文档库 最新最全的文档下载
当前位置:文档库 › 人行矿业学院矿井通风设计实例

人行矿业学院矿井通风设计实例

人行矿业学院矿井通风设计实例
人行矿业学院矿井通风设计实例

矿井通风

1.1.1矿井通风方案

××××××矿40万t/a采选工程采矿系统因矿井出口较多,通风阻力较小,属于通风容易矿井。通风系统采用统一通风系统,通风系统设置1#、2#、3#三台风机。1#风机设置于1000东坑口,待1000中段、950中段开采完毕后将1#风机搬迁至760m回风井口,2#风机设置于900东坑口,3#风机设置于4#矿体回风平巷中,属于全抽出式通风。通风系统新鲜风流从各中段坑口(750m、800m、850m、900m、950m)进入坑内,经中段运输巷道、采矿进路,清洗采场工作面的废风从人行材料井、辅助斜坡道排到上一中段,由1000m(760m)、950m、900m水平排出地表,通风布局见通风系统示意图。

1.1.2矿井风量和阻力计算

1.工作面风量计算

1)按排炮烟需求计算

采矿工作面主要是用无低柱分段崩落法采矿,采矿进路为独头巷到,风量按硐室型回采工作面进行计算。

Q=[lg(500A/V)]/ kt

式中:Q ——巷道型回采工作面风量,m3/s;

A ——一次爆破作业的炸药量,取50kg;

V ——硐室空间体积,取360m3;

T ——通风时间,取2400s;

K ——风流紊乱扩散系数,取;

计算结果为:Q= 0.93m3/s,取Q= 1m3/s。

2)按排尘风量计算

一般最低排尘风速为0.15m/s,本设计取最低排尘风速为0.25m/s,则不同断面排尘风量计算见下表:

3) 按主要采矿设备计算

4)按排柴油设备排放的废气计算

Q=q o N

式中:Q ——坑内柴油设备的需风量,m3/s;

q o——单位功率的风量指标,q o=~3.0m3/(马力·min);

N ——各种柴油设备按使用时间的百分比的总马力数;

柴油设备主要在进路出矿和运矿中使用,其中采场出矿采用JCCY-2地下铲运机,63kw/台(柴油),中段运矿采用JKQ-10地下矿运卡车,104kw/台(柴油)。

回采工作面需风量计算结果为:Q= 2.26m3/s,取Q= 3m3/s。

5)硐室需风量计算

由于矿山为小型矿山,井下硐室为斜井卷扬机硐室等,需风量取3.0 m3/s。

6)工作面需风量的确定

本次设计回采工作面、采准凿岩按按主要采矿设备需风量计算,掘进工作面需风量按最大的排尘风量计算,加上硐室需风量,矿井需风量计算结果见表。

2.矿井总风量计算

矿井的总的需风量应为各工作面需要的最大风量与需要独立通风的硐室的风量之和,还考虑矿井漏风、生产不均衡以及风量调节不及时等因素,给予一定的备用风量。

Qt=k(∑Qs+∑Qs1+∑Qd+∑Qr)

式中: Qt—总风量,m3/s;

Qs—回采工作面所需风量,m3/s;

Qs1—备用回采工作面所需风量m3/s;

Qd—掘进工作面所需风量,m3/s;

Qr—要求独立风流的硐室所需风量,m3/s;

K—矿井风量备用系数。

计算参数的选取:

K=,主要考虑到有难以避免的漏风,同时也包含了风量调整不及时和生产不均衡等因素。

3.矿井通风阻力计算

通风总阻力是指风流由地面沿任一风路流动,清洗工作面,经回风井回到地面途中所产生的摩擦阻力和局部阻力之总和。在进行通风总摩擦阻力计算时,只要选择其中一条阻力最大的连续风路,并沿着这条风路,从矿井进风口直到矿井排风口,分别计算各段井巷的摩擦阻力,然后叠加起来,即为通风总摩擦阻力。至于网路中其它一些风路(阻力较小者)则需要进行风量调节。

1)通风摩擦阻力计算:

巷道的通风摩擦阻力计算公式:

h-巷道通风摩擦阻力,(pa);

式中:i

R-巷道的摩擦风阻,(N·s2/m8);

i

S-巷道的通风断面,(m2),平巷、竖井均为净断面,但竖井净断面包括井筒结构件,梯子间断面在内;

P-巷道通风断面的周边长度,(m);

L-巷道长度(指通过同一风量的相同断面和支护类型相同的巷道长度),(m);

q-巷道的通风风量,(m3/s);

i

-巷道的通风摩擦阻力系数,(N·s2/m4)。

2)局部阻力和正面阻力

风流经过井巷的某些局部区段时,风流速度的大小和方向发生急剧变化,引起空气微团相互间的激烈冲击和附加摩擦,形成极为紊乱的涡流现象,从而造成风流能量的损失。这种能量损失称为局部损失。风流经过上述局部区段时所产生的附加阻力,是造成局部损失的原因,这种附加阻力成为局部阻力。矿内产生局部阻力的地点有风硐、风桥、巷道拐弯与断面变化处、巷道分叉出、调节风窗、扇风机扩散器等。

矿井局部阻力和正面阻力可根据总摩擦阻力进行估算。一般情况下,总局部阻力和正面阻力不超过总摩擦阻力的20%。因此,本设计局部阻力和正面阻力取摩擦阻力的20%折算计入摩擦阻力。

1.1.3通风系统网络计算结果

本次设计对拟定的通风系统方案进行较详细的网络计算。网络计算前需要准备的原始数据有: 巷道参数、节点坐标、矿山数据、网络参数等,对拟定的系统方案进行整体优化计算后,得到的通风系统风机选型结果见表;矿井主要巷道自然分风结果见表;通风系统主要技术指标见表。

1.1.4通风防尘与局部通风

采场工作面未贯穿前都是独头巷道,风速为零,这些工作面的用风和排尘不能依靠机站风机解决,而应采取局部通风,目前局部通风仍采用局扇加风筒进行;通风防尘主要措施以风、水为主,本矿除尘重点在进路采场以及各中段装卸矿点,尤其是溜井系统,应加强以喷雾、洒水为主的除尘工作。

矿山掘进巷道的断面积在4m2至6 m2之间,按手册选取,掘进工作面计算风量值为Q=1m3/s,考虑漏风、管理等因素,实际掘进工作面风量取值为Q=2m3/s。

根据该矿生产规模和巷道情况,考虑选用的采矿方法为无底柱分段崩落法,进路可增加局扇加强通风,确定选择7台JK58-1NO4局部扇风机,局扇风机及风筒选择情况见表。

1.1.5通风管理

本矿漏风区域较多,直通地表坑口较多,尤其是采用无底柱分段崩落法,应设风门管理,对无用途坑道进行密闭,具体情况见通风系统示意图,生产中还要注意根据生产的变动加以调整,主扇风机安装位置视中段生产情况而定,应尽量靠近采场工作面。

合计矿井总需风量∑Qi= 44.00 m3/s;综合漏风系数K= ;矿井总风量Q=K·∑Qi=58.08 m3/s

备注:1.表中为通风最困难时期参数;

2.风机建议选用山东淄博风机厂生产的K系列风机。

表局扇风机及风筒选择情况及参数表备注:局扇风机和风筒建议选用山东淄博风机厂生产

的产品

风筒选择情况

选用400mm直径柔性(帆布)风筒,参考价格18.00元/m,500m风筒合9000.00元

矿井通风设计改

矿井通风设计改

矿井通风设计 学院:湘潭大学职业技术学院 专业班级:煤矿开采技术(通风与安全方向)0801 姓名:胡秦 学号:20089217132 指导老师:何廷山

目录前言 (一)、矿井概况 (二)、拟定矿井通风系统 (三)、矿井总风量计算与分配 1、矿井需风量计算原则 2、矿井需风量计算方法 3、矿井总风量的分配 (四)、矿井通风总阻力计算 1、矿井通风总阻力计算的原则 2、矿井通风总阻力的计算方法 3、绘制矿井通风网络图(五)、选择矿井通风设备 1、选择矿井通风设备的要求 2、主要通风机的选择 (六)、通风耗电费用概算 1、主要通风机的耗电量 2、局部通风机的耗电量 3、通风总耗电量 4、吨煤通风耗电量 5、吨煤通风耗电成本 (七)、矿井通风系统评述

1、系统的合理性 2、阻力分布的合理性 3、主要通风机工作的安全性、经济性 前言 《矿井通风》设计是学完《矿井通风》课程后进行,是学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。 1、进一步巩固和加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。 2、培养学生实践动手能力及独立分析和解决工程实际的能力。 3、培养学生创新意识、严肃认真的治学态度和理论联系实际的工作作风。 依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。 设计中要求严格遵守和认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切

矿井通风设计-毕业论文

辽源职业技术学院 毕业综合实训报告 题目:矿井通风设计 专业班级: 设计人: 指导人: 20XX年X月XX日

目录一、矿井通风设计的内容与要求 5 (一)矿井基建时期的通风 5 (二)矿井生产时期的通风 5 (三)矿井通风设计的内容 6 (四)矿井通风设计的要求7 二、优选矿井通风系统7 (一)矿井通风系统的要求7 (二)确定矿井通风系统8 三、矿井风量计算8 (一)矿井风量计算原则8 (二)矿井需风量的计算8 1.采煤工作面需风量的计算8 2.掘进工作面需风量的计算11 3.硐室需风量计算13 4.其他用风巷道的需风量计算机14 四、矿井通风总阻力计算15 (一)矿井通风总阻力计算原则15 (二)矿井通风总阻力计算15 五、矿井通风设备的选择16

(一)主要通风机的选择17 六、概算矿井通风费用21

前言 通风是关系到煤矿生产安全的重要环节。确保通风系统的稳定可靠,要做到随矿井生产变化即时进行通风系统改造与协调,严格控制串联通风,强化局部通风管理,杜绝局部通风机无计划断电,做到通风系统正规合理、可靠、稳定.

矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 第一章矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通

风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 第一节矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 第二节矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下:

通风除尘课程设计报告书

工业通风与除尘课程设计 小组成员:熊静宜 3 润婉 3 吴博 4 晗 6 雒智铭0

专业班级:安全12-5 指导老师:鲁忠良 完成日期:2015.7.11 目录 1 引言 2 第一工作区的通风除尘系统设计计算 2.1 各设备排风罩的排风量计算 2.1.1 焊接平台1排风量计算 2.1.2 焊接平台2排风量计算 2.1.3 焊接平台3排风量计算 2.1.4 加热炉排风量计算 2.2 系统排风量及阻力计算 2.2.1 通风除尘系统布置简图 2.2.2 管段阻力计算 2.3 管道压力平衡核算 2.4 选择通风机和除尘器 3 第二工作区的通风除尘系统设计计算 3.1 各设备排风罩的排风量计算

3.1.1 镀铬1排风量计算3.1.2 镀铬2排风量计算3.1.3 镀铬3排风量计算3.1.4 酸洗排风量计算 3.2 系统排风量及阻力计算3.2.1 通风除尘系统布置简图3.2.2 管段阻力计算 3.2.3 管道阻力平衡校核3.3 风机的选择 3.4 管道计算汇总

1 引言 工业通风就是利用技术手段将车间被生产活动所污染的空气排走,把车间悬浮的粉尘捕集除去,把新鲜的或经专门处理的清洁空气送入车间。它起着改善车间生产环境,保证工人从事生产所必需的劳动条件,保护工人身体健康的作用。 本课程设计目的和任务在于对一个金属制造加工生产车间进行全面通风以及针对焊接台加热炉镀槽酸洗工艺进行局部通风的设计以期达到车间厂房的通风与除尘。本设计的大体思路是,了解各工艺所产生的有害气体成分并选择局部通风方式。之后对参数进行设计计算需风量并进行相关管道计算,最后选择合适的通风机对厂房进行有效通风。

矿井通风与安全课程设计报告书

矿井通风与安全课程设计 专业 年级 学号

0.前言 采矿工业是我国的基础工业,它在整个国民经济中占有重要地位,煤炭是我国一次能源的主体。我国煤炭生产以井下开采为主,其产量占煤炭总产量的95%。而地下作业首先面临的是通风问题,在矿井生产过程中要有源源不断的新鲜空气送到井下各个作业地点,以供人员呼吸,以稀释和排除井下各种有毒有害气体和矿尘,创造良好的矿环境,保障井下作业人员的身体健康和劳动安全。向井下供应新鲜的空气和良好的供风系统是分不开的,所以在矿井建设的过程中一定要设计优良的通风系统,这样不仅可以满足井下供风的要求,还能很好的节约矿井通风的费用。 本文是针对矿井的建设,提出了行之有效的通风系统,采用两翼对角式的通风方式,在采区采用轨道上山进新风,运输上山回污风的通风方法,并起在工作面采用上行通风。风别计算了通风容易时期和通风困难时期的风量和风压,并以此为基础选用了矿井主要通风机和电机,设计的通风系统满足了矿井通风的要求。 值得一提的是,这是作者初次设计矿井通风系统,全凭自己的知识总结利用设计,没有拷贝别人的既成成果,难免会有一些不太妥当之处,敬请指教。 一、矿井概况 1.地质概况 该矿井地处平原,地面标高+150m ,井田走向长度5km ,倾斜方向长度3.3km 。井田上界以标高-165m 为界,下界以标高-1020m 为界,两边以断层为界,井田煤层赋存稳定,井田可采储量约1.08亿吨。 井田有两个开采煤层,为1k 、2k ,在井田围,煤层赋存稳定,煤层倾角0 15,各煤层厚度、间距及顶地板岩性参见综合柱状图1-1: 图1-1 综合柱状图 2.开拓方式及开采方法 矿井相对瓦斯涌出量为6.6T m /3 ,煤层有自然发火危险,发火期为16—18个月,煤

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

矿井通风设计及风量计算方法

矿井通风设计施工时的基本原则和要求

通风系统合理可靠的含义

通风网络图的绘制 矿井风量计算办法 按照《煤矿安全规程》第一百零三条:“煤矿企业应根据具体条件制定风量计算方法,至少每5年修订1次”,要求,根据《煤矿井工开采通风技术条件》(AQ1028-2006)、《煤矿通风能力核定标准》(AQ1056-2008),结合本矿开采的实际情况,制定本办法。 一、全矿井需要风量的计算 全矿井总进风量按以下两种方式分别计算,并且必须取其最大值: 1、按井下同时工作的最多人数计算矿井风量: Q 矿进=4×N×K 矿通 (m3/min) 式中:Q 矿进 ——矿井总进风量,m3/min; 4——每人每分钟供给风量,m3/min.人; N——井下同时工作的最多人数,人; K 矿通——矿井通风需风系数(抽出式取K 矿通 =~)。 2、按各个用风地点总和计算矿井风量: 按采煤、掘进、硐室及其他巷道等用风地点需风量的总和计算: Q 矿进=(∑Q 采 +∑Q 掘 +∑Q 硐 +∑Q 其他 )×K 矿通 (m3/min) 式中:∑Q 采 ——采煤工作面实际需要风量的总和,m3/min; ∑Q 掘 ——掘进工作面实际需要风量的总和,m3/min; ∑Q 硐 ——硐室实际需要风量的总和,m3/min; ∑Q 其他 ——矿井除了采、掘、硐室地点以外的其他巷道需风量的总和,m3/min。 K 矿通——矿井通风需风系数(抽出式K 矿通 取~)。 二、采煤工作面需要风量 按矿井各个采煤工作面实际需要风量的总和计算: ∑Q 采=∑Q 采i +∑Q 采备i (m3/min) 式中:∑Q 采 ——各个采煤工作面实际需要风量的总和,m3/min; Q 采i ——第i个采煤工作面实际需要的风量,m3/min; Q 采备i ——第i个备用采煤工作面实际需要的风量,m3/min。 每个采煤工作面实际需要风量,按工作面气象条件、瓦斯涌出量、二氧化碳涌出量、人员和爆破后的有害气体产生量等规定分别进行计算,然后取其中最大值。有符合规定的串联通风时,按其中一个采煤工作面实际需要的最大风量计算。 1、按气象条件计算: Q 采=Q 基本 ×K 采高 ×K 采面长 ×K 温 (m3/min)

矿井通风系统与通风设计

矿井通风系统与通风设计 本章主要内容 1,矿井通风系统----类型,适应条件,主要通风机工作方式 ,安装地点,通风系统的选择 2,采区通风----基本要求,进回风上山选择,采煤工作面通风系统 3,通风构筑物及漏风----风门,风桥,密闭,导风板;矿井漏风,漏风率,有效风量率,减少漏风措施 4,矿井通风设计----内容与要求,优选通风系统,矿井风量计算,阻力计算,通风设备选择 5,可控循环通风 第一节矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气,排出污浊空气的通风网路,通风动力和通风控制设施的总称. 一,矿井通风系统的类型及其适用条件 按进,回井在井田内的位置不同,通风系统可分为中央式,对角式,区域式及混合式. 1,中央式 进,回风井均位于井田走向中央.根据进,回风井的相对位置,又分为中央并列式和中央边界式(中央分列式). 2,对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果只有一个回风井,且进,回风分别位于井田的两翼称为单翼对角式. 2)分区对角式 进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷. 3,区域式 在井田的每一个生产区域开凿进,回风井,分别构成独立的通风系统.如图. 4,混合式 由上述诸种方式混合组成.例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等. 二,主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式,压入式,压抽混合式. 1, 抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态.当主要通风机因故停止运转时,井下风流的压力提高,比较安全. 2,压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态.在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出.当主要通风机因故停止运转时,井下风流的压力降低. 3,压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作.通风系统

通风课程设计

第一节设计技术资料 1.1矿井概况 某矿地处平原,地面标高+150m,井田走向长度5km,倾斜方向长度3.5km。井田上界以-165m为界,下界以标高-1020为界,井田内煤层赋存稳定,井田可采储量约1.08亿吨。根据开采条件,煤炭供求状况及“规程”规定,确定此矿为年产150万吨的大型矿井,服务年限为72年。 1.2矿井开采技术条件 井田内有两个开采煤层,为k 1、k 2 。在井田范围内,煤层赋存稳定,煤层15°,各 煤层厚度、间距及顶底板岩性参见综合柱状图。矿井相对瓦斯涌出量为6.5m3/T,煤层有自然发火危险,发火期为16-18个月,煤尘有爆炸性,爆炸指数为36%。 根据开拓开采设计确定,采用立井多水平上下山开拓(见图1-2-1、图1-2-2),第一水平标高-380m,斜长为825×2m,服务年限为27年,因走向较短,两翼各布置一个采区。每个采区上山部分和下上部分各分为五个区段回采。每采区各布置一个综采工作面和一个高档普采工作面,工作面长度150m,区段平巷及区段煤柱15m。综采工作面产 量在k 1煤层时为1620吨/日,在k 2 煤层时1935吨/日,日进6刀,截深0.6m,高档普 采工作面产量在k 1煤层时为1080吨/日,k 2 煤层时1290吨/日,日进4刀,截深0.6m; 东翼还另布置一备用的高档普采工作面。综采工作面装备的部分机电设备如表2所示,采区巷道采用集中联合布置(图1-2-1、图1-2-2)。 采区轨道上山均布置在k 2 煤层的底板板稳定细沙石中,区段回风平巷与运输上山,区段运输平巷与轨道上山采用石门连接。为了保证生产正常接替,前期东西两翼各安排两个独立通风的煤层平巷掘进头,后期东西两翼各安排两个独立通风的煤层平巷掘进头和一个岩石下山掘进头。东西两翼各有一个绞车房、变电所、火药库,亦需独立通风。主井为箕斗井提煤用,副井为罐笼井升降人员、材料、矸石,也作为进风井用,并设有梯子间。 部分巷道名称、长度、支护形式,断面几何特征参数列入表1-2-1。 井内的气象参数按表1-2-3所列的平均值选取,除综采工作面采用4-6工作制外,其它均采用三八工作制。 井下同时作业的最多人数为700人,综采工作面同时作业最多人数40人,高档普采工作面同时作业最多人数60人。 综合柱状图 柱状厚度(米)岩性描述 240.00 表土,无流砂 8.60 砂质页岩 8.40 泥质细砂岩,沙质泥岩互层,稳定 0.20 沙质泥岩,松软 2.40 K1煤层,块状r=1.25 4.20 灰色砂质泥岩,细砂岩互层,坚硬 7.80 灰色砂质泥岩 4.80 泥岩细砂岩互层

矿井通风系统设计

课程设计说明书 设计题目: 矿井通风系统设计 助学院校: 理工大学 自考助学专业: 采矿工程 姓名: 自考助学学号: 成绩: 指导教师签名: 理工大学成人高等教育 2O 年月日

前言 矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风与安全的意义将更加重大。 80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。 近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

通风工程课程设计说明书

通风工程课程设计说明题目:某水泥厂除尘系统管道设计 院别:建能 专业:建环 姓名: 学号: 指导教师:周恒涛、王洪义、虞婷婷、崔秋娜 河南城建学院 2015年6月12日

目录 第一章、总论 (1) 1.1设计目的 (1) 1.2设计任务 (1) 1.3设计题目 (1) 1.4基本资料 (1) 1.5设计依据 (3) 第二章、课程设计内容 (4) 2.1设计内容 (4) 2.2管道水力计算过程 (4) 结束语 (12) 参考文献 (13) 附录管道水力计算表

第一章总论 1.1设计目的 《通风工程》课程设计是工业通风课程设计中的重要实践性环节,是《通风工程》课程结束后学生的一次计算和设计的综合训练,以提高学生的计算、查阅手册和设计等能力为目的。通过本课程设计教学所要达到的目的是: 1)、复习和巩固已学的通风工程知识,并在课程设计中进行综合应用,提高学生的计算和设计能力; 2)、进一步熟悉通风工程的基本原理、设计方法,重点是熟练掌握除尘系统的设计、计算; 3)、为后续课程设计和毕业设计奠定基础。 1.2设计任务: 本课程设计的任务是:按设计资料完成管道设计并完成设计说明书和A3图幅的除尘系统轴测图。

1.3设计题目: 某水泥厂除尘系统管道设计 1.4基本资料: 如图所示为某水泥厂的除尘系统。采用矩形伞形排风罩排尘,风管用钢板制作(粗超度K=0.15mm ),输送含有铁矿粉尘的含尘气体,气体温度为20℃。该系统采用XS-4B 型双旋风除尘器,除尘器含尘气流进口尺寸为318mm*552mm ,除尘器阻力c p =1100Pa 。对该系统 进行水力计算,确定该系统的风管断面尺寸和阻力并选择风机和电机。 系统轴测图 1.4设计依据 1、《通风工程》 (王汉青 主编)

矿井通风设计(毕业设计用)

矿井通风设计(河南理工大学) 矿井通风设计是整个矿井设计内容的重要组成部分,是保证安全生产的重要环节。因此,必须周密考虑,精心设计,力求实现预期效果。 一、矿井通风设计的内容与要求 矿井通风设计的基本任务是建立一个安全可靠、技术先进经济的矿井通风系统。矿井通风设计分为新建或扩建矿井通风设计。对于新建矿井的通风设计,既要考虑当前的需要,又要考虑长远发展的可能。对于改建或扩建矿井的通风设计,必须对矿井原有的生产与通风情况做出详细的调查,分析通风存在的问题,考虑矿井生产的特点和发展规划,充分利用原有的井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。无论新建、改建或扩建矿井的通风设计,都必须贯彻党的技术经济政策,遵照国家颁布的矿山安全规程、技术规程、设计规范和有关的规定。 矿井通风设计一般分为两个时期,即基建时期与生产时期,分别进行设计计算。 (一)矿井基建时期的通风 矿井基建时期的通风指建井过程中掘进井巷时的通风,即开凿井筒(或平硐)、井底车场、井下硐室、第一水平的运输巷道和通风巷道时的通风。此时期多用局部通风机对独头巷道进行局部通风。当两个井筒贯通后,主要通风机安装完毕,便可用主要通风机对已开凿的井巷实行全压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 (二)矿井生产时期的通风 矿井生产时期的通风是指矿井投产后,包括全矿开拓、采准和采煤工作面

以及其他井巷的通风。这时期的通风设计,根据矿井生产年限的长短,又可分为两种情况: (1)矿井服务年限不长时(大约15至20年),只做一次通风设计。矿井达产后通风阻力最小时为矿井通风容易时期;矿井通风阻力最大时为困难时期。依据这两个时期的生产情况进行设计计算,并选出对此两个时期的通风皆为适宜的通风设备。 (2)矿井服务年限较长时,考虑到通风机设备选型,矿井所需风量和风压的变化等因素,又需分为两个时期进行通风设计。第一水平为第一期,对该时期内通风容易和困难两种情况详细地进行设计计算。第二期的通风设计只做一般的原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,作出全面的考虑,以使确定的通风系统既可适应现实生产的要求,又能照顾长远的生产发展与变化情况。 矿井通风设计所需要的基础资料如下: 矿井地形地质图;矿岩游离二氧化硅(矽)、硫、放射性物质及瓦斯和有害气体的含量;煤岩自然发火倾向性;煤尘爆炸性;矿区气候条件,包括年最高、最低、平均气温、地温、地热增深率及常年主导风向等;矿岩容重、块度、松散系数、含泥量及粘结性;矿区有无老窑旧巷及其所在地点和存在情形;矿井年产量、服务年限、开拓系统、回采顺序、开采方法;产量分配和作业布置,同时作业的工作面数及备用工作面个数;同时开动的各种型号的凿岩机台数及其分布;同时爆破的最多炸药量;同时工作的最多人数等。 (三)矿井通风设计的内容 (1)确定矿井通风系统

通风除尘课程设计说明书

《通风除尘》课程设计指导书 XXX电镀车间工艺过程资料 (试用稿) 东华大学大学环境科学与工程学院 2011年09月

一、工艺简述 电镀是对基体金属的表面进行装饰。防护以及获取某些新的性能的一种工艺方法。已被工业各个部门所广泛采用。对于电镀本身来说,比较简单,但镀前的准备工作相当复杂。这是因为进行这种表面处理之前,必须首先非常彻底地去掉基体金属表面上的油污和氧化物,否则会直接影响镀层的牢固性或使电镀无法进行。所以,一般的表面处理车间主要包括电镀前准备两部分。 镀前准备包括:磨光、抛光、喷砂处理、除油、侵蚀(腐蚀) 常见的电镀有:镀锌、镀镉、镀铜、镀镍、镀铬、镀银、镀铜锡合金(青铜)锌铜锌合金(黄铜)、镀锌铜合金(白黄铜)、镀镉镍铁合金。 1.镀前准备 (1)磨光 磨光是借助粘有磨料的特制磨光轮的旋转、以切削金属表面的过程。磨光可以提高零件表面的平整和光洁度、去掉表面的各种宏观缺陷、划痕、毛刺、焊缝、氧化皮及锈等,以提高电镀质量。磨光还可以减少后来镀层的抛损量和提高零件的耐蚀性。在加工形状简单的或粗糙的简单钢铁零件时,磨轮园周速度可以大些,而加工复杂的零件或有色金属及其合金时,要采用较小的园周速度。另外,对粗糙度大、切削量大的金属表面应采用硬磨轮;对有色金属及切削量小的应采用弹性大的软轮,例如布轮。 (2)抛光 抛光一般用于镀后镀层的精加工,也可用于镀前件的予加工。抛光机上装有抛光轮布轮,使用时涂抛光膏。抛光的目的是提高制品光洁度,使制品获得装饰性外观;提高制品耐蚀性;进一步除去制品表面的细微不平。抛光金属表面时,抛下来的实质上是金属的氧化膜层。这层膜被抛去后;新的金属表面迅速氧化,然后又被抛去;这样反复进行抛光,最后就可以获得光泽、平整的抛光表面。通常,抛光轮的周围速度要比磨光轮的大。 (3)喷砂 喷砂是用净化的压缩空气将干砂流强烈地喷到金属制品表面上用以除掉表面上的毛刺、氧化皮及铸件表面的溶渣等杂质。在电镀生产中多用于铸件表面的溶渣等杂质。在电镀生产中多用于铸件的镀前处理,它可以打掉翻砂的遗留在铸件上的砂土和高含碳层,保证电镀工艺易于进行。各种铸件镀硬铬时常采用喷砂来清理焊接件的焊缝,对保证组合件电镀层质量也有很大意义。喷砂一般是在喷砂室内进行。 (4)除油 除油包括有机溶剂除油、化学除油和电化学除油。常用的除油方法是后两者。在进行电镀、氧化和磷化之前,必须清除零件表面上的油污,以保证镀层和基体金属的牢固结合,保证氧化和磷化反应的顺利进行。获得质量较好的氧化膜。 化学除油是利用碱溶液对油脂的皂化作用,以去除皂化性油脂(各种脂防酸和甘油脂。各种动植物油多属此类);利用表面活性剂的乳化作用。以去除非皂化油脂(各种矿物油,如机油、柴油、凡士林和石蜡等)。常用的化学除油溶液是由氢氧化钠(NaOH)、碳酸钠(Na2CO3)、磷酸三钠(Na3PO4·12H2O)、水玻璃(NaSiO2)和OP-10乳化剂(表面活性剂),按不同比例配合而成。提高溶液温度,可以大大加速除油过程。但温度过高,不仅消耗了大量的热能,并且

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

矿井通风课程设计

矿井通风技术课程设计 题目:矿井通风技术课程设计 姓名:王冰雨 学号: 1545203115 学院:能源与交通工程学院 专业:矿井通风与安全 班级:通风 15-1 学制:三年 指导教师:张修峰 二○一七年一月

目录 1. 概况 (1) 2. 矿井通风系统选择 (3) 2.1.矿井通风系统设计原则及步骤 (5) 2.2.掘进通风方法.................. 错误!未定义书签。 3. 风量计算及风量分配 (7) 3.1.矿井需风量的计算原则 (9) 3.2.矿井需风量的计算方法 (10) 3.3.矿井总风量分配 (13) 4. 矿井通风阻力计算 (15) 4.1.计算原则 (17) 4.2.计算方法 (18) 5. 选择矿井通风设备 (21) 5.1.选择矿井通风设备的基本要求 (24) 5.2.选择矿井主要通风设备 (27) 6. 概算矿井通风费用 (30) 6.1.吨煤的通风电费 (32) 6.2.通风设备的折旧费和维修费 (37) 6.3.专为通风服务的井巷工程折旧费和维修费 (43) 6.4.通风器材和通风仪表等材料的购置费和维修费 (47) 6.5.通风工作全体人员的工资 (52)

1.概况 矿井通风设计是在进行矿井开拓、开采设计的同时,依据矿井的自然条件及生产技术条件,确定矿井通风系统、供风量、通风阻力和矿井主要通风设备的工作。 矿井通风设计是整个矿井设计的主要组成部分,是保证矿井安全生产的重要环节。其基本任务是建立安全、可靠、技术先进和经济合理的矿井通风系统。通风系统是否合理,直接关系到整个矿井的通风状况的好坏和保障矿井安全生产。新建矿井通风设计的基本内容和步骤是:拟定矿井通风系统、矿井总风量的计算与分配、矿井通风阻力计算、选择矿井通风设备。矿井通风系统必须根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性等条件,通过优化或技术经济比较后确定。 矿井通风设计按照设计内容的实施步骤又可分为技术设计和施工设计。矿井通风技术设计是矿井初步设计或技术方案设计时进行的通风设计,其内容包括确定矿井通风系统、矿井总风量的计算和分配、矿井通风阻力计算、选择通风设备和概算通风费用。这也就是一般说的矿井通风设计。矿井通风施工设计是为通风构筑物和通风设备等安装施工进行的设计,其内容包括工程布置、设备布置和施工布置等。 矿井通风设计的主要依据是:矿区气象资料:井田地质地形:煤层瓦斯风化带垂深、各煤层瓦斯含量、瓦斯压力及梯度等;煤层自然发火倾向,发火周期;煤尘爆炸危险性及爆炸指数;矿井设计生产能力及服务年限;矿井开拓方式及采区巷道分布,回采顺序、开采方法;

矿井通风控制系统设计改造

安全管理编号:LX-FS-A83061 矿井通风控制系统设计改造 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

矿井通风控制系统设计改造 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 针对矿井旧通风控制系统中存在的体积庞大、接线复杂、机械触点多、排除故障困难、可靠性差、自动化程度低等缺陷,设计了一种基于先进PLC控制技术的矿井通风安全控制系统。该控制系统投入使用,运行结果表明,系统具有功能完善,运行稳定,节能效果明显等特点,提高了企业的生产效率和经济效益,具有很好的应用前景。 煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。随着我国政府对各行各业安全生产监管力度的不断加强,尤

通风除尘课程设计任务书分析

建筑环境与设备工程专业通风除尘课程设计 任务书 东华大学环境科学与工程学院 2011年09月

一、设计任务 XXX电机公司电镀车间采暖通风系统工程设计 二、电镀车间原始资料 1.厂址:建于____市,气候资料查相关文献。 2.车间组成及生产设备布置见附图1,生产设备见表1。 3.建筑结构。 (1)墙——普通红砖墙;墙内有20毫米厚的1:25水泥砂浆抹面,外涮耐酸漆两遍。 (2)屋顶——带有保温层的大块预制钢筋混凝土卷材屋顶; (3)窗——钢框玻璃,尺寸为1.50×1. 80米; (4)地面——非保温水泥地坪; (5)外门——木制,尺寸为1.50×2.50米,带上亮子。 建筑结构的其它有关尺寸,如墙的厚度、屋顶保温层的厚度等,可参照课程设计任务指导书中表1所推荐的值,结合所给题目所在地点的冬季室外采暖计算温度确定。 4.工作班制及室内空气条件 本车间为两班工作制,车间室内空气条件如下: (1)温度 冬季14~18℃ 夏季按工业车间卫生标准要求,不高于夏季室外通风计算温度3℃(2)湿度 冬季湿作业部分取相对湿度为65%,一般部分取50%。 夏季不作规定 5.工艺过程 所有由厂内机械加工车间和热处理来的零件,首先进行表面清理,其方法有:机械处理和化学处理。 机械处理 体积较大的零件在喷砂室中去锈,体积较小的镀锌件在滚筒内用砂参石灰清除其上毛刺和氧化皮(湿法处理)。 化学处理 需要化学处理的零件,先在苛性碱溶液中去油,对氧化层很厚的零件,则需在酸液中腐蚀去锈直到锈层消失为止。 ⑴需要磷化处理的条件,经表面清理后用苏打水去油,在去油后进行磷化处理,处理后再在皂液和油中进行处理,以提高防腐力。 ⑵零件经过表面处理后,在电镀前还要进行精细的电解去油和用淡的酸溶液去锈,然后进行电镀。 镀锌:零件在氰化液槽中挂镀。 镀镍:零件在酸性溶液中镀镍,在镀镍前需在氰化液中镀铜。 镀锡:在碱性溶液中镀锡。 镀铬:在铬液中镀铬,镀后在回收槽洗去附在镀件上的电解液。

改变矿井通风系统设计与安全技术措施(标准版)

改变矿井通风系统设计与安全技术措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0999

改变矿井通风系统设计与安全技术措施 (标准版) 龙马矿业隶属于吉林省杉松岗矿业集团有限责任公司,座落于白山市靖宇县东兴乡马当村境内,行政划归靖宇县东兴乡管辖。 矿井地理座标为东经:126°59′24″~127°00′42″,北纬:42°26′46″~42°28′14″。 主要河流珠子河全长45km,在矿区下游2km汇入松花江。白山水库蓄水后,最高水位为416.5m。珠子河与松花江合成白山湖,珠子河流域面积95.5km2。靖宇水文站观测记录断面平均流速0.35m/s最大流速2m/s,最大流量244m3/s,最小流量0.1m3/s,珠子河流流经现生产矿区西及西北、北部,两岸形成陡峭的悬崖,每年的11月份开始水位下降至+406m左右。 地质构造简单,为瓦斯矿井,井田内批准开采煤层三层,即一

号层、二号层、三号层,煤层自燃倾向性等级鉴定为Ⅲ级,属不易自燃煤层。发火期大于12个月。煤层没有爆炸性。 我矿准备队305上、下顺同时施工。305上顺掘进距离为365米,305下顺350米、开切眼上山100米。通风设计为采用正压通风,安设局部通风机,风机为系列化,可自动切换。局部通风机型号为FBD2X11,功率为2x11千瓦、风量410-230m?/min。可满足掘进风量需要。矿井主通风机型号为FBCDZ№17.90×2,功率为2×90kw,矿井现在总入风量为2574m?/min,总回风量为2688m?/min。我矿现采掘布置有206综采准备工作面、207综采面、305上顺掘进工作面、305下顺掘进工作面、306上顺掘进工作面、306下顺掘进工作面。按采区设计方案,需要改变通风系统,为了保证矿井通风系统的平稳过渡,经矿班子研究决定成立以矿长为组长的改变矿井通风系统领导小组,并制定相应的安全技术措施,具体实施方案如下: 一、领导小组: 组长:周家会(矿长) 副组长:张立波(总工程师)王志刚(通风副总)

矿井通风设计

第九章矿井通风设计 矿井通风设计是整个矿井设计的重要组成部分,是保证矿井安全生产的重要一环。矿井通风设计的基本任务是建立一个安全可靠、技术先进、经济合理的矿井通风系统。矿井通风设计分为新建矿井通风设计与生产矿井通风设计两种。对于新建矿井通风设计,既要考虑当前的需要,又要考虑矿井的长远发展。对于生产矿井通风设计,必须在调查研究的基础上,充分考虑矿井生产的特点和发展规划,尽量利用原有井巷与通风设备,在原有基础上提出更完善、更切合实际的通风设计。设计必须贯彻和遵守党和国家的技术经济政策、规程、规范及相关规定。 新建矿井通风设计一般分为基建和生产两个时期,并分别进行设计。 矿井基建时期的通风多用局部通风机对独头巷道进行通风。当主要进、回风井筒贯通、主要通风机安装完毕后,便可用主要通风机对已开凿的井巷实行全风压通风,从而可缩短其余井巷与硐室掘进时局部通风的距离。 矿井生产时期通风设计,根据矿井生产年限的长短而采用不同的方法。矿井服务年限不长时(约15至20年),只做一次通风设计。矿井服务年限较长时,考虑到通风机设备选型、矿井所需风量、风压的变化等因素,分为两期进行通风设计,第一期为矿井生产初期(如第一水平),对该时期内通风容易和通风困难两种情况做详细的设计;第二期为矿井生产后期(如第二水平),该时期的通风设计只做一般原则规划,但对矿井通风系统,应根据矿井整个生产时期的技术经济因素,做出全面考虑,使确定的通风系统既可适应现时生产要求,又能照顾长远的生产发展与变化。 矿井通风设计的内容包括:确定矿井通风系统;矿井总风量的计算和分配;矿井通风阻力计算;选择通风设备;概算矿井通风费用。 矿井通风设计的主要依据是:矿区气象资料;井田地质地形;煤层瓦斯风化带垂深、各煤层瓦斯含量、瓦斯压力及梯度等;煤层自然发火倾向,发火周期;煤尘爆炸危险性及爆炸指数;矿井设计生产能力及服务年限;矿井开拓方式及采区巷道布置,回采顺序、开采方法;矿井巷道断面图册;矿区电费等。 矿井通风设计应满足以下要求: 1、将足够的新鲜空气有效的送到井下工作场所,保证生产和创 造良好的工作条件;

相关文档