文档库 最新最全的文档下载
当前位置:文档库 › 基于改进遗传算法的传感器特性方程的建立_蔡钧

基于改进遗传算法的传感器特性方程的建立_蔡钧

基于改进遗传算法的传感器特性方程的建立_蔡钧
基于改进遗传算法的传感器特性方程的建立_蔡钧

第9卷第1期扬州大学学报(自然科学版)V o l.9N o.1 2006年2月Jou rnal of Yang z h ou University(Natural Science Edition)Feb.2006

基于改进遗传算法的传感器特性方程的建立

蔡 钧,周学文,陈沈圆

(扬州大学信息工程学院,江苏扬州225009)

摘 要:在标准遗传算法的基础上,引入了变长度的编码方案、父子竞争的选择交叉机制、对优良个体的大变异操作等,算法的收敛速度得到很大提高,且能自动选择函数的形式、建立传感器的特性方程.结果表明,采用这种方法得到的拟合函数有着较高的精度.

关键词:遗传算法;非线性校正;曲线拟合

中图分类号:T P212 文献标识码:A 文章编号:1007824X(2006)01004904

传感器是测控系统中不可缺少的部件,绝大部分传感器的输入-输出特性是非线性的,为了提高测量的精度,需要对传感器的非线性误差进行校正.目前主要有硬件补偿和软件校正两种方法,前者方法简单,但很难做到全程补偿,效果较差;随着以PC机为核心的虚拟仪器的发展,后者方法的应用愈来愈广泛,非线性校正由PC机中的微处理器通过执行相应的软件来完成,显然要比采用硬件校正技术具有更高的精度和更广泛的适应性.软件校正的核心是建立传感器的输入-输出特性方程.目前比较成熟的方法是最小二乘法.该方法需先选择合适的校正函数式,由于预先确定函数表达式的形式有一定的困难,故函数的形式大都先选择了多项式,然后采用梯度信息来确定校正函数的系数.为了克服最小二乘法得不到全局最优解且有可能造成矩阵方程出现病态而破坏其方法有效性的缺点,周争鸣[1]、陈俊杰[2]、温秀兰[3]、郝云芳[4]等将遗传算法用于多项式的拟合;而汪晓东[5]、A HM AD[6]等则是在已知函数关系的前提下,采用遗传算法确定函数式的方法.由此可见,目前的研究都是针对某一具体的数学表达式来进行的,这样,在应用中就存在一定的缺陷.在本文中,笔者提出了一种新的传感器特性方程的建立方法:将常用的初等函数表示成基因串形式,并采用遗传算法智能地选择初等函数的形式和组合.这种方法不需要预先确定方程的结构形式,只要给出所需的拟合精度即可,也可根据要求指定用多项式或正弦函数进行拟合.

1 改进遗传算法

把遗传算法应用于拟合传感器的特性方程,主要解决的问题是:①如何把初等函数表示为基因串;②如何构造适应度函数来度量每个个体对问题的适应程度;③如何构造一个有效的遗传算法. 1.1 变长度的编码方案

1)任意函数时的编码方案.任意函数拟合时预先不能确定函数的形式,为了便于遗传算法中随机地生成(变换)各种不同形式的初等函数,特将函数表达式分解为由常数、函数、幂次、运算符等组成的基本的函数单元:(A k1)(F k2(x))(+,-,×),其中常数由一个正数A和幂次k1构成,函数由常用的初等函数和常数k2组合而成,组合方式分别为x k2,x-k2,e k2x,e-k2x,sin k2x,co s k2x,tan k2x,ln(k2+x),运算符(+,-,×)用于连接不同的基本函数单元.为了进行遗传操作,需将所用的初等函数映射成二进制码表示.常数A直接采用8位二进制数,前5位为整数部分,后3位为小数;k1,k2的取值用3位二进制码表示;用3位二进制码表示8种不同的初等函数;运算符采用了+,-,×,用2位二进制码表示.

收稿日期:20051121

E-mail:caijun@https://www.wendangku.net/doc/8410049731.html,

50扬州大学学报(自然科学版)第9卷

2)指定函数时的编码方案.在对传感器进行分析时,用得较多的是多项式和正弦函数,这两种函数的基本单元是A k11x k2(+,-),A k12[sin(k2x)|co s(k2x)](+,-).为了不影响遗传算法的通用性,基本染色体的长度还是取19,其中常数A1采用12位二进制数,前7位为整数部分,后5位为小数;A2取11位,6位整数,5位小数;k1,k2的取值相同;运算符用1位二进制码表示.表1给出了以上3种拟合的编码表.

表1 编码方案

Tab.1 Code scheme

二 进 制 码

拟合方案

0000010100111001011101110001101101

任意函数f(x)x x-1e x e-x sin x cos x tan x ln x

k i1/41/31/201234

±+-×+指定函数k11/41/31/201234

k201234567

±+-

f(x)sin x cos x

任意一个长度为19的二进制串就代表了一个基本的函数单元,通过其中运算符的连接可组合成各种形式的函数.生成初始种群时,首先产生一个m=1~4之间的随机数,然后随机产生一个长度为19 *m的二进制串,形成一个变长度的多基因个体.

1.2 适值函数

设y i是在点x i的测量值(i=1,2,…,n),y′i是在点x i拟合函数的计算值,则在n个数据点上总的

误差平方和为∑n i=1(y i-y′i)2.这个函数值越小,说明寻优得到的传感器特性方程越好,可以此作为检验拟合函数好坏的标准.因为我们希望在遗传算法运行的后期阶段,算法能够对个体的适应度进行适当的放大,扩大最佳个体适应度与其他个体适应度之间的差异程度,以提高个体之间的竞争性,所以适值函数设置为F max=1∑n i=1(y i-y′i)2+C,其中C=0.000001.

1.3 选择操作

采用结合精英保持的联赛选择策略[7-8],首先保留当前群体中适应度值最高的前po psize*20%个个体(po psize为种群的规模);然后在整个种群中随机选择2个染色体进行比较,并将其中适值函数值大的个体作为父本,反复进行,直到达到种群规模,形成父代.对父代进行交叉、变异操作,形成子代.用前面保留的适应度值最高的popsize*20%个个体替换子代中适应度值最差的popsize*20%个个体,形成新的群体.这样,在子代中保留了父代的最佳个体,就不至于由于遗传操作而丢失最佳解.

1.4 父子竞争的交叉操作

在标准遗传算法中,子代是由父代随机产生的,这样产生的子代性能可能会降低.父子竞争机制来自生物进化中的优胜劣汰.两父代交叉产生两个子代,当两个子代中具有最大适应值的个体大于或等于父代中具有最大适应值的个体时,认为子代优于父代,将子代替换父代.否则,保留父代,让其进入下一轮的进化.这样一来,就不是只要进行交叉运算操作子代就去替换父代,而是在父子两代中选择最优的个体进入下一代,子代总是优于或者等于它们的父代,进化总是朝着最优方向的.由于2个交叉点都是随机产生的,交叉操作后的个体的长度可能不是单基因的整数倍,所以要对交叉后的个体进行修补处理.方法是:如果剩余部分长度大于10,则随机地补充为一个单基因;反之,则丢弃.经过修补以后,保证串的长度为19的整数倍.

1.5 二步变异法

与一般的数值优化不同,本算法中的染色体代表不同的表达式形式,改变一个基因就改变整个染色体对应的表达式结构,它是离散变化的.交叉操作交换了2个个体较大的两部分基因,对产生新的个体有着明显的作用,但对于优良个体的性能改进作用较小,特别是在算法的后期,优良个体的基因和最优解的结果一般只相差其中的几位码,显然,这个问题通过交叉是无法解决的.而常用的变异方法对整个种群进行,优、劣个体之间有着相同的变异概率,一方面对优良个体变异的可能性很小,另一方面变异的位置不一定在所需要的基因位上,所以本算法采取了二步变异法.首先,采用常用的变异方法对整个种群进行变异,用于产生新的个体;其次,对优良个体进行大变异,对适应度值最好的前0.2*po psize 个个体,随机地进行0.8*l (l 为参与变异个体的长度)次变异,取其中适应度值最大的一个替换原来的个体.通过以上二步变异,算法的收敛速度得到了很大提高.

2 数值结果

已知CY001D 型压力传感器的输入输出参数见表 2.这种传感器输入、输出信号有着较大的非线性.

表2 CY 001D 传感器的样本数据

Tab .2

 CY 001D sensor sample data i p /M Pa E /mV i p /M Pa E /mV 150.0686500.3592100.1017600.4373200.1598700.5244300.2239800.6315

40

0.290

10

90

0.785

分别用本文算法中的3种拟合方法对传感器的特性进行了曲线拟合.算法中取总的进化代数为200,交叉率为0.9,变异率为0.02.得到的结果分别为:任意函数拟合:y =11.25sin(3x )+156.25ln(1+x )-7.73;多项式拟合:y =- 3.5+149x -61.75x 4;正弦函数拟合:y =61.75sin(2x )+132.25sin (x /3)-6.38,其中y 为压力,x 为输出电动势.3种拟合方法得到的结果见表 3.

表3 拟合结果Tab .3 Fitting results

实 际 参 数正弦函数拟合任意函数拟合多项式拟合p /M Pa E /mV p c /M Pa 相对误差/%

p c /M Pa 相对误差/%

p c /M Pa 相对误差/%

50.068 4.990.20 4.83 3.40 4.25 1.

50100.10110.000.5010.66 6.6010.19 1.90200.15919.970.1520.49 2.4520.170.85300.22330.070.2330.70 2.3330.50 1.67400.29040.120.3040.66 1.6540.54 1.35500.35950.020.0450.110.2250.070.14600.43760.170.2859.790.3559.840.27700.52470.100.1469.350.9269.480.74800.63180.060.07579.380.7879.520.6090

0.785

89.

78

0.24

90.76

0.84

90.

46

0.51

从表3可见,3种拟合结果中误差最小的是正弦函数拟合,在整个应用范围内,相对误差小于±0.5%.三者的拟合曲线见图1,可见3种方式得到的拟合曲线均能正确地反映原始数据的变化情况.

3 结论

传感器的特性方程在对传感器的非线性校正和性能分析中有着重要的作用.本文提出了基于改进遗传算法的任意函数的传感器特性方程建立方法,该方法不需要预先确定函数的形式,由程序进行智能选择函数的形式,也可根据用户要求用多项式或三角函数进行拟合.通过验算得到的函数有着较高的拟合精度,说明了本方法的有效性.

51

第1期蔡 钧等:基于改进遗传算法的传感器特性方程的建立

图1 拟合函数曲线Fig .1 Fitting funct ion curve

参考文献:

[1] 周争鸣.基于遗传算法的曲线拟合及应用[J].安徽机电学院学报,2000,15(3):1-5.

[2] 陈俊杰,黄惟一.基于遗传神经网络的传感器输出特性拟合[J ].传感技术学报,2001,12(4):323-327.[3] 温秀兰,宋爱国.用遗传算法实现信号转换电路的非线性校正[J].数据采集与处理,2003,18(3):306-309.[4] 郝云芳,冯晓明,黄天禄.遗传算法在传感器非线性校正中的应用[J].传感器技术,2003,22(6):56-61.[5] 汪晓东,沈亚强.用遗传算法拟合传感器的输出特性[J].仪器仪表学报,1997,18(4):354-357.

[6] A HM AD H .So lving g urv e fitting pro blems using g enetic pr og ra mming [J ].IEEE M ELECON ,2002,38(5):

316-321.

[7] M I LL ER J A ,PO T T ER W D,GAN DHAM R V.An ev alua tio n o f local improv eme nt o pe rato rs fo r genetic algo -rithms [J ].IEEE T rans Syst M a n&Cybern ,1999,23(5):1340-1351.

[8] V ASCO N CELO S J A ,RA M I REZ J A ,T A K A HA SHI R H C .Impr ov ements in g enetic alg o rithm s [J ].IEEE

T ra ns M ag n,2001,37(5):3414-3417.

Establishment of the characteristic equation of the sensor

using the genetic algorithm

C AI J un ,ZHOU Xue -w en ,CHEN Shen -yuan

(Coll of Inf Engin ,Yangzhou Univ ,Yang zhou 225009,China )

Abstract

:The paper proposes a method fo r curv e fitting based o n g enetic algo rithm .It can choose the fo rm of function to set up characteristic equatio n of senso r autom atica lly in algo rithm .The code scheme for changing leng th ,the selection and cro ssov er m echanism s of co mpetitio n amo ng th e father and the so n ,g rea tly muta ting fo r the fine individual etc .hav e been introduced o n the ba sis of standard g enetic algo rithm.The conv erg ence ra te of the alg orithm has been g rea tly enha nced.Sim ula tion re-sult show s tha t the fitting functio n obtained by this method has higher fitting precision.Keywords :g enetic algo rithm ;non -linear calibra tion ;curv e fitting

(责任编辑 晓 文)

52

扬州大学学报(自然科学版)第9卷

加速度传感器的工作原理、结构以及芯片的微加工

加速度传感器的工作原理、结构以及芯片的微加工 传感器作为故障信息监测与诊断的数据来源,其对工程装备工作参数的拾取精度直接决定了后续故障诊断的准确度,是机械故障信息监测的关键器件。随着无线监测系统进入工业应用以及制造装备智能化发展的趋势,当前所用的压电式加速度传感器由于成本、体积等方面的原因逐渐不能满足工业实际需求;因此,将具有微型化与可大规模生产等潜力的MEMS传感器应用于机械故障信息监测中,可为制造装备集成化、智能化发展提供必要的器件支持。综合各类传感器的优缺点以及机械制造装备故障检测对测振传感器的性能需求,本文以3种不同结构的压阻式MEMS加速度传感器为对象,介绍了微型测振加速度传感器的工作原理、结构以及微加工工艺,针对传感器固有频率与测量灵敏度之间的制约关系,提出“小变形-大应力”的敏感结构设计方法,并根据所设计结构特点与微加工工艺能力制定传感器芯片制作流程。加速度传感器工作原理压阻式传感器利用材料的压阻效应将物理量转换为电学量的方式来实现信号测量。目前,压阻式加速度传感器多采用如图1所示的“梁-质量块”结构,主要包括质量块、支撑梁和压敏电阻3个基本元件。当传感器受到加速度作用时,质量块在惯性力的作用下发生与加速度成比例的位移,带动支撑梁发生弯曲变形,产生应力。由于硅的压阻效应,压敏电阻在应力作用下阻值变化,后经过惠斯通电桥输出与加速度成比例的电压,实现加速度信号到电信号的转换,如图2所示。 图1 梁-质量块结构图 图 2 压阻式传感器工作过程在加工传感器芯片过程中,通常采用离子注入工艺在传感器应力最敏感区域制作4个等值的压敏电阻以提高传感器的测量灵敏度。然后由芯片上的金属引线将压敏电阻连接成惠斯通电桥,由外接恒压源或恒流源激励工作。当传感器工作时,惠斯通电桥能够有效地将压敏电阻的变化转换成电压信号,且压阻式传感器的电压输出与加速度输入成线性关系。传感器的敏感结构 加速度传感器的主要性能指标包括测量灵敏度、固有频率、输出线性度以及可用量程等,其中测量灵敏度与固有频率是决定传感器应用范围的重要指标。对于某一结构的传感器来说,提升固有频率则必须增加结构刚度、减小质量块,而这必然会减小结构的静态变形,造成

加速度传感器传感器课程设计

一、 设计要求 1、功能与用途 加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 2、指标要求 分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。 二、设计方案及其特点 依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。三种加速度传感器的设计及特点分别叙述如下: 1、方案一 压电式加速度传感器 压电加速度测量系统结构框图如图1所示: 压电加速度传感器采用具有压电效应的压电材料作基本元件 ,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料 ,当沿着一定 压电加速度 传感器 电荷放大器 信号处理电 路 A/D 转 换电路 图1 压电加速度测量系统结构框图

方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后 ,又重新恢复不带电的状态;当作用力的方向改变时 ,电荷的极性也随着改变。电信号经前置放大器放大 ,即可由一般测量仪器测试出电荷(电压)大小 ,从而得出物体的加速度 加速度计的使用上限频率取决于幅频曲线中的共振频率图2。 方案二 电阻应变式加速度传感器 应变式加速度传感器主要用于物体加速度的测量。其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m 。 图3中1是等强度梁,自由端安装质量块2,另一端固定在壳体3上。等强度梁上粘贴四个电阻应变敏感元件4 。 测量时,将传感器壳体与被测对象刚性连接,当被测物体以加速度a 运动时,质量块受到一个与加速度方向相反的惯性力作用, 使悬臂梁变形,该变形被粘贴在悬臂梁上的应变片感受到并随之产生应变,从而使应变片的电阻发生变化。 电阻的变化引起应变片组成的桥路出现不平衡,从而输出电压, 即可得出加速度a 值的大 图2 压电式加速度计的幅频特性曲线 3 2 1 4 1—等强度梁;2—质量块;3—壳体; 4—电阻应变敏感元体 图3 应变式加速度传感器结构

遗传算法解非线性方程

遗传算法解非线性方程组的Matlab程序 程序用MATLAB语言编写。之所以选择MATLB,是因为它简单,但又功能强大。写1行MATLAB程序,相当于写10行C++程序。在编写算法阶段,最好用MATLAB语言,算法验证以后,要进入工程阶段,再把它翻译成C++语言。 本程序的算法很简单,只具有示意性,不能用于实战。 非线性方程组的实例在函数(2)nonLinearSumError1(x)中,你可以用这个实例做样子构造你自己待解的非线性方程组。 %注意:标准遗传算法的一个重要概念是,染色体是可能解的2进制顺序号,由这个序号在可能解的集合(解空间)中找到可能解 %程序的流程如下: %程序初始化,随机生成一组可能解(第一批染色体) %1: 由可能解的序号寻找解本身(关键步骤) %2:把解代入非线性方程计算误差,如果误差符合要求,停止计算 %3:选择最好解对应的最优染色体 %4:保留每次迭代产生的最好的染色体,以防最好染色体丢失 %5: 把保留的最好的染色体holdBestChromosome加入到染色体群中 %6: 为每一条染色体(即可能解的序号)定义一个概率(关键步骤) %7:按照概率筛选染色体(关键步骤) %8:染色体杂交(关键步骤) %9:变异 %10:到1 %这是遗传算法的主程序,它需要调用的函数如下。 %由染色体(可能解的2进制)顺序号找到可能解: %(1)x=chromosome_x(fatherChromosomeGroup,oneDimensionSet,solutionS um); %把解代入非线性方程组计算误差函数:(2)functionError=nonLinearSumError1(x); %判定程是否得解函数:(3)[solution,isTrue]=isSolution(x,funtionError,solutionSumError); %选择最优染色体函数: %(4)[bestChromosome,leastFunctionError]=best_worstChromosome(fatherC hromosomeGroup,functionError); %误差比较函数:从两个染色体中,选出误差较小的染色体 %(5)[holdBestChromosome,holdLeastFunctionError]... % =compareBestChromosome(holdBestChromosome,holdLeastFunctionError,... % bestChromosome,leastFuntionError) %为染色体定义概率函数,好的染色体概率高,坏染色体概率低 %(6)p=chromosomeProbability(functionError); %按概率选择染色体函数: %(7)slecteChromosomeGroup=selecteChromome(fatherChromosomeGroup,p );

力平衡加速度传感器原理设计t

力平衡加速度传感器原理设计 摘要:本文介绍了一种力平衡加速度传感器的原理设计方法。差容式力平衡加速度传感器在传统的机械传感器的基础上,采用差动电容结构,利用反馈原理把被测的加速度转换为电容器的电容量变化,将加速度的变化转变为电压值。使传感器的灵敏度、非线性、测量范围等性能得到很大的提高,使其在地震、建筑、交通、航空等各领域得到广泛应用。 关键词:加速度差容式力平衡传感器 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。 1、加速度传感器原理概述 加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百 MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。 差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出

一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。 2、变间隙电容的基本工作原理 如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示: 由式(2-1)可知,平板电容器的电容量是、A、的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化 C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大小。 由式(2-2)可知,极板间电容C与极板间距离是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在

压电式加速度传感器及其应用备课讲稿

压电式加速度传感器 及其应用

压电式加速度传感器及其应用 一、 压电式加速度传感器原理 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。 为此,通常把传感器信号先输到高输入阻抗的前置放大器。经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。 二、压电式加速度传感器构成元件 常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。 预压弹簧压电元件外壳质量 块基座

三、压电式加速度传感器幅频特性 图1 压电式加速度计的幅频特性曲线 加速度 限频率取决于幅频曲线中的共振频率图(图1)。一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。 四、压电式加速度传感器的灵敏度 压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。前者是加速度计输出电压(mV)与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s2。对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。一般来说,加速度计尺寸越大,其固有频率越低。因此

非线性模型参数估计的遗传算法

滨江学院 毕业论文(设计)题目非线性模型参数估计的遗传算法 院系大气与遥感系 专业测绘工程 学生姓名李兴宇 学号200923500** 指导教师王永弟 职称讲师 二O一三年五月二十日

- 目录- 摘要 (3) 关键词 (3) 1.引言 (3) 1.1 课题背景 (3) 1.2 国内外研究现状 (4) 1.3 研究的目的和意义 (4) 1.4 论文结构 (5) 2.遗传算法简介 (5) 2.1 遗传算法的起源 (5) 2.2 遗传算法的基本思想 (6) 2.2.1 遗传算法求最优解的一般步骤 (7) 2.2.2 用技术路线流程图形式表示遗传算法流程 (7) 2.3 遗传算法的基本原理及设计 (8) 2.3.1 适应度设计 (8) 2.3.2 遗传算子操作 (9) 3.遗传算法的应用实例 (9) 3.1 非线性模型参数估计 (10) 3.2 实例分析 (10) 4.结语 (12) 参考文献 (12) 英文题目 (14) - 1 -

- 2 - 致谢 (15)

非线性模型参数估计的遗传算法 李兴宇 南京信息工程大学滨江学院测绘工程专业,南京 210044 摘要:关于非线性模型计算中的参数估计是十分棘手的问题,为此常常将这样的问题转化成非线性优化问题解决,遗传算法作为一种具有强适应性的全局搜索方法而被频繁的应用于非线性系统参数估计的计算当中,本文介绍了遗传算法及其理论基础,阐述了遗传算法在非线性模型参数估计中的应用的起源和发展,引入实例说明了遗传算法在非线性模型参数估计的实际运用中的实现,并概述了基于遗传算法的非线性参数模型估计具体解算过程,将使用遗传算法得到的结果与其他算法的解算结果进行比较,结果表明:遗传算法是一种行之有效的搜索算法,能有效得到全局最优解,在今后的研究中值得推广。 关键词:遗传算法非线性模型参数估计应用 1.引言 1.1课题背景 当前科学技术的发展和研究已经进入了进入各个领域、多个学科互相交叉、互相渗透和互相影响的时代,生命科学的研究与工程科学的交叉、渗透和相互补充提高便是其中一个非常典型的例子,同时也表现出了近代科学技术发展的一个新的显著特点。遗传算法研究工作的蓬勃发展以及在各个领域的广泛应用正是体现了科学发展过程的的这一明显的特点和良好的趋势。 非线性科学是一门研究复杂现象的科学,涉及到社会科学、自然科学和工程技术等诸多领域,在测绘学的研究中,尤其是在测量平差模型的研究和计算过程中,大量引入的都是非线性函数方程模型,而对于非线性模型的解算,往往过程复杂。遗传算法的出现为研究工作提供了一种求解多模型、多目标、非线性等复杂系统的优化问题的通用方法和框架。 对于非线性系统的解算,传统上常用的方法是利用其中参数的近似值将非线性系统线性化,也就是线性近似,测绘学中通常称之为线性化,经过线性化之后,将其视为线性模型并利用线性模型的解算方法得到结果,这就很大程度的简化了解算步骤,减少了工作量,但同时会带来新的问题,运用这种传统方法得到的数据结果存在的误差较大、精度不足等问题。利用线性近似方法对非线性模型进行参数估计,精度往往取决于模型的非线性强度。 - 3 -

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

压电型加速度传感器的频率特性

压电加速度传感器的频率特性 1、固有共振频率 压电型加速度传感器基本上由质量块m、弹性常数k的压电体、空气阻抗等的阻尼器D 以及基座构成的。 图1压电型加速度传感器的弹性质量系 现在我们假设没有阻尼器D和外力的情况,如图1(a)此时的共振频率为: m b:基座的质量 上式中f n 是弹性质量系(质量块m)的共振频率,用以下公式表示。 图1(b)中,当基座固定在质量无限大的物体上时,mb远大于m,f0约等于fn。 我们将fn 称为不衰减固有共振频率。 接下来我们假设有衰减的情况,实际上自由振动不可能一直进行,一定会受到某些衰减并随时间变弱。 衰减状态由衰减比h的大小决定,分为3种状态。另外衰减比h 是衰减系数 D 比上临界衰减系数Dc,即D/Dc 得出。

图2 衰减自由振动 h<1 时,后续振幅比如下式所示。 由此我们可以得知,包络线会随时间以指数函数减少。此时将fd 作为共振频率的话, 可用以下公式表示。 fd 就称作衰减固有共振频率。 h≥1 时,则fd=0。变为失去振动性的无周期运动。从振动测量精度上来看,自由衰减振动需要尽可能快得使其衰减,但衰减比h并不是越大越好。这一点可从图上记公式中得知。 衰减比h 的大小也受到谐振锐度即Qm 值的影响。h 越小Qm 就越大,形成尖锐的共振。其关系由下记公式来表示。 在设计压电型加速度传感器时,会尽可能使h 值小,Qm 值大,形成尖锐共振后,扩大平坦的频率范围。

2、 电荷增幅中的低频截止频率 上述已经提到,电荷放大器中传感器产生的电荷全部储存在反馈电容 Cf 中。 因此低频特性与输入电路中的时间常数(电缆电容 Cc 、传感器电容 Cd 等)没有关系, 而是由反馈电路的时间常数 Cf ?Rf 决定。即低频截止频率 fc 为: 由于一般情况下Rf 会选定10MΩ 以上的高阻抗值,比 Cf 的电感器大很多,因此实际上 fc 的值主要由 Cf 的值来决定。Cf 值越大 fc 就越小,适合低频的振动测量。但是这也有一定限度,从之前公式可以看出,Cf 值非常大时电荷—电压的转换率下降造成灵敏度下降,导致 S/N 比的恶化。一般情况下,大多选择 1000pF 左右。 3、 电压增幅中的低频截止频率 将压电型加速度传感器连接到电压放大器上的等价电路如图3所示。 图3 电压增幅的等价电路 途中 V 和 V in 之间的关系可用以下公式表示。 在低频截止频率 fc 中,因为丨 Vin/V 丨=1/√2,因此将上记公式的分母 1+w2Rin2(Cd+Cc )2=2,得到: 则 f c 为: Cd :传感器的静态电容 Cc :电缆的静态电容 Rin :电压放大器的输入阻抗 Vin :电压放大器的输入电压

MEMS加速度传感器的原理与构造

微系统设计与应用 加速度传感器的原理与构造 班级:2012机自实验班 指导教师:xxx 小组成员:xxx xx大学机械工程学院 二OO五年十一月

摘要 随着硅微机械加工技术(MEMS)的迅猛发展,各种基于MEMS技术的器件也应运而生,目前已经得到广泛应用的就有压力传感器、加速度传感器、光开关等等,它们有着体积小、质量轻、成本低、功耗低、可靠性高等特点,而且因为其加工工艺一定程度上与传统的集成电路工艺兼容,易于实现数字化、智能化以及批量生产,因而从问世起就引起了广泛关注,并且在汽车、医药、导航和控制、生化分析、工业检测等方面得到了较为迅速的应用。其中加速度传感器就是广泛应用的例子之一。加速度传感器的原理随其应用而不同,有压阻式,电容式,压电式,谐振式等。本文着手于不同加速度传感器的原理、制作工艺及应用展开,能够使之更加全面了解加速度传感器。 关键词:加速度传感器,压阻式,电容式,原理,构造

目录 1 压阻式加速度传感器 (2) 1.1 压阻式加速度传感器的组成 (2) 1.2 压阻式加速度传感器的原理 (2) 1.2.1 敏感原理 (3) 1.2.2 压阻系数 (4) 1.2.3 悬臂梁分析 (5) 1.3 MEMS压阻式加速度传感器制造工艺 (6) 1.3.1结构部分 (6) 1.3.2 硅帽部分 (8) 1.3.3键合、划片 (9) 2电容式加速度传感器 (9) 2.1电容式加速度传感器原理 (9) 2.1.1 电容器加速度传感器力学模型 (9) 2.1.2电容式加速度传感器数学模型 (11) 2.2电容式加速度传感器的构造 (12) 2.2.1机械结构布局的选择与设计 (12) 2.3.2材料的选择 (14) 2.3.3工艺的选择 (15) 2.3.4具体构造及加工工艺 (16) 3 其他加速度传感器 (18) 3.1 光波导加速度计 (18) 3.2微谐振式加速度计 (18) 3.3热对流加速度计 (19) 3.4压电式加速度计 (19) 4 加速度传感器的应用 (20) 4.1原理 (20) 4.2 功能 (20) 参考文献 (22)

基于Matlab遗传算法的非线性方程组优化程序

基于Matlab遗传算法的非线性方程组优化程序 clear,clc;%清理内存,清屏 circleN=200;%迭代次数 format long %构造可能解的空间,确定染色体的个数、长度 solutionSum=4;leftBoundary=-10;rightBoundary=10; distance=1;chromosomeSum=500;solutionSumError=0.1; oneDimensionSet=leftBoundary:distance:rightBoundary; oneDimensionSetN=size(oneDimensionSet,2);%返回oneDimensionSet中的元素个数 solutionN=oneDimensionSetN^solutionSum;%解空间(解集合)中可能解的总数 binSolutionN=dec2bin(solutionN);%把可能解的总数转换成二进制数 chromosomeLength=size(binSolutionN,2);%由解空间中可能解的总数(二进制数)计算染色体的长度 %程序初始化 %随机生成初始可能解的顺序号,+1是为了防止出现0顺序号 solutionSequence=fix(rand(chromosomeSum,1)*solutionN)+1; for i=1:chromosomeSum%防止解的顺序号超出解的个数 if solutionSequence(i)>solutionN; solutionSequence(i)=solutionN; end end %把解的十进制序号转成二进制序号 fatherChromosomeGroup=dec2bin(solutionSequence,chromosomeLength); holdLeastFunctionError=Inf;%可能解的最小误差的初值 holdBestChromosome=0;%对应最小误差的染色体的初值 %计算 circle=0; while circle

常用加速度传感器有哪几种分类

1、常用加速度传感器有哪几种分类各有什么特点 答:加速度传感器按工作原理可分为压电式、压阻式和电容式。 压电式传感器是通过利用某些特殊的敏感芯体受振动加速度作用后会产生与之成正比的电荷信号的特性,来实现振动加速度的测量的,这种传感器一般都具有测量频率范围宽、量程大、体积小、重量轻、结构简单坚固、受外界干扰小以及产生电荷信号不需要任何外界电源等优点,它最大的缺点是不能测量零频率信号。 压阻式传感器的敏感芯体为半导体材料制成电阻测量电桥来实现测量加速度信号,这种传感器的频率测量范围和量程也很大,体积小重量轻,但是缺点也很明显,就是受温度影响较大,一般都需要进行温度补偿。 电容式传感器中一般有个可运动质量块与一个固定电极组成一个电容,当受加速度作用时,质量块与固定电极之间的间隙会发生变化,从而使电容值发生变化。它的优点很突出,灵敏度高、零频响应、受环境(尤其是温度)影响小等,缺点也同样突出,主要是输入输出非线形对应、量程很有限以及本身是高阻抗信号源,需后继电路给予改善。 相比之下,压电式传感器应用更为广泛一些,压阻式也有一定程度的应用,而电容式主要专用于低频测量。 2、压电式传感器又分哪几种 答:压电式传感器有多种分类方式。 按敏感芯体材料分为压电晶体(一般为石英)和压电陶瓷两类。压电陶瓷比压电晶体的压电系数要高,而且各项机电系数随温度时间等外界条件的变化相对较小,因此一般更常用的是压电陶瓷。 按敏感芯体结构形式分为压缩式、剪切式和弯曲变形梁式。压缩式结构最简单,价格便宜,但是不能有效排除各种干扰;剪切式受干扰影响最小,目前最为常用,但是制造工艺要求较高,所以价格偏高;弯曲变形梁式比较少见,其结构能够产生较大的电荷输出信号,但是测量频率范围较低,受温度影响易产生漂移,因此不推荐使用。 按信号输出的方式分为电荷输出式和低阻抗电压输出式(ICP)。电荷输出式直接输出高阻抗电荷信号,必须通过二次仪表转换成低阻抗电压读取,而高阻抗电荷信号较容易受干扰,所以对测试环境、连接线缆等的要求较高; 而ICP型传感器内部安装了前置放大器,直接转换成电压信号输出,所以相对有信号质量好、噪声小、抗干扰能力强、能实现远距离测量等优点,目前正逐步取代电荷输出式传感器。 3、选择压电式加速度传感器时有哪些基本原则 答:选择一般应用场合的压电式加速度传感器时,要从三个方面全面考虑: ①振动量值的大小②信号频率范围③测试现场环境。 作为一般的原则,灵敏度高的传感器量程范围小,反之灵敏度低的量程范围大,而且一般情况下,灵敏度越高,敏感芯体的质量块越大,其谐振频率也越低,如果谐振波叠加在被测信号上,会造成失真输出,因此选择时除

加速度传感器原理以及选用

加速度传感器原理以及选用 什么是加速度传感器? 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度传感器一般用在哪里? 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 加速度传感器是如何工作的? 多数加速度传感器是根据压电效应的原理来工作的。 所谓的压电效应就是 "对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应 "。 一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。 在选购加速度传感器的时候,需要考虑什么? 模拟输出 vs 数字输出:这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。 如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。 如果你使用的微控制器有模拟输入口,比如PIC/AVR/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似"acceleration=read_adc()"的指令,而且处理此指令的速度只要几微秒。 测量轴数量: 对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。 最大测量值: 如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。

从设计原理上详细介绍加速度传感器的特性

加速度传感器性能、特性详细介绍 一、原理及应用 为什么用加速度传感器? 在各种工程领域中,在各种结构物和各种机器的开发、试验和运行监测中,冲击和振动测量是至关重要的。加速度传感器具有测量精度高,频率和幅值响应宽,体积小,重量轻,寿命长,易于安装等优点而广为采用。endevco是唯一的能同时提供压电式加速度传感器、集成电路压电式加速度传感器、压阻式加速度传感器、变电容式加速度传感器的厂家。 传感器与信号调理器 传感器:将感受到的物理量作为输入并按一定规律转换成测量所需物理量后输出的一种装置。它通常由敏感元件和转换元件组成。 信号调理器:将传感器的输出信号进行阻抗变换,放大,滤波,归一化,数字化等处理统称为信号调理,顾名思义,适调(Conditioning)意指根据测试和后续读显,数据采集,记录仪器的要求对信号进行适当的调节,实现上述功能的仪器称为信号调理器(Signal Conditioner),必要时信号调理器还有供电,积分,平衡,校准,过载指示,电平检测等功能。 机电传感器 将被测的机械量(应变,力,运动等);按一定规律转换成电量或电参数量的一种装置。用于振动和冲击的有: 1)压电加速度传感器;2)集成电路压电加速度传感器;3)压阻加速度传感器;4)可变电阻传感器;5)可变电容传感器;6)应变计;7)可变磁阻传感器;8)磁致伸缩传感器;9)电涡流式传感器;10)动圈式传感器;11)电感传感器;12)压力传感器;13)力传感器;14)阻抗头。 惯性传感器 利用惯性系统中有关元件的相对运动产生输出信号的传感器。(见国家标准GB/T 2298-80) 由单自由度系统中质量与基座的相对运动而产生与基座运动成比例的输出信号的传感器。 压电式(PE)加速度传感器 压电电子学定义: 压电加速度传感器采用了质量—弹簧结构,它产生的作用力与振幅和频率成正比,作用到压电陶瓷上,使其末端产生电荷,它是自发电式,不需外接电源,可在极高极低温度下工作,结构牢固性好。 石英是天然压电材料,灵敏度低,常用的是人造的铁电材料,由人工极化可获得高灵敏度、高工作温度和输出稳定性。Endevco的压电元件采用人工极化,具有高稳定性。 压电式加速度传感器 在加速度传感器设计中采用了各种结构型式: 压缩式和单端压缩式(SEC) 通过中心螺柱上的质量块M给敏感元件K施加预紧力,敏感元件可看作弹簧。 特点:灵敏度高,共振频率高;适合于一般用途。 基座隔离式 通过特定外型的底座来隔离各种非振动环境。 特点:大大地减小了底座各种耦合因素的影响,减小了底座应变和瞬态温度的影响,使加速度传感器更适合于低振级测量。 环形剪切式 环形质量块紧紧地固定在环形敏感元件的外周边,以产生剪切力。 特点:尺寸小、重量轻、适用于冲击测量和轻型结构物的测量,敏感元件与基座做到了很好的隔离,因

遗传算法解决非线性规划问题的Matlab程序

非线性整数规划的遗传算法Matlab程序(附图) 通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考! 模型的形式和适应度函数定义如下: 这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。 function Fitness=FITNESS(x,FARM,e,q,w) %% 适应度函数 %输入参数列表 %x决策变量构成的4×50的0-1矩阵 %FARM细胞结构存储的当前种群,它包含了个体x

%e4×50的系数矩阵 %q4×50的系数矩阵 %w1×50的系数矩阵 %% gamma=0.98; N=length(FARM);%种群规模 F1=zeros(1,N); F2=zeros(1,N); for i=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx)); end ppp=(1-x)+(1-q).*x; f1=sum(w.*prod(ppp)); f2=sum(sum(e.*x)); Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2-F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方 function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm) %% 求解01整数规划的遗传算法

压电加速度传感器的原理

压电加速度传感器的原理 应用压电效应的压电型加速度传感器,要根据用途选择不同的压电效果。 从结构上看,各自特点如下: (a)压缩型(纵向效果)具有高机械强度,适用于冲击测试等各种测量要求。 (b)剪切型(厚度切变效果)不易受到由于温度变化产生的热电气的影响。 (c)挠曲型(横向效果)具有低频高敏度的特点。 三者结构如下图(a)(b)(c)所示,区别在于压电体受到的应力方向不同,其基本原理则大致相同。 ※热电气的说明:压电体的结晶在无电流无应力状态下发生极化,此现象称为自发极化,通常用 Ps 表示。具有 Ps 特性的结晶,其热振动状态会随温度变化,其大小会随热膨胀发生变化。因此 Ps 是温度函数,结晶的温度变化量会成为 Ps 的变化量,并在结晶表面产生相应的电位差(正效应),反之施加电流产生相应的温度变化(逆效应)。此现象我们称之为热电气。

现在仅对加速度传感器运动方向为上下的情况进行说明,如上图(a)(b)中,k 代表压电体的弹性常数,D 代表空气阻抗等各种衰减。如图(a)中在基座上施加位移x0向上的加速度 a0,弹性常数 k 如图(b)所示,被压缩位移 y。 此时,施加到质量块 m 上的力 F 可用以下公式表示。 接下来,我们利用牛顿第二定律[力 F=质量 m×加速度 a],可以推导出以下公式。

因此,比弹性质量系(质量块、压电体、基座)的固有共振频率低时,从上述公式可以得出,加速度传感器的加速度 a0 和压电体受到的惯性力 F=m?a 成比例关系,另外与频率不相关。 而且如果是压缩型的话,惯性力 F 给压电体施加了纵向的应力,此时产生的电荷可以由公式推导得出来。 此时,d33、m 是一定的,因此加速度 a0 与 Q 成一定比例关系。下面根据压电体的静态电容C 将电荷 Q 转换成电压 V。根据Q=CV可将公式表示为: 此时,静态电容 C 为一定的话,a0 与 V 也成一定比例关系。 如上所示,压电型加速度传感器,基座受到的加速度最终会以电压形式输出。电荷及电压输出都与加速度成一定比例关系,因此通过测量电荷和电压即可得出加速度。一般电荷输出称为电荷灵敏度,电压输出称为电压灵敏度。

加速度传感器的选择

加速度传感器的选择 传感器的种类选择 压电式传感器的敏感芯体材料和结构形式 压电式加速度传感器的信号输出形式 传感器灵敏度,量程和频率范围的选择 传感器的整体封装设计与电缆 外界环境对测量传感器的影响 工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 ?传感器的种类选择 ·压电式- 原理和特点 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

加速度传感器

武汉理工大学《传感器原理及应用》课程设计说明书 绪言 传感器原理课程设计是测控技术与仪器专业的必须完成的一个课程设计。是一个重要的教学环节,通过本设计,培养学生理论联系实际的设计思想,训练综合运用传感器设计和有关先修课程的理论,结合实际分析和解决工程实际问题的能力,巩固加深有关传感器设计方面的知识。 通过制定检测系统设计方案,合理选择传感器及其他元件,正确计算、选择各零件和元件参数,确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,达到了解和掌握检测系统综合设计过程和方法的目的。进行设计基本技能的训练。如:计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和数据处理及计算机应用的能力。 电阻应变式的加速度传感器应用越来越广泛,其测量精度、响应速度、测量范围以及使用的场合都在更进一步的提升。本次的传感器课设,就是以测量加速度为目的而进行传感器的设计。

2 设计目的与内容 2.1设计目的与要求 采用电阻应变片设计一种电阻应变式加速度传感器,设计要求工作范围:-50 ~ +1500C ;工作频率:0 ~ 100Hz ;检测范围:0 ~ 100 m/s2;灵敏度:2mv/v。 2.2设计内容 ●正确选取电阻应变片的型号、数量、粘贴方式并连接成交流电桥; ●选取适当形式的弹性元件,完成其机械结构设计、材料选择和受力分析,并根据测试 极限范围进行校核; ●完成传感器的外观与装配设计; ●完成应变电桥输出信号的后续电路(包括放大电路、相敏检波电路、低通滤波电路) 的设计和相关电路参数计算,并绘制传感器电路原理图; ●按学校课程设计说明书撰写规范提交一份课程设计说明书(6000字左右); ●按机械制图标准绘制弹性元件图(4号图纸),机械装配图各一张(3号图纸);

相关文档
相关文档 最新文档