文档库 最新最全的文档下载
当前位置:文档库 › 填料塔设计

填料塔设计

填料塔设计
填料塔设计

《化工设备机械基础》

填料塔设计

学院:合肥学院

班级:09化工(3)班

学号:0903023005 0903023001 0903023002 0903023013

姓名:王雷唐显泽王辉伍石

填料塔设计

前言:填料吸收塔简介

在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。

下面简要介绍一下填料塔的有关内容。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点:

1.当塔径不是很大时,填料塔因为结构简单而造价便宜。

2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。

3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。

4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。

填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料塔的类型很多,其设计的原则大体相同,一般来说,填料塔的设计步骤如下:

①根据设计任务和工艺要求,确定设计方案;

②根据设计任务和工艺要求,合理地选择填料;

③确定塔径、填料层高度等工艺尺寸;

④计算填料层的压降;

⑤进行填料塔塔内件的设计与选型。

1.1设计方案的确定

填料精馏塔设计方案的确定包括装置流程的确定、操作压力的确定、进料热状况的选择、加热方式的选择及回流比的选择。

1.1.1.填料吸收塔设计方案的确定

(1)装置流程的确定

吸收装置的流程主要有以下几种,图4-1~4-4列出了部分流程。

①逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是,传质平均推动力大,传质速率快,分高效率高,吸收剂利用率高。工业生产中多采用逆流操作。

②并流操作气液两相均从塔顶流向塔底,此即并流操作。并流操作的特点是,系统不受液流限制,可提高操作气速,以提高生产能力。并流操作通常用于以下情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大;易溶气体的吸收或处理的气体不需吸收很完全;吸收剂用量特别大,逆流操作易引起液泛。

③吸收剂部分再循环操作在逆流操作系统中,用泵将吸收塔排出液体的一部分冷却后与补充的新鲜吸收剂一同送回塔内,即为部分再循环操作。通常用于以下情况:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非等温吸收过程,为控制塔内的温升,需取出一部分热量。该流程特别适宜于相平衡常数m值很小的情况,通过吸收液的部分再循环,提高吸收剂的使用效率。应予指出,吸收剂部分再循环操作较逆流操作的平均推动力要低,且需设置循环泵,操作费用增加。

④多塔串联操作若设计的填料层高度过大,或由于所处理物料等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作。此种操作因塔内需留较大空间,输液、喷淋、支承板等辅助装置增加,使设备投资加大。

⑤串联-并联混合操作若吸收过程处理的液量很大,如果用通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小(否则易引起塔的液泛),塔的生产能力很低。实际生产中可采用气相作串联、液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时,可采用液相作串联、气相作并联的混合流程。

总之,在实际应用中,应根据生产任务、工艺特点,结合各种流程的优缺点选择适宜的流程布置。

图4-1 逆流吸收塔图4-2 串联逆流吸收塔流程

图4-4 吸收剂部分循环的吸收解吸联合流程

图4-3 吸收剂部分循环吸收塔

(2)吸收剂的选择

吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面。

①溶解度吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的需用量。

②选择性吸收剂对溶质组分要有良好地吸收能力,而对混合气体中的其他组分不吸收或吸收甚微,否则不能直接实现有效的分离。

③挥发度要低操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸收剂的挥发损失。

④粘度吸收剂在操作温度下的粘度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高。

⑤其他所选用的吸收剂应尽可能满足无毒性、无腐蚀性、不易燃易爆、不发泡、冰点低、价廉易得以及化学性质稳定等要求。

一般说来,任何一种吸收剂都难以满足以上所有要求,选用时应针对具体情况和主要矛盾,既考虑工艺要求又兼顾到经济合理性。。

(3)操作温度与压力的确定

①操作温度的确定由吸收过程的气液平衡关系可知,温度降低可增加溶质组分的溶解度,即低温有利于吸收,但操作温度的低限应由吸收系统的具体情况决定。例如水吸收CO2的操作中用水量极大,吸收温度主要由水温决定,而水温又取决于大气温度,故应考虑夏季循环水温高时补充一定量地下水以维持适宜温度,此次操作的温度为125。

②操作压力的确定由吸收过程的气液平衡关系可知,压力升高可增加溶质组分的溶解度,即加压有利于吸收。但随着操作压力的升高,对设备的加工制造要求提高,且能耗增加,因此需结合具体工艺条件综合考虑,以确定操作压力,此次操作的压力为4MPa。

1.2 填料的类型

塔填料(简称为填料)是填料塔中气液接触的基本构件,其性能的优劣是决定填料塔操作性能的主要因素,因此,塔填料的选择是填料塔设计的重要环节。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

(1) 散装填料

散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料。环鞍形填料及球形填料等。现介绍几种较典型的散装填料。

①拉西环填料拉西环填料是最早提出的工业填料,其结构为外径与高度相等的圆环,可用陶瓷、塑料、金属等材质制造。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已很少应用。

②鲍尔环填料鲍尔环是在拉西环的基础上改进而得。其结构为在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭,可用陶瓷、塑料、金属等材质制造。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,其通量可增加50%以上,传质效率提高30%左右。鲍尔环是目前应用较广的填料之一。

③阶梯环填料阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥

形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。

④弧鞍填料弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。弧鞍填料强度较差,容易破碎,工业生产中应用不多。

⑤矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。矩鞍填料堆积时不会套叠,液体分布较均匀。矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。

⑥环矩鞍填料环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,是工业应用最为普遍的一种金属散装填料。

工业上常用散装填料的特性参数列于附录五中,可供设计时参考。

(2) 规整填料

规整填料是按一定的几何图形排列,整齐堆砌的填料。规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等,工业上应用的规整填料绝大部分为波纹填料。波纹填料按结构分为网波纹填料和板波纹填料两大类,可用陶瓷、塑料、金属等材质制造。加工中,波纹与塔轴的倾角有30°和45°两种,倾角为30°以代号BX(或X)表示,倾角为45°以代号CY(或Y)表示。

金属丝网波纹填料是阿波纹填料的主要形式,是由金属丝网制成的。其特点是压降低。分离效率高,特别适用于精密精馏及真空精馏装置,为难分离物系、热敏性物系的精馏提供了有效的手段。尽管其造价高,但因性能优良仍得到了广泛的应用。

金属板波纹填料是板波纹填料的主要形式。该填料的波纹板片上冲压有许多φ4 mm~φ6 mm的小孔,可起到粗分配板片上的液体。加强横向混合的作用。波纹板片上轧成细小沟纹,可起到细分配板片上的液体、增强表面润湿性能的作用。金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大直径塔及气液负荷较大的场合。

波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大,比表面积大。其缺点是不适于处理粘度大、易聚合或有悬浮物的物料,且装卸、清理困难,造价高。

1.3 填料塔工艺尺寸的计算

填料塔工艺尺寸的计算包括塔径的计算、填料层高度的计算等。

1.3.1塔径的计算

填料塔直径仍采用式4-1计算,即

(4-1)

式中气体体积流量V s由设计任务给定。由上式可见,计算塔径的核心问题是确定空塔气速u。

(1) 空塔气速的确定

①泛点气速法

泛点气速是填料塔操作气速的上限,填料塔的操作空塔气速必须小于泛点气速,操作空塔气速与泛点气速之比称为泛点率。

对于散装填料,其泛点率的经验值为u/u F=0.5~0.85

对于规整填料,其泛点率的经验值为u/u F=0.6~0.95

泛点率的选择主要考虑填料塔的操作压力和物系的发泡程度两方面的因素。设计中,对于加压操作的塔,应取较高的泛点率;对于减压操作的塔,应取较低的泛点率;对易起泡沫的物系,泛点率应取低限值;而无泡沫的物系,可取较高的泛点率。

泛点气速可用经验方程式计算,亦可用关联图求取。

a .贝恩(Bain)—霍根(Hougen)关联式填料的泛点气速可由贝恩—霍根关联式计算,即

(4-2)

式中u F——泛点气速,m/s

g——重力加速度,9.81 m/s2 ;

a t——填料总比表面积,m2/m3;

ε——填料层空隙率,m3/m3;

ρV、ρL——气相、液相密度,kg/m3;

μL——液体粘度,mPa·s;

w L、w V——液相、气相质量流量,kg/h;

A、K——关联常数。

常数A和K与填料的形状及材质有关,不同类型填料的A、K值列于表4-3中。由式4-2计算泛点气速,误差在15%以内。

表4-3 式3-34中的A、K值

A K规整填料类型A K

散装填料类型

塑料鲍尔环0.0942 1.75 金属丝网波纹填料0.30 1.75

金属鲍尔环0.1 1.75 塑料丝网波纹填料0.4201 1.75

塑料阶梯环0.204 1.75 金属网孔波纹填料0.155 1.47

金属阶梯环0.106 1.75 金属孔板波纹填料0.291 1.75 瓷矩鞍0.176 1.75 塑料孔板波纹填料0.291 1.563 金属环矩鞍0.06225 1.75

b.埃克特(Eckert)通用关联图散装填料的泛点气速可用埃克特关联图计算,如图4-5所示。计算时,先由气液相负荷及有关物性数据求出横坐标的值,然后作垂线与相应的泛点线相交,再通过交点

作水平线与纵座标相交,求出纵座标值。此时所对应的u即为泛点气速u F。

应予指出,用埃克特通用关联图计算泛点气速时,所需的填料因子为液泛时的湿填料因子,称为泛点填料因子,以ΦF表示。泛点填料因子ΦF与液体喷淋密度有关,为了工程计算的方便,常采用与液体喷淋密度无关的泛点填料因于平均值。表4-4列出了部分散装填料的泛点填料因子平均值,可供设计中参考。

图4-5 填料塔泛点和压降的通用关联图

图中u0——空塔气速,m /s;

φ——湿填料因子,简称填料因子,1 /m;

ψ——水的密度和液体的密度之比;

g——重力加速度,m /s2;

ρV、ρL——分别为气体和液体的密度,kg /m3;

w V、w L——分别为气体和液体的质量流量,kg /s。

此图适用于乱堆的颗粒形填料,如拉西环、弧鞍形填料、矩鞍形填料、鲍尔环等,其上还绘制了整砌拉西环和弦栅填料两种规整填料的泛点曲线。对于其他填料,尚无可靠的填料因子数据。

表4-4 散装填料泛点填料因子平均值

填料类型

填料因子,1/m

D N16 D N25 D N38 D N50 D N76

金属鲍尔环410 —117 160 —

金属环矩鞍—170 150 135 120

金属阶梯环——160 140 —

塑料鲍尔环550 280 184 140 92

塑料阶梯环—260 170 127 —瓷矩鞍1100 550 200 226 —

瓷拉西环1300 832 600 410 —

②气相动能因子(F因子)法

气相动能因子简称F因子,其定义为

(4-3)

气相动能因子法多用于规整填料空塔气速的确定。计算时,先从手册或图表中查出填料在操作条件下的F 因子,然后依据式4-3即可计算出操作空塔气速u。常见规整填料的适宜操作气相动能因子可从有关图表中查得。

应予指出,采用气相动能因子法计算适宜的空塔气速,一般用于低压操作(压力低于0.2 MPa)的场合。

③气相负荷因子(C s因子)法

气相负荷因于简称Cs因子,其定义为

(4-4)

气相负荷因子法多用于规整填料空塔气速的确

定。计算时,先求出最大气相负荷因子C s,max,

然后依据以下关系

C s=0.8C s.max (4-5)

计算出C s,再依据式4-4求出操作空塔气速u。

常用规整填料的C s.max的计算见有关填料手册,亦可从图4-6所示的C s.max曲线图查得。图中的横坐标ψ称为流动参数,其定义为

(4-6)

图4-4曲线适用于板波纹填料。若以250Y型板波纹填料为基准,对于其他类型的板波纹填料,需要乘以修正系数C,其值参见表4-5。

表4-5 其他类型的波纹填料的最大负荷修正系数

型号修正系数填料类型

板波纹填料250Y 1.0

丝网波纹填料BX 1.0

丝网波纹填料CY 0.65

陶瓷波纹填料BX 0.8

(2) 塔径的计算与圆整

根据上述方法得出空塔气速u后,即可由式4-1计算出塔径D。应予指出,由式4-1计算出塔径D后,还应按塔径系列标准进行圆整。常用的标准塔径为:400、500、600、700、800、1000、1 200、1400、1600、2000、2200mm等。圆整后,再核算操作空塔气速u与泛点率。

(3) 液体喷淋密度的验算

填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量,其计算式为

(4-5)

式中U——液体喷淋密度,m3/(m2·h);

L h——液体喷淋量,m3/h;

D——填料塔直径,m。

为使填料能获得良好的润湿,塔内液体喷淋量应不低于某一极限值,此极限值称为最小喷淋密度,以U min 表示。

对于散装填料,其最小喷淋密度通常采用下式计算,即

U min=(L W) min a t (4-6)

式中U min——最小喷淋密度,m3/(m2·h);

(L W) min——最小润湿速率,m3/(m·h);

a t——填料的总比表面积,m2/m3。

最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。其值可由经验公式计算(见有关填料手册),也可采用一些经验值。对于直径不超过75 mm的散装填料,可取最小润湿速率(L W) min为0.08 m3/(m·h);对于直径大于75 mm的散装填料,取(L W) min=0.12 m3/(m·h)。

对于规整填料,其最小喷淋密度可从有关填料手册中查得,设计中,通常取U min=0.2。

实际操作时采用的液体喷淋密度应大于最小喷淋密度。若液体喷淋密度小于最小喷淋密度,则需进行调整,重新计算塔径。

1.3.2 填料层高度计算

(1) 填料层高度计算

填料层高度的计算分为传质单元数法和等板高度法。在工程设计中,对于吸收、解吸及萃取等过程中的填料塔的设计,多采用传质单元数法;而对于精馏过程中的填料塔的设计,则习惯用等板高度法。

①传质单元数法

采用传质单元数法计算填料层高度的基本公式为

Z=H OG N OG (4-7)

a.传质单元数的计算传质单元数的计算方法在《化工传质与分离过程》教材的吸收一章中已详尽介绍.此处不再赘述。

b.传质单元高度的计算传质过程的影响因素十分复杂,对于不同的物系、不同的填料以及不同的流动状况与操作条件,传质单元高度各不相同,迄今为止,尚无通用的计算方法和计算公式。目前,在进行设计时多选用一些准数关联式或经验公式进行计算,其中应用较为普遍的是修正的恩田(Onde)公式。

修正的恩田公式为

(4-8)

(4-9)

(4-10)

(4 -11)

其中(4-12)

式中U V、U L——气体、液体的质量通量,kg/(m2·h);

μV、μL——气体、液体的粘度,kg/(m·h) [1Pa·s=3600 kg/(m·h)];

ρV、ρL——气体、液体的密度,kg/m3;

D V、D L——溶质在气体、液体中的扩散系数,m2/s;

R——通用气体常数,8.314 (m3·kPa)/(kmol·K) ;

T——系统温度,K;

a t——填料的总比表面积,m2/m3;

a w——填料的润湿比表面积,m2/m3;

g——重力加速度,1.27×108m/h;

σL——液体的表面张力

σc——填料材质的临界表面张力,kg/h2 (1dyn/cm=12960kg/h2) ;

ψ——填料形状系数。

1.4 填料层压降的计算

填料层压降通常用单位高度填料层的压降△P/Z表示。设计时,根据有关参数,由通用关联图(或压降曲线)先求得每米填料层的压降值,然后再乘以填料层高度,即得出填料层的压力降。

1.4.1 散装填料的压降计算

(1)由埃克特通用关联式计算

散装填料的压降值可由埃克特通用关联图计算。计算时,先根据气液负荷及有关物性数据,求出横坐标值,再根据操作空塔气速u及有关物性数据,求出纵坐标值。通过作图得出交点,读出过交点的等压线数值,即得出每米填料层压降值。

应予指出,用埃克特通用关联图计算压降时,所需的填料因子为操作状态下的湿填料因子,称为压降填料因子,以φp表示。压降填料因子φp与液体喷淋密度有关,为了工程计算的方便,常采用与液体喷淋密度无关的压降填料因子平均值。表4-10列出了部分散装填料的压降填料因子平均值,可供设计中参考。

表4-10 散装填料压降填料因子平均值

填料类型

填料因子, 1/m

D N16 D N25 D N38 D N50 D N76

金属鲍尔环306 - 114 98 -

金属环矩鞍- 138 93.4 71 36

金属阶梯环- - 118 82 -

塑料鲍尔环343 232 114 125 62

塑料阶梯环- 176 116 89 -

瓷矩鞍环700 215 140 160 -

瓷拉西环1050 576 450 288 -

(2)由填料压降曲线查得

散装填料压降曲线的横坐标通常以空塔气速u表示,纵坐标以单位高度填料层压降△P/Z表示,常见散装填料的u~△P/Z曲线可从有关填料手册中查得。

1.4.2 规整填料的压降计算

(1) 由填料的压降关联式计算

规整填料的压降通常关联成以下形式

(4-18)

式中△P/Z——每米填料层高度的压力降,Pa/m;

u——空塔气速,m/s;

ρv——气体密度,kg/m3;

α、β——关联式常数,可从有关填料手册中查得。

(2) 由填料压降曲线查得

规整填料压降曲线的横坐标通常以F因子表示,纵坐标以单位高度填料层压降△P/Z表示,常见规整填料的F~△P/Z曲线可从有关填料手册中查得。

1.5 填料塔内件的类型与设计

1.5.1 塔内件的类型

填料塔的内件主要有填料支承装置、填料压紧装置、液体分布装置、液体收集再分布装置、人孔及手孔等。合理地选择和设计塔内件,对保证填料塔的正常操作及优良的传质性能十分重要。

(1) 填料支承装置

料支承装置处压降过大甚至发生液泛,要求填料支承装置的自由截面积应大于75%。

(2) 填料压紧装置

为防止在上升气流的作用下填料床层发生松动或跳动,需在填料层上方设置填料压紧装置。填料压紧装置有压紧栅板、压紧网板、金属压紧器等不同的类型。对于散装填料,可选用压紧网板,也可选用压紧栅板,在其下方,根据填料的规格敷设一层金属网,并将其与压紧栅板固定;对于规整填料,通常选用压紧栅板。设计中,为防止在填料压紧装置处压降过大甚至发生液泛,要求填料压紧装置的自由截面积应大于70%。为了便于安装和检修,填料压紧装置不能与塔壁采用连续固定方式,对于小塔可用螺钉固定于塔壁,而大塔则用支耳固定。

(3) 液体分布装置

液体分布装置的种类多样,有喷头式、盘式、管式、槽式及槽盘式等。工业应用以管式。槽式及槽盘式为主。

管式分布器由不同结构形式的开孔管制成。其突出的特点是结构简单,供气体流过的自由截面大,阻力小。但小孔易堵塞,操作弹性一般较小。管式液体分布器多用于中等以下液体负荷的填料塔中。在减压精馏及丝网波纹填料塔中,由于液体负荷较小,设计中通常用管式液体分布器。

槽式液体分布器是由分流槽(又称主槽或一级槽)、分布槽(又称副槽或二级槽)构成的。

一级槽通过槽底开孔将液体初分成若干流股,分别加人其下方的液体分布槽。分布槽的槽底(或槽壁)上设有孔道域导管),将液体均匀分布于填料层上。槽式液体分布器具有较大的操作弹性和极好的抗污堵性,特别适合于大气液负荷及含有固体悬浮物、粘度大的液体的分离场合,应用范围非常广泛。

槽盘式分布器是近年来开发的新型液体分布器,它兼有集液、分液及分气三种作用,结构紧凑,气液分布

均匀,阻力较小,操作弹性高达10:1,适用于各种液体喷淋量。近年来应用非常广泛,在设计中建议优先选用。

(4) 液体收集及再分布装置

前已述及,为减小壁流现象,当填料层较高时需进行分段,故需设置液体收集及再分布装置。

最简单的液体再分布装置为截锥式再分布器。截锥式再分布器结构简单,安装方便,但它只起到将壁流向中心汇集的作用,无液体再分布的功能,一般用于直径小于0.6m的塔中。

在通常情况下,一般将液体收集器及液体分布器同时使用,构成液体收集及再分布装置。液体收集器的作用是将上层填料流下的液体收集,然后送至液体分布器进行液体再分布。常用的液体收集器为斜板式液体收集器。

前已述及,槽盘式液体分布器兼有集液和分液的功能,故槽盘式液体分布器是优良的液体收集及再分布装置。

(5)人孔及手孔

设置人孔及手孔是为了检查设备和便于安装于拆卸设备内部构件。手孔的直径一般为150-250mm,标准手孔的公称直径有DN150和DN250两种。手孔的结构一般是在容器上接一短管,并在其上盖一盲板。圆形人孔的直径一般为450mm,容器压力不高或有特殊需要时,直径可以大一些,标准圆形人孔的公称直径有DN400、DN450、DN500和DN600共4种。椭圆人孔的尺寸为400mm*250,380mm*280mm.

1.6塔体的结构设计及计算

符号说明

Pc ----- 计算压力,MPa ;

Di ----- 圆筒或球壳内径,mm ;

[Pw ]-----圆筒或球壳的最大允许工作压力,MPa ;

δ

----- 圆筒或球壳的计算厚度,mm ;

δ

n ----- 圆筒或球壳的名义厚度,mm ;

δ

e ----- 圆筒或球壳的有效厚度,mm ;

t ][δ----- 圆筒或球壳材料在设计温度下的许用应力,MPa ;

t δ ------ 圆筒或球壳材料在设计温度下的计算应力,MPa ;

φ ------ 焊接接头系数;

C ------- 厚度附加量,mm ;

1.6.1 按计算压力计算塔体和封头厚度

(1) 塔体厚度计算

[]mm p D p c t

i c 75.39

.085.017021200

9.02=-???=-=

φσδ

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

填料塔的设计指导

二氧化硫填料塔设计 一.填料吸收塔简介 在化学工业中,吸收操作广泛应用于石油炼制,石油化工中分离气体混合物,原料气的精制及从废气回收有用组分或去除有害组分等。吸收操作中以填料吸收塔生产能力大,分离效率高,压力降小,操作弹性大和持液量小等优点而被广泛应用。目前国内对填料吸收塔设计大部分是经验设计方法,该方法是在给定生产任务的条件下,由经验确定出一个液气比的值,然后手算出吸收塔的有关设计参数。该设计手段落后,没有考虑经济技术指标,不符合工厂实际生产中成本最低要求,故提出了填料吸收塔的优化设计方法。 下面简要介绍一下填料塔的有关内容。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。填料塔以塔内的填料作为气液两相间接触构件的传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 与板式塔相比,在填料塔中进行的传质过程,其特点是气液连续接触,而传质的好坏与填料密切相关。填料提供了塔内的气液两相接触面积。填料塔的流体力学性能,传质速率等与填料的材质,几何形状密切相关,所以长期以来人们十分注中填料的性能和新型填料的开发,使得填料塔在化工生产中应用更加广泛。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔还有以下特点: 1.当塔径不是很大时,填料塔因为结构简单而造价便宜。 2.对于易起泡物系,填料塔更适合,因填料对气泡有限制和破碎作用。 3.对于腐蚀性物系,填料塔更适合,因为可以采用瓷质填料。 4.对于热敏性物系宜采用填料塔,因为填料塔的持液量比板式塔少,物料在塔内的停留时间短。填料塔的压强降比板式塔小,因而对真空操作更有利。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 二.设计方案简介 2.1 方案的确定 填料精馏吸收塔的确定包括装置流程的确定,操作压力的确定,进料热状况的选择,加热方式的选择以及回流比的选择等 2.1.1 装置流程的确定 吸收装置的流程主要有以下几种 (1) 逆流操作: 定义:气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出的操作。 特点:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。 适用情况:工业生产中多采用逆流操作。 (2) 并流操作: 定义:气液两相均从塔顶流向塔底的操作。 特点:系统不受液流限制,可提高操作气速,以提高生产能力。 适用情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大; 易溶气体的吸收或处

大气课设填料塔设计计算

课程设计说明书 题 目:S H S 20-25型锅炉低硫烟煤 烟 气袋式除尘湿式脱硫系统设计 学生姓名: 周永博 学 院: 能源与动力工程学院 班 级: 环工13-1 指导教师:曹英楠

2016年7 月 1 日 内蒙古工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生姓名:周永博学号:201320303014 指导教师:曹英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉..北京.高等教育出版社.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》郑铭..北京.化学工业出版社.2001.4; 《火电厂除尘技术》胡志光、胡满银..北京.中国水利水电出版社.2005; 《除尘设备》金国淼..北京.化学工业出版社.2002; 《火力发电厂除尘技术》原永涛..北京.化学工业出版社.2004.10; 《环境保护设备选用手册》鹿政理..北京.化学工业出版社.2002.5; 《工业通风》孙一坚主编..中国建筑工业出版社,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业出版社,1994; 《除尘设备设计》金国淼主编..上海科学技术出版社,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业出版社,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,杨华等主编..中国电力出版社;《燃煤烟气脱硫脱硝技术及工程实例》. 钟秦主编.化学工业出版社,2004; 《环保工作者使用手册》. 杨丽芬,李友琥主编.冶金工业出版社,2001; 《工业锅炉房设计手册》航天部第七研究设计院编.中国建筑工业出版社,1986;《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二设计院,1995;《大气污染控制工程》. 吴忠标编.科学出版社,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料塔的设计

目录

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂, ,气体处理量为1500m3/h,其中含氨%(体积分数),吸收脱除混合气体中的NH 3

要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m3/h 进气主要成分:NH 3

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

填料塔设计

1.填料塔的一般结构 填料塔可用于吸收气体等。填料塔的主要组件是:流体分配器,填料板或床限制板,填料,填料支架,液体收集器,液体再分配器等。 2.填料塔的设计步骤 (1)确定气液负荷,气液物理参数和特性,根据工艺要求确定出气口上述参数(2)填料的正确选择对塔的经济效果有重要影响。对于给定的设计条件,有多种填充物可供选择。因此,有必要对各种填料进行综合比较,限制床层,以选择理想的填料。 (3)塔径的计算:根据填料特性数据,系统物理参数和液气比计算出驱替速度,再乘以适当的系数,得出集液器设计的空塔气速度,以计算塔径。;或者直接使用从经验中获得的气体动能因子的设计值来计算塔的直径。 (4)填充层的总高度通过传质单位高度法或等板高度法算出。

(5)计算填料层的压降。如果压降超过极限值,则应调整填料的类型和尺寸或降低工作气体的速度,然后再重复计算直至满足条件。 (6)为了确保填料塔的预期性能,填料塔的其他内部组件(分配器,填料支座,再分配器,填料限位板等)必须具有适当的设计和结构。结构设计包括两部分:塔身设计和塔内构件设计。填料塔的内部组件包括:液体分配装置,液体再分配装置,填料支撑装置,填料压板或床限制板等。这些内部构件的合理设计是确保正常运行和预期性能的重要条件。 废气处理设备 第六章小型吸收塔的设计32参考文献33设计师:武汉工程大学环境工程学院08级环境工程去除工艺气体中更多的有害成分以净化气体以进一步处理或去除工业废气中的更多有害物质,以免造成空气污染。1.2吸收塔的应用塔式设备是气液传质设备,广泛用于炼油,化工,石家庄汕头化工等生产。根部列车塔中气液接触部分的结构类型可分为板式塔和填料塔。根据气体和液体的接触方式的不同,吸收设备可分为两类:阶

化工原理课程设计(规整填料塔)

填料精馏塔设计任务书 一、设计题目:填料塔设计 二、设计任务:苯-甲苯精馏塔设计 三、设计条件: 1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨; 2、产品苯含量不低于96%; 3、残液中苯含量不高于1%; 4、操作条件: 填料塔的塔顶压力:4kPa(表压) 进料状态:自选 回流比:自选 加热蒸汽压力:101.33kPa(表压) 5、设备型式:规整填料塔 6、设备工作日:300天/年,24h连续运行 四、设计内容和要求 序号设计内容要求 1 工艺计算物料衡算、热量衡算、理论塔板数等 2 结构设计塔高、塔径、分布器、接口管的尺寸等 3 流体力学验算塔板负荷性能图 4 冷凝器的传热面积和冷却介质的 用量计算 5 再沸器的传热面积和加热介质的 用量计算 6 计算机辅助计算将数据输入计算机,绘制负荷性能图 7 编写设计说明书目录、设计任务书、设计计算及结果、流程图、参考资料等

目录 第1章流程的确定和说明 (3) 1.1加料方式 (3) 1.2进料状态 (3) 1.3冷凝方式 (3) 1.4回流方式 (3) 1.5加热方式 (3) 1.6加热器 (4) 第2章精馏塔设计计算 (5) 2.1操作条件和基础数据 (5) 2.1.1操作压力 (5) 2.1.2基础数据 (5) 2.2精馏塔工艺计算 (7) 2.2.1物料衡算 (7) 2.2.2热量衡算 (9) 2.2.3理论塔板数计算 (11) 2.3精馏塔的主要尺寸 (12) 2.3.1精馏塔设计的主要依据 (12) 2.3.2塔径设计计算 (15) 2.3.3填料层高度的计算 (16) 第3章附属设备及主要附件的选型计算 (17) 3.1冷凝器 (17) 3.1.1计算冷却水流量 (18) 3.1.2冷凝器的计算与选型 (18) 3.2再沸器 (18) 3.2.1间接加热蒸汽 (18) 3.2.2再沸器加热面积 (18) 3.3塔内其他结构 (19) 3.3.1接管的计算与选择 (19) 3.3.2液体分布器 (20) 3.3.3除沫器 (21) 3.3.4液体再分布器 (22) 3.3.5填料支撑板的选择 (22) 3.3.6塔底设计 (23) 3.3.7塔的顶部空间高度 (23) 第4章结束语 (24) 参考文献 (25)

填料塔设计

化工原理课程设计 -填料塔的设计说明书 院(系)别:化学与化工学院 专业:应用化学 年级班: 09级3班 姓名: 学号: 指导老师:

前言: 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。

目录 一、设计任务 (5) 二、设计条件 (5) 三、设计方案 (5) 1、吸收剂的选择 (5) 2、吸收过程的选择 (5) 3、流程图及流程说明 (5) 4、塔填料选择 (6) 四、工艺计算 (6) 1、物料衡算,确定塔顶、塔底的气液流量和组成 (7) 2、塔径计算 (8) 3、填料层高度计算 (9) 4.填料层压降计算 (11) 五、液体分布装置 (12) 1、液体分布器的选型 (12) 2、分布点密度计算 (12) 六、吸收塔塔体材料的选择 (13) 1、吸收塔塔体材料:Q235-B (13) 2、吸收塔的内径 (13) 3、壁厚的计算 (13) 4、强度校核 (14) 七、封头的选型依据,材料及尺寸规格 (14) 1、封头的选型:标准的椭圆封头 (14) 2、封头材料的选择 (14) 3、封头的高 (14) 4、封头的壁厚 (15) 八、液体再分布装置 (15) 九、气体分布装置 (16) 十、填料支撑装置 (16) 十一、液体分布装置 (16) 十二、除沫装置 (17) 1、设计气速的计算 (17) 2、丝网盘的直径 (17) 3、丝网层厚度H的确定 (18) 十三、管结构 (18) 1、气体和液体的进出的装置 (18) 2、填料卸出口 (19) 3、塔体各开孔补强设计 (19) 十四、填料塔高度的确定(除去支座) (20) 1吸收高度 (20) 2、支持圈高度 (20) 3、栅板高度 (20) 4、支持板高度 (20)

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料塔设计机械设计

目录 第一章前言 ................................................................................. 错误!未定义书签。 塔设备设计简介 .................................................................. 错误!未定义书签。 填料塔结构简介 .................................................................. 错误!未定义书签。第二章设计方案的确定 ............................................................. 错误!未定义书签。 装置流程的确定 .................................................................. 错误!未定义书签。 吸收剂的选择 ...................................................................... 错误!未定义书签。 填料的选择 .......................................................................... 错误!未定义书签。 材料选择 .............................................................................. 错误!未定义书签。第三章工艺参数 ......................................................................... 错误!未定义书签。第四章机械设计 ......................................................................... 错误!未定义书签。 塔体厚度计算 ...................................................................... 错误!未定义书签。 封头厚度计算 ...................................................................... 错误!未定义书签。 填料塔的载荷分析及强度校核 .......................................... 错误!未定义书签。 塔体的水压试验 .................................................................. 错误!未定义书签。 水压试验时各种载荷引起的应力 .............................. 错误!未定义书签。 水压试验时应力校核 .................................................. 错误!未定义书签。第五章零部件选型 ..................................................................... 错误!未定义书签。 人孔 ...................................................................................... 错误!未定义书签。 法兰 ...................................................................................... 错误!未定义书签。 除雾沫器 .............................................................................. 错误!未定义书签。 填料支撑板 .......................................................................... 错误!未定义书签。

填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。? 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据

填料塔设计

填料塔设计: 填料塔是指流体阻力小,适用于气体处理量大而液体量小的过程。液体沿填料表面自上向下流动,气体与液体成逆流或并流,视具体反应而定。填料塔内存液量较小。无论气相或液相,其在塔内的流动型式均接近于活塞流。若反应过程中有固相生成,不宜采用填料塔。 填料塔在塔内充填各种形状的填充物(称为填料),使液体沿填料表面流动形成液膜,分散在连续流动的气体之中,气液两相接触面在填料的液膜表面上。它属膜状接触设备。 填料塔以填料作为气、液接触和传质的基本构件,液体在填料表面呈膜状自上而下流动,气体呈连续相自下而上与液体作递向流动,并进行气、液两相间的传质和传热。两相的组分浓度和温度沿塔高连续变化。填料塔属于微分接触型的气、液传质设备。 填料塔又称填充塔。化工生产中常用的一类传质设备。主要由圆柱形的塔体和堆放在塔内的填料(各种形状的固体物,用于增加两相流体间的面积,增强两相间的传质)等组成。用于吸收、蒸馏、萃取等。 填料塔是以塔内的填料作为气液两相间接触构件的传质设备。 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。 填料的上方安装填料压板,以防被上升气流吹动。 液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。 气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布

装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。 填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。 壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。 因此,当填料层较高时,需要进行分段,中间设置再分布装置。 液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。 填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。

填料塔的设计完整版

填料塔的设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

目录 前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书

1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH 3,气体处理量为1500m 3/h ,其中含氨%(体积分数),要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m 3/h 进气主要成分:NH 3 空气粘度系数:h m kg s pa V ?=??=-/065.01081.15μ 298K,下,氨气在空气中的扩散系数D V =s; 298K,下,氨气在水中的扩散系数D L =*10-9m 2/s 25℃时,氨在水中的溶解度为H=m 3kpa

大气课设填料塔设计计算

学校代码: 10128 学号: 201320303014 课程设计说明书 题目:S H S20-25型锅炉低硫烟煤烟 气袋式除尘湿式脱硫系统设计学生:周永博 学院:能源与动力工程学院 班级:环工13-1 指导教师:英楠

2016年 7 月 1 日 工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生:周永博学号: 4 指导教师:英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉...高等教育.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》铭...化学工业.2001.4; 《火电厂除尘技术》胡志光、胡满银...中国水利水电.2005; 《除尘设备》金国淼...化学工业.2002; 《火力发电厂除尘技术》原永涛...化学工业.2004.10; 《环境保护设备选用手册》鹿政理...化学工业.2002.5; 《工业通风》一坚主编..中国建筑工业,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业,1994; 《除尘设备设计》金国淼主编..科学技术,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,华等主编..中国电力; 《燃煤烟气脱硫脱硝技术及工程实例》. 钟主编.化学工业,2004; 《环保工作者使用手册》. 丽芬,友琥主编.冶金工业,2001; 《工业锅炉房设计手册》航天部第七研究编.中国建筑工业,1986; 《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二,1995; 《大气污染控制工程》. 标编.科学,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

填料塔的设计.doc

目录 一.设计任务书 (3) 1.设计目的 (3) 2.设计任务 (3) 3.设计内容和要求 (3) 二.设计资料 (4) 1.工艺流程 (4) 2.进气参数 (4) 3.吸收液参数 (4) 4.操作条件 (5) 5.填料性能 (5) 三.设计计算书 (6) 1.填料塔主体的计算 (6) 1.1吸收剂用量的计算 (6) 1.2塔径的计算 (7) 1.3填料层高度的计算 (10) 1.4.填料塔压降的计算 (14) 2.填料塔附属结构的类型与设计 (15) 2.1支承板 (16) 2.2填料压紧装置 (16) 2.3液体分布器装置 (16) 2.4除雾装置 (17) 2.5气体分布装置 (17) 2.6排液装置 (18)

2.7防腐蚀设计 (18) 2.8气体进料管 (18) 2.9液体进料管: (19) 2.10封头的选择 (19) 2.11总塔高计算 (20) 3.填料塔设计参数汇总 (21) 四.填料塔装配图(见附录) (22) 五.总结 (22) 六.参考文献 (23) 附录 (23)

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH ,气体处理量为1500m3/h,其中含氨1.9%(体积分数), 3 要求吸收率达到99%,相平衡常数m=0.95。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、

填料塔的设计

西北大学化工学院 化工原理课程设计说 明书 设计名称: 填料吸收塔设备的设计 年级专业: 2008级化学工程与工艺 姓 名:

指导老师:姚瑞清 2011年1月10日 目录 一.设计任务-----------------------------------2 二.填料选择-----------------------------------3 三.计算所需物性参数---------------------------3 四.设计计算过程-------------------------------4 五.塔附件选择---------------------------------10 六.工艺流程说明-------------------------------15 七.心得体会-----------------------------------16 八.参考文献-----------------------------------18 九.工艺流程图---------------------------------19

一. 设计任务 原料气入塔温度为25℃,用清水吸收原料气体中的SO2气体,混合气体的处理量为2000m3/h,其中含有SO2的摩尔分数为0.07,SO2的吸收率为90%,气体入口温度为25℃.水入口温度为20℃。 已知: 20℃时,E=3.55 103kPa, L/G=1.5(L/G)min; 操作压力:常压; 操作温度:液体20℃; 气体:25℃; 填料类型:乱堆塑料鲍尔环; 要求设计填料吸收塔,求所需塔高,塔径,塔内件,塔接管尺寸,绘制流程图,吸收塔工艺条件图,设计过程评述。

相关文档