成形复杂薄壳零件,减少中间工序,尤其适合一道工序内成形具有复杂形状的零件,甚至制造传统加工方法无法成形的零件,材料利用率高。 4) 通过液压控制系统对流体介质的控制,易于实现零件性能对成形工艺的要求,材料合理分配。 5) 模具具有通用性,不同材质、不同厚度的坯料可用一副模具成形。 目前,为了适应生产需求,提高生产效率,欧、美、日等国家都开发出了专用的液压成形设备。日本于90年代初期在丰田汽车厂建成以40 MIA大型充液拉延设备为中心的冲压自动生产线。瑞典还开发了配备在液压机上的充液拉延装置,该装置具有独立的液压系统,可实现高压液体的灌注、升压、保压、卸压等要求,液体压力可进行调节,调节范围为20 MPa一120 MPa。 目前在国内没有厂家能够提供板材液压成形的专用设备,此项技术在国内仍是空白。开展板材液压成形装备关键技术的研究,对增强我国装备技术实力,提高我国的装备制造水平,具有重要的现实意义。 在板材液压成形装备技术中,技术关键包括: 1) 装备的总体配置技术:包括机身结构选择(单柱、双柱、四柱结构、框架、钢丝缠绕结构)、液压系统配置和计算机控制系统的配置等。 2) 液压增压系统:包括增压系统的动态特性、密封、超高压技术等。 3) 工艺过程的计算机控制:包括材料性能参数、摩擦系数的在线辩识,压边力与成形液压力的优化控制等。 在液压成型过程中,液压系统的压力设定、控制和密封对于板料成形的影响较大,而且各参数之间有很多组合,加上液压系统在成形瞬间对模具的冲击,振动等对板料的成形也有很大的影响,因此对一种零件的板料成形,其各参数的确定都比较困难。目前为得到一种具体零件的液压成形过程中液压系统各参数的设定都采用反复试验的办法,既繁琐又不经济。采用malab/simulik软件包分析一些主要的参数对板料成形性能的影响,可以在模拟之中得到液压系统各参数变化对成形工艺的影响,并获得所需参数。 板材成形数值模拟研究始于60年代对液压元件和系统利用计算机进行仿真的研究和应用已有三十年的历史。随着流体力学,现代控制理论,算法理论,可靠性理论等相关学科的发展,特别是计算机技术的突飞猛进,液压仿真技术也日益成熟,越来越成为液压系统设计人员的有力工具。 由于过去对动态特性的分析缺乏较成熟的方法,所以设计液压系统主要根据所要求的自动工作循环及

相关文档