文档库 最新最全的文档下载
当前位置:文档库 › 玻璃液的熔制

玻璃液的熔制

玻璃液的熔制
玻璃液的熔制

玻璃液的熔制

配合料经高温加热熔融成合乎成型要求的玻璃液的过程称为玻璃的熔制过程。玻璃熔制是玻璃生产的重要环节之一,在生产中影响产量,质量的缺陷如气泡,结石,条纹等往往是因熔制不当造成的。

玻璃的熔制是一个十分复杂的过程,它包括一系列的物理变化,如配合料的脱水,晶型的转化,组分的挥发;包括一系列的化学变化,如结合水的排除,碳酸盐的分解,硅酸盐的形成;还包括一系列的物理化学变化,如共熔体的生成,固态料的溶解,玻璃液与耐火材料间的作用等。

从加热配合料到熔制成玻璃,常分为如下五个阶段:

(1)硅酸盐形成阶段配合料中的各组分在加热过程中经过了一系列的物理和化学变化,结束了主要的反应过程,大部分气态产物逸散,配合料变成了由硅酸盐和石英砂组成的烧结物,对普通钠钙硅玻璃而言,这一阶段在800—900℃结束。

(2)玻璃形成阶段继续加热时,烧结物开始熔融,原已形成的硅酸盐与石英砂相互扩散并溶解,直到再没有末起反应的配合料颗粒,烧结物变成了透明体。但玻璃液带有大量气泡,条纹,在化学成分上是不均匀的。对普通的钠钙硅玻璃而言,此阶段结束于1200℃。

(3)玻璃液澄清阶段继续加热时,玻璃液的粘度降低,玻璃液中的气泡逸出,直至气泡全部排除。普通钠钙硅玻璃在1400—1500℃结束这一阶段。

(4)玻璃液均化阶段当玻璃液长期处于高温下时,其化学组成逐渐趋向均匀,玻璃液中的条纹由于扩散,溶解而消除。普通钠钙硅玻璃的均化温度低于澄清温度。

(5)玻璃液冷却阶段将已澄清并均化的玻璃液降温,使具有成型所需要的粘度。

1.硅酸盐的形成

以普通瓶罐玻璃为例,加热过程中的反应大致如下;

吸附水与结晶水的排除

吸附水的排除100—120℃

Na2SO4.10H2O→Na2SO4+10H2O↑

复盐的形成MgCO3+NaCO3→Mg N a (CO3)2 300℃

CaCO3+NaCO3→Ca N a (CO3)2 400℃

多晶转变斜方晶型→单斜晶型 235-239℃

方石英→石英 575℃

碳酸盐分解 MgCO3 MgO+CO2 300℃

CaCO3→CaO+CO2 420-915℃

固相反应Na2SO3+C→Na2S+CO2↑ 400-500℃

硅酸盐形成Mg N a (CO3)2+SiO2→MgSiO3+Na2SiO3+2CO2↑

340-620℃

Ca N a (CO3)2+SiO2→CaSiO3+Na2SiO3+2CO2↑

585-900℃

MgCO3+ SiO2→MgSiO3 +CO2↑450-700℃

CaCO3+SiO2→CaSiO3+CO2↑600-920℃

NaCO3+SiO2→NaSiO3+CO2 ↑ 700-900℃

Mg O+ SiO2→MgSiO3 980-1150℃

C a O+ S iO2→C aSiO3 1010-1150℃

C aSiO3+ M g S iO3→C aSiO3.MgSiO3600-1280℃

低共熔物形成Na2SO3-Na2S 740℃

Na2SO3-N a 2 CO3 795℃

Na2SO3-Na2SiO3 865℃

NaCO3-NaS 756℃

NaCO3-Ca N a (CO3)2 780℃

末起反应的NaCO3→熔融 855℃

末起反应的NaSO3→熔融 885℃

石英颗粒,低共熔物,硅酸盐熔融1200-1300℃

试验表明,配合料组成越复杂,熔融的速度就越快。如NaCO3-CaCO3-MgCO3-SiO2四组分的配合料比NaCO3-CaCO3- SiO2三组分的配合料熔融速度快,所需温度也低。

在用池窑熔制玻璃时,配合料直接加在高温区,反应在约1350℃的高温下在3-5分钟内完成,反应非常迅速,基本上是在固体状态下进行的。

2.玻璃的形成

在硅酸盐形成阶段生成的硅酸钠,硅酸钙及反应剩余的大量硅砂在继续提高温度时它们相互溶解和扩散,由不透明的半熔烧结物转为透明的玻璃液。由于石英砂粒的溶解和扩散速度比之各种硅酸盐的溶扩速度慢得多,所以玻璃形成阶段的速度实际上取决于石英砂粒的溶扩速度。

石英砂粒的溶扩过程分为两步,首先是砂粒表面发生溶解,而后溶解的SiO2向外扩散,两者的速度是不同的,其中扩散速度最慢。所以石英砂粒的溶解速度决定于扩散速度。

随着石英砂粒的逐渐溶解,溶融物中的SiO2含量越来越高,玻璃液的粘度也随着增加。此时,扩散就越难进行,这导致石英砂的溶解速度减慢。由上可知,石英砂粒的溶解速度不仅与粘度和温度有关,而且与砂粒表层SiO2和熔体中SiO2的浓度差有关

除SiO2与各种硅酸盐之间的扩散外,各硅酸盐之间也相互进行扩散,这些扩散过程有利于SiO2更好地溶解,也有利于不同区域的硅酸盐形成相对均匀的玻璃液。

与硅酸盐形成过程相比,玻璃形成过程要慢得多。以平板玻璃熔制为例,从硅酸盐形成开始到玻璃形成阶段结束共需要32分钟,其中硅酸盐形成仅需3-4分钟,面玻璃形成却需要28-32分钟。当然,硅酸盐形成和玻璃形成的两个阶段没有明显的界限,在硅酸盐形成阶段结束之前,玻璃形成阶段即已开始。

为了加速石英砂粒的溶解速度,除选用颗粒小,有棱角状的石英砂外,可适量引入助溶剂,也可适当提高熔制温度。在1150-1450℃的温度区间,溶化温度提高50℃,石英砂的溶解速度就提高50%。这是因为温度提高,玻璃液粘度降低,SiO2的扩散速度加快,从而加速了玻璃的形成。

3.玻璃液的澄清

玻璃液中的气泡长大后上升到液面而排除的过程即澄清过程,是玻璃熔制过程中极为重要的一环,它与制品的产量和质量有着密切的关系。对普通硅酸盐玻璃而言,澄清阶段的温度为1400-1500℃。

在硅酸盐形成与玻璃形成阶段,由于配合料中部分物料的分解,部分组分的挥发,氧化物的氧化还原反应,玻璃液与炉气及耐火材料的相互作用等原因,析出了大量气体,其中大部分气体逸散而出,剩余气体中的大部分溶解于玻璃液中,少部分以气泡的形式存在于玻璃液,也有部分气体与玻璃液中的某组分形成化合物。因此,存在于玻璃液中的气体主要有三种形式;即可见气泡,物理溶解的气体和化学结合的气体。

因原料种类,玻璃成分,炉气性质,压力制度和熔制温度的不同,玻璃液中的气体种类和数量也不同。常见的气体有;CO2,O2.N2,H2O,SO3,CO等,此外,还有H2,NO2,NO及惰性气体等。

玻璃液的澄清指排除可见气泡的过程。从形式上看,这是一个简单的流体力学问题,实际上

还包含一个复杂的物理化学变化。需要指出的是,玻璃液的‘去气’与‘无泡’是两个概念。‘去气’应理解为全部排除上述三种气体,这在一般生产条件下是不可能的。

排除玻璃液中的气泡有两种方式同时进行。大于临界泡径的气泡由玻璃液内上升到玻璃液面,而后破裂进入大窑空间;小于临界泡径的气泡在玻璃液表面张力的作用下溶解于玻璃液中面消失。

气泡在玻璃液中的上升速度V与玻璃液的粘度η存在下述关系;

V=2/9 gr2 d-d/η

g—重力加速度

r—气泡半径

dd—玻璃液的密度和气泡中气体的密度

由上式可知,气泡上升的速度与玻璃液的粘度成反比,表明玻璃液的澄清与玻璃的组成及熔制温度有关。

与澄清有关的几个主要问题:

澄清过程中气体间的转化与平衡

在澄清过程中,玻璃液内所溶解的气体,气泡中的气体与炉气三者间的平衡关系,是由某种气体在各相中的分压所决定的。气体总是由分压高的相进入分压低的相。其间关系可用下图表示;

气体间的转化与平衡除与上述分压有关外,还与气泡中所含气体的种类有关。依据道尔顿分压定律,当A气体进入含有B气体的气泡中时,气泡的总压将增高,气泡中B气体的分压将减小。因而气泡将从四周玻璃液中吸收B气体,直到两相中B气体的分压相等。

气体在玻璃液中的溶解度与温度有关,玻璃液温度升高,气体在玻璃液中的溶解度减小。澄清过程中气体与玻璃液的相互作用

澄清过程中气体与玻璃液的相互作用有两种不同的状态;一类是纯物理吸附,如N2气,不与玻璃成分发生任何反应;另一类气体如SO2,与玻璃成分间发生反应,形成化合物,随后在一定的条件下又析出气体。

O2与玻璃液的相互作用氧在玻璃液中的溶解度首先取决于变价离子的含量,吸收的氧使低价离子转为高价离子。例如;

FeO+1/2O2→Fe2O3

当玻璃液中完全没有变价氧化物时,氧在玻璃液中的溶解度是微不足道的。

SO2与玻璃液的相互作用无论何种燃料,都含有硫化合物,因而炉气中均含有SO2,它能与配合料及玻璃液相互作用形成硫酸盐,例如;XNa2O.ySiO2+ SO2→Na2SO3+(X-1) Na2O.y SiO2

对于含Na2O 15%,CaO12%,SiO2 73%的玻璃液,在900—1200℃的温度范围内,玻璃液吸收SO2,形成硫酸盐,高于1200℃时,硫酸盐开始分解,到1300℃时,硫酸盐的热分解结束。

澄清过程中澄清剂的作用机理

为加速澄清过程,在配合料中加入少量澄清剂,根据作用机理不同,可将澄清剂分为三类;(1)变价氧化物类澄清剂

这类澄清剂有As2O3, Sb2O3 ,CeO2,Mn2O3等,其特点是在低温时吸收氧气,在高温时放出氧气,其作用如下;

As2O3+O2→→→As2O5 400-1300℃ 1300℃

As2O3在玻璃熔制中作用很大,无论是高温熔制还是低温熔制,都能非常明显地加速玻璃液中气泡的排除过程。当玻璃液中As2O3浓度在1%以下时,澄清作用随浓度增大而加快。但浓度继续增大,对澄清无益,反而使玻璃产生乳光现象。

Sb2O3的作用类似于Sn2O3,也是一种常用的澄清剂。但在不同组成的玻璃液中,澄清效果不一样。例如,在重钡冕玻璃中,Sb2O3的效果大大超过Sn2O3。而在钠钙硅酸盐玻璃与硼硅酸盐玻璃中,两者的效果没有明显的差别。

(2)硫酸盐,硒酸盐,碲酸盐类澄清剂

硫酸盐分解后产生SO2,对气泡的长大与溶解起着重要作用. Na2SO3是广泛用于制造瓶罐玻璃,窗玻璃和其他钠钙玻璃制品的有效澄清剂。K2SO3,Ba2SO3,Sr2SO3, Ca2SO3, ZnSO3 ,PbSO3,Al2(SO3)3

(NH4)2SO3等所有硫酸盐与Na2SO3一样,在钠钙玻璃中均有很好的澄清作用。

引入配合料中的硫酸盐,其阳离子本身对澄清过程不起作用。不论引入何种硫酸盐,离子交换的结果总是形成硫酸钠而产生澄清效果。与变价氧化物澄清剂As2O3 ,Sb2O3不同的是,硫酸盐的澄清作用与熔化温度密切相关。低温熔制时,对澄清几乎没有影响。只有在1400-1500℃时,硫酸盐的作用才能充分显示出来。

(3)卤化物类澄清剂

属于这类澄清剂的有氟化物,氯化物,溴化物和碘化物。工业上常用的是氟化物和氯化物。溴化物和碘化物的澄清作用虽然更强烈,但价格昂贵而不采用。

在玻璃熔体中,氟化物与SiO2反应生成SiF4而挥发,造成硅氧结构网络的断裂,使玻璃液粘度下降,从而加速了澄清过程。

4.玻璃液的均化

玻璃液的均化包括化学组分均化和热均化两大部分。在玻璃形成阶段结束后,由于各种原因在玻璃液中仍存在着一些与主体玻璃液化学成分不一样的局部区域。例如,化学组成不同的透明的条状物(条纹),化学组成不同的层状玻璃液,局部熔融的粒状烧结物(疙瘩)。这种不均质体的存在,对玻璃质量的影响极大。例如,主体玻璃与不均质体两者膨胀系数不同,在界面必将产生结构应力,这往往是导致制品炸裂的重要原因;如两者光学常数不同,必然使光学玻璃产生光畸变;如两者粘度不同,必然使窗玻璃产生波筋,条纹等;如两者化学组成不同,必然使其界面的析晶倾向增大。

为消除这种不均体,使整个玻璃液在化学成分上达到一定的均匀性,这就是玻璃液的均化过程。不同制品对玻璃化学组分的均化程度要求不同,普通钠钙硅玻璃的均化温度可低于澄清温度。

玻璃液的均化过程常按如下三种方式进行;

(1)不均质体的溶解与扩散

玻璃液的均化过程是一个不均质体的溶解与扩散过程。在高粘度的玻璃液中,扩散速度远远低于溶解速度,因而,玻璃液的均化过程实际上取决于扩散速度dc/d。而扩散速度取决于物质的扩散系数D,两相的接触面积S与两相的浓度差(C-C),

dc/d =DS(C-C)

由上式可知,要增加玻璃液的均化速度就必须增大扩散系数D和两相接触面积S。其中扩散系数是温度和粘度的函数,其关系式为;

D=KT/6πrη=RT/A6πrη

式中K玻尔兹曼常数

T绝对温度

r分子半径

η介质粘度,

R阿佛加德罗常数

所以要提高扩散系数就必须提高熔体温度,以降低粘度,但这受制于熔窑耐火材料的制约。

上述扩散公式是指在静止液相中的扩散。显然,不均质体在静止的高粘性玻璃液中的扩散是极其缓慢的,熔融玻璃液的扩散系数仅为10-6-10-7厘米/秒。例如,要消除一毫米宽的线道所需的时间为227个小时。

(2)玻璃液的对流

大窑和坩埚内各处玻璃液的温度是不同的,这导致玻璃液产生对流。液流断面上的速度梯度会将玻璃液的线道拉长,不仅增加了扩散面积,而且增大了浓度梯度,从而增强了扩散作用。可见,玻璃液的热对流有益于玻璃液的均化,但这种流动属层流而不是湍流,因而对玻璃液的均化作用有限。

热对流所产生的均化作用还有其不利的一面。这是因为热对流也增强了对耐火材料的侵蚀,这会在玻璃液中产生新的不均质体。尤其是在某些对耐火材料侵蚀大的光学玻璃中,这种影响尤为显著。

(2)因气泡上升而引起的均化

当气泡由玻璃液深处向表面上浮时,气泡上浮带动附近的玻璃液流动,形成一定程度的翻滚,在断面上产生的速度梯度导致不均质体的拉长;同时,不均质体受上浮气泡上升力的作用拉长而成线状。这将加快玻璃液的均化过程。

在玻璃液的均化过程中,除粘度外,玻璃液的表面张力对均化也有一定的影响。当玻璃液的表面张力小于不均质体的表面张力时,不均质体的表面积趋于减小,不利于均化。

为加速玻璃的均化,常采用如下方法;

(1)适当提高玻璃液温度,以降低玻璃液的粘度。

(2)机械搅拌用坩埚窑熔制光学玻璃或特种玻璃时,常用搅拌器加速玻璃均化。

(3)沸腾法在高温时,将湿木块,萝卜或土豆等到压入玻璃液底层,使产生大量气泡,引起剧烈搅动,从而加速玻璃均化。

(3)鼓泡法对池窑底部的玻璃液进行鼓泡,以加快均化过程。

5.玻璃液的冷却

均化好的玻璃液不能马上用以成型,这是因为不同成型方法要求不同的玻璃粘度。成型方法确定后,它所需要的粘度对不同组成的玻璃来说所对应的温度也不一样。均化好的玻璃液的粘度比成形需要的粘度小。为了达到成型所需要的粘度,就必须降温。这就是熔制玻璃过程中冷却阶段的目的。对一般的钠钙硅玻璃,通常要降温到1000℃左右才能进行成型。

在冷却阶段,影响产品产量和质量的两个因素是玻璃液的热均匀程度和是否产生二次气泡。在冷却过程中,不同部位的玻璃液间多少会有一定的温差。当这种热不均匀性超过某一范围时,对生产会带来不利影响。生产上采用的强制冷却往往不利于玻璃液的热均化过程。

在冷却阶段,玻璃液的温度,窑内的气氛及压力制度都发生了很大的变化。因而破坏了原有的气液相之间的平衡。由于玻璃液是高粘滞的熔体,要建立新的平衡比较缓慢。因此,在冷却过程中平衡条件虽然改变了,也不一定出现二次气泡。但必须重视有产生二次气泡的内在因素。

二次气泡又称再生泡或灰泡,其特点是直径小(一般小于0。1毫米),数量多(每立方厘米可达几千个),分布匀。对产生二次气泡的机理已作了不少研究,认为不同玻璃产生二次气泡的原因不尽相同。

硫酸盐的热分解在已澄清的玻璃液中往往残留有硫酸盐,它们可能来自配合料中的芒硝,也可能性是炉气中的SO2,O2与碱金属氧化物反应的产物(Na2O+SO2+1/2O2 →NaSO3).当某种原因使已经冷却的玻璃重新加热时,将导致硫酸盐的分解而析出二次气泡。二次气泡的生成量不仅与温度高低有关,还与升温速率有关。升温快,二次气泡多;当窑内存在还原气氛时,也能使硫酸盐分解而产生二次气泡。

溶解气体的析出气体的溶解度一般随温度的降低而升高。因而冷却后玻璃液再次升高温

度时将放出气体而形成气泡。

6.影响玻璃熔制过程的因素

6.1原料及配合料的影响

(1)配合料的化学组成

配合料的化学组成对玻璃熔制速度有决定性的影响。配合料内助熔剂越多,熔制就越快。两者的关系可用熔化速度常数τ表示;

τ=SiO2+Al2O3/Na2O+K2O+0.5 B2O3+0.125PbO

这个公式只适于玻璃液的形成直至砂粒消失为止的阶段。熔化速度常数越小,玻璃熔化温度越低;

熔化速度常数τ 6.0 5.5 4.8 4.2

熔化温度℃ 1450-1460 1420 1380-1400 1320-1340

熔化速度常数是一个经验值,只能用以粗略估计。对于含B2O3高的玻璃,就不适用。(2)原料的性质

原料的粒度对熔化影响很大,颗粒有不规则的外形,粒度小而均匀,熔化就快;配合料的气体率应符合要求。气体的含量及种类对玻璃液的澄清及均化都有影响;另外,应从多方面考虑选用原料的合理性。对同一氧化物组分,由不同的原料引入时,会不同程度地影响配合料的分层(如重碱与轻碱),挥发量(如硬硼石与硼酸),熔化温度(如Al2O3由氧化铝粉引入时熔点为2050℃,由钾长石引入时熔点为1170℃),必然对熔制产生不同的影响;配合料中的碎玻璃,可以加速玻璃熔化,但其成分必须与所生产的玻璃相同,掺入量必须稳定。(3)配合料的加工

应根据不同原料的化学性质和比重,确定其颗粒大小,以避免配合料分层;配合料中加水,可以减少粉料的飞扬,石英砂表面为水润湿后,可以溶解纯碱和芒硝,促进石英砂的溶化。均匀分布的水分,有利于热传导,水分汽化时对玻璃液起强烈的搅拌作用,增大配合料的受热面积。如水分过大,会增大热耗,影响熔化;配合料应混合均匀,保证任一点的配合料组成均一致,在搬运,保存过程中不分层。

6.2助熔剂及澄清剂的使用

助熔剂对加速玻璃熔制作用十分显著。如B2O3能降低玻璃液粘度,引入1。5%的B2O3,可使熔窑产率提高15%-20%;如As2O3和KNO3的混合物,能使Fe O氧化成Fe2O3,提高玻璃液的透明度,使玻璃液的热透过性增强,从而加速熔制过程;

氟化物是一种强助熔剂,在澄清阶段,氟化物蒸汽和SiF4的放出,加速了澄清过程。氟化物与氧化铁反应,既能生成易挥发的FeF3,大大降低玻璃液中的铁含量,又能生成无色络合物Na3FeF6,提高玻璃液的透热性。

6.3加料方式

加入熔窑中配合料的厚度,对玻璃的熔化速度及熔窑的生产率有重要影响。

对于池窑,以往采用间歇式加料,有许多缺点。加料时形成料堆,料堆表面温度高,内部温度低。表面易熔原料首先熔化,沿料堆往下淌,造成已熔玻璃料液的成分不均,料堆上层低碱部分难于熔化。粘度较大而结成薄膜,气体很难通过;料堆在自重作用下大部分沉入玻璃液中给熔化和澄清造成困难;间歇加料时玻璃溢液面经常波动,加剧了对池壁砖的侵蚀,耐火材料颗粒混入量增大,影响了玻璃质量;此外,加料时打开投料口,吸入冷空气使窑温波动,影响了正常的温度制度。间歇加料时,严重的飞料极易堵塞格子砖通道。

玻璃池窑现多采用连续薄层加料,其优点是;配合料以薄的长垅状沿熔窑均匀分布,物料既能得到由对流和辐射方式从上方传来的热量,也能得到由玻璃液通过热传导从下方传来的热量,由于受热快,促进了配合料的熔化;因为料层薄,避免了配合料沉入玻璃液中,又由于玻璃表面层温度高,有利于气泡的排除,缩短了澄清时间。

6.4熔制温度,气氛和压力制度

熔化温度是决定玻璃熔化速度和玻璃熔制质量的主要因素。提高熔化温度有利于料粒的熔化,玻璃液的澄清和均化,对于平板玻璃的熔制,熔制温度在1450-1550℃范围内时,温度每升高10℃,熔化能力就提高5%-10%。熔化温度与玻璃形成时间及熔化率的关系如下表所示;

熔化温度与玻璃形成时间关系表

玻璃熔化温度℃ 1400 1450 1500 1550 1600 1650 1700 玻璃形成时间min 53.7 36.4 20.9 10.0 4.0 2.4 1.6 熔化温度与熔化率关系表

玻璃熔化温度℃ 1370 1420 1470 1500 1530 1600

熔化率kg/m2d 350 700 1050 1500 1800 3000

在熔窑耐火材料允许的条件下,应尽量提高熔制温度。

玻璃液对窑内气氛的变化反应极为灵敏。在无特殊要求的情况下,一般以中性焰为佳,但实际上多数采用弱还原焰。在使用芒硝做澄清剂时,要加入一定数量的煤粉,用以进行还原反应,为防止煤粉在投料口过早燃烧,应将熔化部产前半部调整为还原性火焰。在澄清部,煤粉必须烧尽,所以澄清部应保持中性或弱氧化性气氛。澄清部采用氧化气氛利于氧化亚铁的氧化与玻璃液的澄清。对铅玻璃的熔制,必须采用氧化气氛,否则,铅玻璃及其原料会被还原出金属铅。

窑内压力应保持在微正压或零压,以防止冷空气进入。窑内正压又不能太大,否则会影响玻璃液的澄清,并造成烟气喷出,致使窑温下降。

6.5高压和真空熔制

在熔制石英玻璃时,常采用高压和真空熔制技术来消除玻璃液中的气泡,高压可使小气泡溶解于玻璃液中,抽真空可以使可见气泡迅速膨胀而排除。

6.6辅助电熔

在用燃料加热的熔窑中,将电流通入玻璃液中作为辅助热源,可在不增加熔窑容量的前提下增加产量,这种新的熔制方式称为辅助电熔。加热部设在加料口,熔化部及作业部下方,可使料层下的玻璃液温度提高40-70℃,可大大提高熔化率。

6.7机械搅拌与鼓泡

在窑池内进行机械搅拌或鼓泡是提高玻璃液澄清速度和均化速度的有效措施。

玻璃熔制 玻璃熔制

5 玻璃熔制 5.1 实验目的意义 玻璃是无机材料的一个重要领域。它所涉及的应用范围相当广泛,在现代高科技领域,特种玻璃制品有激光玻璃、零膨胀微晶玻璃、特种光纤、特种玻璃涂层…。伴随着科技的高速发展,玻璃制备的方法也逐渐多样化,从传统的高温熔制方法到现在的低温液相法、气相沉积法。但是传统的高温熔制法仍然占据着当前玻璃制品生产的绝大部分。 : 本实验的目的 本实验的目的: (1)通过玻璃的高温熔制实验了解玻璃的制备工艺流程。 (2)了解影响玻璃制备的各种物理、化学因素。 (3)根据玻璃的性能要求能独立完成玻璃的制作配方、制定工艺流程图。 (4)了解玻璃的高温熔制设备。 5.2 实验基本原理 玻璃的基本概念:: (1) 玻璃的基本概念 按照现代玻璃的定义主要包含两个条件即A: 存在非晶态固体。B: 表现出玻璃的转变现象。根据上述条件玻璃的范围被拓展了,与此同时制备玻璃的方法也发生了变化,除了高温熔制以外出现了低温合成、气相沉积…。 (2) 玻璃的基本组成 玻璃的基本组成:: 按照玻璃组成中的化合物主体分类可分为硅酸盐、磷酸盐、氟化物玻璃、硫系玻璃…。通常在玻璃组成设计过程中都是根据所需的特定物理、化学性能指标进行单一或者多种化合物的组合。 (3) 熔融法玻璃制备过程(工艺流程图): (A)玻璃配合料: 根据配方确定玻璃的主要原料(Si、Al、B、Ca、Na…),辅助原料(氧化 剂、还原剂、助熔剂、澄清剂、晶核剂、着色剂、脱色剂),玻璃熟料(同组成碎玻璃,起助熔和节能效果)。 (B)玻璃高温熔融过程:玻璃配合料加热→配合料熔化(主要是完成玻璃化反应)→残余原 料颗粒的熔解→澄清→均化→调节到玻璃的成形温度。 (C)玻璃制备工艺流程图:玻璃配合料→混合(控制粉体的颗粒度、均匀度、水分)→坩

玻璃制备实验

1. 实验目的:玻璃的结构和性质 1、掌握玻璃组成的设计方法和配方的计算方法; 2、了解玻璃熔制的原理和过程以及影响玻璃熔制的各种因素; 3、熟悉高温炉和退火炉的使用方法和玻璃熔制的操作技能。 2. 实验试剂:玻璃的原料及其作用 注:原料混合需要加水,防止原料反应的粉尘污染而且可以增大物料之间的反应表面积。但含水率太高,在批料加热熔融时,水分蒸发要多消耗热能,延长融融时间。所以含水率要控制在5%以下。 着色剂的投放应循序渐进,不要一下子投放太多,否则玻璃会出现偏色时会很难纠正。(1)玻璃设计配方:

此方被称为768 号玻璃,其组成成分( %) 如下:SiO2 75 ,B2O3 0. 54 ,CaO 3. 7 ,MgO 1. 08 ,PbO 0. 48 ,ZnO 0. 74 ,K2O 0. 91 ,Na2O 17. 3。组成中除含有17. 3 %的Na2O 外, 还有B2O3 、PbO等,硬化速度较慢,属于“长”(慢凝) 玻璃,由于轻瓶壁厚减薄,冷却速度加快,采用“长”玻璃,可使玻璃液在模型中合理分布,壁厚均匀,有利于提高强度和热稳定性。熔制温度为1480~1500 ℃,成型温度为1200 ℃,退火温度为540 ℃,退火质量对强度影响较大,可使强度变化20 %或更多。 (3)玻璃原料的作用 SiO2;玻璃的主要成分,占玻璃65~75%以上。 Al2O3;提高玻璃的化学稳定性,热稳定性,机械强度、硬度和折射率,减轻玻璃对耐火材料的侵蚀。 Fe2O3;与Cr2O3共用,可制得绿色玻璃。 Ca O :作稳定剂,但含量大于12.5%时,能使玻璃结晶化增大,发脆。 MgO : 作稳定剂。 BaO :作助溶剂,防辐射。 Na2O :降低玻璃粘度,使之易于熔融和成型。 Cuso:使物质对光线产生选择性吸收,显出蓝绿色。 Na2SO4 :作澄清剂,在玻璃熔制过程中能分解产生气体,或能降低玻璃的粘度,促进排除玻璃液中气泡。 3.实验原理: 根据玻璃制品的性能要求,设计玻璃的化学成分组成,并为此为主要依据进行配料,制备好的配合料在高温下加热,将进行一系列的物理的、化学的、物理化学的变化,变化

玻璃配料计算

SiO 270.5%,Al 2O 35.0%,B 2O 36.2%,CaO3.8%,ZnO2.0%,R 2O(Na 2O+ K 2O)12.5%。计算其配合料的配方: 选用石英引入SiO 2,长石引入Al 2O 3,硼砂引入B 2O 3,方解石引入CaO ,锌氧粉引入ZnO ,纯碱引入R 2O(Na 2O+ K 2O)。采用白砒与硝酸钠为澄清剂,萤石为助熔剂。 原料的化学成分见表11-6: 表11-6原料的化学成分/mass% SiO 2 Al 2O 3 B 2O 3 Fe 2 O 3 CaO Na 2O ZnO As 2 O 3 石英粉 99.89 0.18 — 0.01 — — — — 长石粉 66.09 18.04 — 0.20 0.83 14.80 — — 纯碱 — — — — — 57.80 — — 氧化锌 — — — — — — 99.86 — 硼砂 — — 36.21 — — 16.45 — — 硝酸钠 — — — — — 36.35 — — 方解石 — — — — 55.78 — — —

萤石————68.40 ———白砒———————99.90 设原料均为干燥状态,计算时不考虑其水分问题。 计算石英粉与长石的用量: 石英粉的化学成分:SiO299.89%,Al2O30.18%即一份石英粉引入SiO20.9989份,Al2O30.0018份。同样一份长石可引入SiO20.6609份,Al2O30.1804份,Fe2O30.1480份,CaO0.0083份。 设石英的用量为x,长石粉的用量为y,按照玻璃组成中SiO2与Al2O3的含量,列出联立方程式如下: SiO2 0.9989x+0.6609y=70.5 Al2O3 0.0018x+0.1804y=5.0 解方程x=52.6 y=27.2 即熔制100kg玻璃,需用石英粉52.6kg,长石粉27.2kg(由石英引入的Fe2O3为52.6×0.0001=0.0053) 计算由长石同时引入R2O和CaO与Fe2O3的量: Na2O 27.2×0.1480=4.03 CaO 27.2×0.0083=0.226 Fe2O327.2×0.0020=0.054 计算硼砂量: 硼砂化学成分:B2O336.21%,Na2Ol6.45% 玻璃组成中B2O3

玻璃配料1

配料制备 一、一、原料的选择 采用什么原料来引入氧化物,是玻璃生产中的一个主要问题。原料的选择,应根据已确定的玻璃组成,玻璃的性质要求,原料的来源、价格、矿藏量与供应的可靠性等来全面地加以考虑。原料的选择恰当,对原料的加工工艺,玻璃的熔制过程、玻璃的质量、生产成本均有应响。一般来说,应遵循如下原则。 1-1原料的质量,必须符合要求,而且成分稳定 原料的化学组成,矿物组成,颗粒度组成都要符合质量要求。首先原料的主要含量必须符合要求。其次化学成分要比较稳定,其波动范围一般是根据玻璃化学成分所允许的偏差进行确定。在不调整配方的情况下,原料的化学组成允许偏差如下: 1-2易于加工 选用易于加工的原料,不但降低设备投资,而且可以减少生产成本。 1-3成本低,能大量供应 在不影响玻璃的前提下,最大限度的采用成本低、近周边地区的原料。减少运费、减少库藏量。如生产瓶罐深色玻璃时,可以采用就近的含铁高的石英砂。1-4少用对人体有害的原料和轻质得原料 轻质得原料易飞扬,一分层,如近几年来纯碱采用重质,不用轻质纯碱。尽量不用轻质碳酸钙、碳酸镁等。 对人体有害的原料如白砒尽量不用,或者与三氧化二锑共用,使用铅化合物原料时,要注意劳动保护并定期检查身体。 1-5对耐火材料要侵蚀小 氟化物。如萤石是有效的助熔剂,但他对耐火材料的侵蚀较大,在熔制条件允许的情况下最好不用,硝酸钠对耐火材料侵蚀较大,而且价格昂贵,除了做澄清剂脱色剂以及有时为了调节配合料气体率,少量使用外,一般不作为引入氧化钠的原料。 二、二、原料的运输与储存 原料的运输和储存,是玻璃生产中不可忽视的问题。如果原料运输与储藏处理不当,会使原料发生报废,供应中断,或积压资金,对生产来说都将来造成影响。 原料储存应该有一定的数量。储量不足,可能供应不上,影响正常生产。储量过多积压资金,增加储量的困难。一般根据原料日用量、原料的运距、可靠性来决定,储存数日至十日。 原料的容量重量,系数(T/M3)。一般以硅砂、砂岩、长石为1.8;石灰石、白云石为1.7;纯碱为0.9;硫酸钠为1.0;锂云母为0.543。 三、原料的加工

玻璃生产工艺流程图

玻璃生产工艺流程图 玻璃是如何生产出来的呢?这个问题对于专家来说可能很简单,但是对于普通的消费者来说可能还是有了解的兴趣的,今天,我们和中华包装瓶网的小编一起去简要的了解一下。玻璃的生产工艺包括:配料、熔制、成形、退火等工序。分别介绍如下: 1.配料,按照设计好的料方单,将各种原料称量后在一混料机内混合均匀。玻璃的主要原料有:石英砂、石灰石、长石、纯碱、硼酸等。 2.熔制,将配好的原料经过高温加热,形成均匀的无气泡的玻璃液。这是一个很复杂的物理、化学反应过程。玻璃的熔制在熔窑内进行。熔窑主要有两种类型:一种是坩埚窑,玻璃料盛在坩埚内,在坩埚外面加热。小的坩埚窑只放一个坩埚,大的可多到20个坩埚。坩埚窑是间隙式生产的,现在仅有光学玻璃和颜色玻璃采用坩埚窑生产。另一种是池窑,玻璃料在窑池内熔制,明火在玻璃液面上部加热。玻璃的熔制温度大多在1300~1600゜C。大多数用火焰加热,也有少量用电流加热的,称为电熔窑。现在,池窑都是连续生产的,小的池窑可以是几个米,大的可以大到400多米。 3.成形,是将熔制好的玻璃液转变成具有固定形状的固体制品。成形必须在一定温度范围内才能进行,这是一个冷却过程,玻璃首先由粘性液态转变为可塑态,再转变成脆性固态。成形方法可分为人工成形和机械成形两大类。 A.人工成形。又有(1)吹制,用一根镍铬合金吹管,挑一团玻璃在模具中边转边吹。主要用来成形玻璃泡、瓶、球(划眼镜片用)等。(2)拉制,在吹成小泡后,另一工人用顶盘粘住,二人边吹边拉主要用来制造玻璃管或棒。(3)压制,挑一团玻璃,用剪刀剪下使它掉入凹模中,再用凸模一压。主要用来成形杯、盘等。(4)自由成形,挑料后用钳子、剪刀、镊子等工具直接制成工艺品。 B.机械成形。因为人工成形劳动强度大,温度高,条件差,所以,除自由成形外,大部分已被机械成形所取代。机械成形除了压制、吹制、拉制外,还有(1)压延法,用来生产厚的平板玻璃、刻花玻璃、夹金属丝玻璃等。(2)浇铸

玻璃工艺学十二章

1 2、简述玻璃熔制的五个阶段。 答:玻璃的熔制过程大致分为五个阶段,即硅酸盐形成、玻璃形成、澄清、均化和冷却成形。 3、简述玻璃澄清原理。 答:化学澄清机理是化学澄清剂应在较高温度下形成高分解压(蒸发压)即在熔化的配合料排气过程基本结束而熔体的黏度足够低时,即可使气泡足够大是的速度上升。 物理澄清的机理要根据所采用的方法不同而机理也不同: ①降低的方法,人们根据需要与可能总要设法将温度升高,既可以加大澄清气体的分压,使气泡长大;又可以降低熔体飞黏度以使气泡上升,使气泡能快速的从玻璃中逸出,总之是达到气泡快速离开玻璃的目的。 ②利用玻璃液流的作用。是从温度控制和窑炉的结构上采取措施,使玻璃液流能将玻璃熔体(按一定的容积计算)尽可能长时间地在熔体表面受到尽可能高的温度作用。 ③采用机械法搅动熔体,如用湿木头人工鼓泡或人吹入气泡,可使熔体剧烈运动,目的主要是使熔体受热均匀、化学均匀和排气,对消除作用不大。 ④通过声波或超声波将能量传到分子范围而使其产生强烈运动,从而加速熔体中气体的扩散,促使气泡核的形成,这有助于熔体中的气体的排出。 ⑤采用真空或加压的方法是将熔体上的压力降到极小可使气泡长大,加速气泡上升,而按照亨利定律还有减少熔体中气体含量的作用。 ⑥在使过饱和熔体排出气或避免熔体到达到过饱和的各种方法中,使玻璃熔体析晶后再熔化

一次,此方法在析晶时可形成大量的气泡核,而且由于溶解度条件的改变使气体排出形成气泡。 4、熔制过程中,炉内气体、气泡中气体及溶解在玻璃中的气体平衡如何? 答:其中大部分气体将逸散与空间,剩余的大部分将溶于玻璃液中,少部分还以气体的形式存在于玻璃液中。在析出的某些气体中也有某些气体和玻璃液中的某些成分重新形成化合物。 5、影响玻璃熔制过程的因素有哪些? 答:玻璃的组成、原料的性质及其种类的选择、配合料(粒度、水分、气体率、均匀性、碎玻璃)、投料方式、加速剂、熔制制度(温度、压力、气氛)、玻璃液流、炉窑和耐火材料、熔制工艺改进等因素。 6、在澄清过程中,可见气泡排除有哪两种方式?并加以解释。 ①降低的方法,人们根据需要与可能总要设法将温度升高,既可以加大澄清气体的分压,使气泡长大;又可以降低熔体飞黏度以使气泡上升,使气泡能快速的从玻璃中逸出,总之是达到气泡快速离开玻璃的目的。 ②利用玻璃液流的作用。是从温度控制和窑炉的结构上采取措施,使玻璃液流能将玻璃熔体(按一定的容积计算)尽可能长时间地在熔体表面受到尽可能高的温度作用。 ③采用机械法搅动熔体,如用湿木头人工鼓泡或人吹入气泡,可使熔体剧烈运动,目的主要是使熔体受热均匀、化学均匀和排气,对消除作用不大。 ④通过声波或超声波将能量传到分子范围而使其产生强烈运动,从而加速熔体中气体的扩散,促使气泡核的形成,这有助于熔体中的气体的排出。 ⑤采用真空或加压的方法是将熔体上的压力降到极小可使气泡长大,加速气泡上升,而按照亨利定律还有减少熔体中气体含量的作用。 ⑥在使过饱和熔体排出气或避免熔体到达到过饱和的各种方法中,使玻璃熔体析晶后再熔化一次,此方法在析晶时可形成大量的气泡核,而且由于溶解度条件的改变使气体排出形成气泡。

玻璃的高温熔制

玻璃的高温熔制 一、实验目的 1、在实验室条件下进行玻璃成分的设计、原料的选择、配料的计算、配合料的制备、用小型坩埚进行玻璃的熔制、玻璃试样的成形等,完成一整套玻璃材料制备过程的基本训练; 2、了解熔制玻璃的设备及其测试仪器,掌握其使用方法; 3、观察熔制温度、保温时间和助熔剂对熔化过程的影响; 4、根据实验结果分析玻璃成分、熔制制度是否合理。 二、实验原理 玻璃的高温熔制,是指通过一定的高温过程,最终制的具有一定性能的玻璃产品。熔制是玻璃生产中重要的工序之一,它是配合料经过高温加热形成均匀的、无气泡的、并符合成形要求的玻璃液的过程。 玻璃的高温熔制过程是一个相当复杂的过程,它包括一系列的物理的、化学的、物理化学的现象和反应,这些现象和反应的结果使各种原料的机械混合物变成了复杂的熔融物即玻璃液。 物理过程:指配合料加热时水分的排除,某些组成的挥发,单晶转变以及单组分的融化过程。 化学过程:各种盐类被加热后结晶水的排除,盐类的分解,各组分间的相互反应以及硅酸盐的形成等过程。 物理化学过程:包括物料的固相反应,共熔体的产生,各组分生成物的互熔,玻璃液与炉气之间、玻璃液与耐火材料之间的相互作用等过程。 应当指出,这些反应和现象在熔制过程中常常不是严格按照某些预定的顺序进行的,而是彼此之间有着密切的关系。例如,在硅酸盐形成阶段中伴随着玻璃形成过程,在澄清阶段中同样存在着玻璃液的均化。为便于学习和研究,常可根据熔制过程中的不同实质而分为硅酸盐形成、玻璃形成、玻璃液的澄清、均化和冷却五个阶段。 纵观玻璃熔制的全过程,就是把合格的配合料加热融化使之成为合乎成型要求的玻璃液。其实质就是把配合料熔制成玻璃液,把不均质的玻璃液进一步改善成均质的玻璃液,并使之冷却到成型所需要的粘度。因此,也可把玻璃熔制的全过程划分为两个阶段,即配合料的熔制阶段和玻璃液的精炼阶段。 三、实验准备 1、高温电炉一台及其附属设备(调压器一台,电流表一只,电压表一只,测温铂铑—铂热电偶一只,电位差计一台).如图1所示: 2、高铝坩埚(100m1 或 150m1). 3、研钵一个;料勺若干(每种原料一把).

玻璃配方计算和配合料制备

实验三玻璃配方计算和配合料制备 1 目的意义 1.1 意义 配方计算是根据原料化学成分和所制备的玻璃成分等计算各种原料的需要料。配合料制备就是按照配方配制并加工原料,使之符合材料高温烧制要求。 配方计算和配合料制备是玻璃乃至各种无机非金属材料新品种研制和生产必不可少的工艺过程。配方计算也是对后续玻璃熔制工艺参数的预测,配合料制备则直接影响玻璃的熔制效果和成品性能。 1.2 目的 (1)进一步掌握配方计算的方法; (2)初步掌握配合料的制备方法和步骤; (3)了解影响配合料均一性的因素。 2 实验原理 2.1 玻璃成分的设计 首先,要确定玻璃的物理化学性质及工艺性能,并依此选择能形成玻璃的氧化物系统,确定决定玻璃主要性质的氧化物,然后确定各氧化物的含量。玻璃系统一般为三组分或四组分,其主要氧化物的总量往往要达到90%(质量)。此外,为了改善玻璃某些性能还要适当加人一些既不使玻璃的主要性质变坏而同时使玻璃具有其他必要性质的氧化物。因此,大部分工业玻璃都是五六个组分以上。 相图和玻璃形成区域图可作为确定玻璃成分的依据或参考。在应用相图时,如果查阅三元相图,为使玻璃有较小的析晶倾向,或使玻璃的熔制温度降低,成分上就应当趋向于取多组分,应选取的成分应尽量接近相图的共熔点或相界线。在应用玻璃形成区域图时,应当选择离开析晶区与玻璃形成区分界线较远的组成点,使成分具有较低的析晶倾向。 为使设计的玻璃成分能在工艺实践中实施,即能进行熔制、成型等工序,必须要加入一定量的促进熔制,调整料性的氧化物。这些氧化物用量不多,但工艺上却不可少。同时还要考虑选用适当的澄清剂。在制造有色玻璃时,还须考虑基础玻璃对着色的影响。 以上各点是相互联系的,设计时要综合考虑。当然,要确定一种优良配方不是一件简单的工作,实际上,为成功地设计一种具有实用意义,符合预定物化性质和工艺性能的玻璃成分,必须经过多次熔制实践和性能测定,对成分进行多次校正。 表2-1给出两种易熔的Na2O-CaO-SiO2系统玻璃配方,可根据自己的要求进行修改。 表3-1易熔玻璃的成分示例 配方编号SiO CaO MgO A12O3Na2O 备注 2 l 71.5 5.5 1 3 19 氧化物质量百

玻璃成份设计、调整、配料熔制与加工成型工艺标准及表面处理技术规范(Word)

玻璃成份设计、调整、配料熔制与加工成型工艺标准及表面处理技术规范 作者:编委会 册数规格::全四卷+1CD 16开精装 出版社:中国科技文化出版社2008年9月出版 市场价:998元 详细目录 第一篇玻璃的结构与性质 第一章玻璃结构 第二章玻璃生成规律 第三章熔体和玻璃体的相变 第四章玻璃的粘度 第五章玻璃的表面张力和表面性质 第六章玻璃的机械性质 第七章玻璃的热学性质 第八章玻璃的化学稳定性 第九章玻璃的电学、磁学性质 第十章玻璃的光学,性质 第十一章玻璃的着色和脱色 第十二章玻璃物理化学性能测试

第二篇玻璃成份的内涵、分类及其与性质的关系第一章玻璃成份的内涵 第二章形成玻璃的条件 第三章玻璃成份的分类 第四章玻璃成份的发展 第五章玻璃成份与性质的关系及其计算 第三篇根据玻璃成份计算玻璃主要性质 第一章玻璃密度的计算 第二章玻璃热学性质的计算 第三章玻璃光学性质的计算 第四章玻璃机械性质的计算 第五章玻璃电学性质的计算 第六章玻璃化学稳定性的计算 第七章玻璃熔体性质的计算 第八章玻璃析晶性能的计算 第九章用计算机进行玻璃性质的计算 第四篇玻璃成份的设计方法与调整方法 第一章玻璃成份的设计原则 第二章玻璃成份的设计方法 第三章玻璃成份调整的依据 第四章玻璃成份调整方法

第五篇各类玻璃成份设计与调整 第一章平板玻璃成份设计与调整 第二章瓶罐玻璃成份设计与调整 第三章器皿玻璃成份设计与调整 第四章仪器玻璃成份设计与调整 第五章眼镜玻璃成份设计与调整 第六章有色玻璃成份设计与调整 第七章乳浊玻璃成份设计与调整 第八章医药用玻璃成份设计与调整 第九章电真空玻璃和电子玻璃成份设计与调整第六篇玻璃原料和玻璃配方计算 第一章玻璃原料的种类和性质 第二章玻璃配方计算及要求 第三章玻璃配合料制备工艺及控制 第七篇玻璃熔制工艺与控制 第一章玻璃的熔制过程 第二章影响玻璃熔制的主要工艺因素 第三章玻璃熔窑的设计与计算 第八篇玻璃缺陷的分析 第一章澄清机理及产生气泡的原因

玻璃制作工艺流程

材质 玻璃器皿多用钠钙硅酸盐玻璃做成。无色透明的器皿,玻璃中的含铁量一般低于%。在玻璃原料中加入着色剂,可制得有色玻璃;加入乳浊剂,制得乳浊玻璃(见玻璃制造)。 制造琢磨车刻的高级艺术器皿如高脚杯、香水瓶、果盆等多采用钾铅硅酸盐玻璃,又称铅晶质玻璃。这种玻璃含PbO,具有高折射率和色散,磨刻棱面时格外光亮,高比重,敲击时发清脆声响。 含PbO30%以上的为全铅晶质玻璃,含PbO24~30%为中铅晶质玻璃,含PbO18%以下为低铅晶质玻璃。 另外还有含BaO的钡晶质玻璃。 煮食器皿如咖啡壶等制品采用耐热硼硅酸盐玻璃,其热膨胀系数低,耐温度急变性强。 成型 将按玻璃成分配合的粉料和熟料投入坩埚窑或池窑(见玻璃熔窑)中熔制,熔化后,澄清成均匀无气泡、无结石、无条纹的玻璃液,再冷却至适应相应成型方法要求的粘度范围,进行各种成型操作。 吹制成型 有人工和机械吹制成型两种方式。人工成型时,手持吹管从坩埚内或池窑取料口处挑料,在铁模或木模中吹成器形。光滑圆形制品用转吹法;表面有凸凹图案花纹或形状不成圆形的制品用静吹法。先挑无色料吹成小泡,再用小泡挑颜色料或乳浊料吹成器形的称为套料吹制。用颜色易熔料粒沾在乳浊套料上,各色自然熔流,可吹成自然景器皿;在颜色料上沾带状乳浊料,可吹成拉丝器皿。机械成型用于吹制大批量制品。吹制机受料后自动合铁模吹成器形,脱模后去除帽口即成器皿。还可采用压-吹成型,先将料冲成小泡(雏形),再继续吹制成器形。它比单纯用吹制机吹制效率高,质量好。 压制成型 人工成型时,人工挑料剪入铁模,驱动冲头,压成器形,凝固定型后脱模。机械成型自动化生产,批量大,效率高。压制成型适用于能退出冲头的口大底小器形制品,如杯、盘、烟缸等。 离心成型 受料在旋转的模子内,由于旋转产生的离心力使玻璃展开并紧贴模子,凝固定型后取出。适宜于器壁均匀的大型玻璃器皿的成型。 自由成型 又称无模成型。用人工挑料在窑前反复烘烤修饰或热粘结。由于不与模子接触,玻璃表面光亮,制品形状线条光滑。制成品又称窑玻璃制品。

实验二 玻璃熔制讲义

玻璃熔制实验 一、实验目的 在玻璃科学研究和生产中,研制一种新型玻璃或新产品,改善玻璃的性质,改革玻璃的熔制工艺,探讨各种因素对玻璃性能的影响等都需要进行熔制实验。玻璃熔制实验是进行生产质量控制、新产品开发和材料研究的重要方法。 本实验的目的: 1.掌握玻璃组成的设计方法和配方的计算方法。 2.了解玻璃熔制的原理和过程以及影响玻璃熔制的各种因素。 3.针对生产工艺上出现的问题提出解决的方法。 4.熟悉高温炉和退火炉的使用方法和玻璃熔制的操作技能。 5.掌握玻璃熔制制度的确定方法。 二、实验原理 根据玻璃制品的性能要求,设计玻璃的化学组成,并以此为主要依据,进行配料,制备好的配合料在高温下加热,将发生一系列的物理的、化学的、物理化学的变化,变化的结果使各种原料的机械混合物变成了复杂的熔融物,即没有气泡、结石、均匀的玻璃液,然后均匀地降温以供成型需要。这个过程大致分为五个阶段:硅酸盐形成、玻璃形成、澄清、均化和冷却。 三、仪器设备 硅钼棒电炉(使用上限温度为1 600℃)一台、控温仪一台、马弗炉一台、天平(感量0.001 g)、坩埚、不锈钢挑料棒、500 mm以上坩埚钳、加料勺、护目镜、石棉手套、成型模具等。 四、实验步骤 1.配料 熔制玻璃采用多种原料进行配料,配料与玻璃成分、原料有关。 配料是根据设计的玻璃成分和选择的原料的化学组成来计算的,为得到指定性能的玻璃,在实验室熔制玻璃要反复多次熔制,多次修改玻璃成分,以达到合乎要求的玻璃性能和其他条件,因此要反复改变料方,改变原料和它们的质量配合比。 配料时应注意原料中所含的水分变动,要确切地掌握原料的化学成分,然后可按所要求的玻璃成分,根据各种原料的化学成分来计算料方。计算时有些原料(如碳粉)并不引入玻璃成分中,则应根据需要另行计算。 配料时必须准确称量各种原料,注意适当的气体比,配合料应含有适当的水分,必须重视均匀混合,并防止飞尘和结块,粉料的化学成分和玻璃制品的化学成分是不完全相同的,在计算料方时可加以调整。 2.熔制 料配好后,即将粉料加到经在炉内预热到指定温度的坩埚里,然后放入炉内(为防止坩埚意外破裂造成电炉损坏,可将坩埚放入浅的耐火匣钵中,坩埚底部垫Al2O3粉)进行熔化。 粉料入炉前的准备工作:首先把熔炉升温,在升温同时,必须将料配好,且把坩埚准备好,升温的控制是根据化什么料而定,因为不同的玻璃加料温度不同。因此,必须事先拟订一个熔制的温度制度,即从加料开始,经过澄清,直至出料为止的温度和时间的曲线。 温度制度主要根据玻璃成分来制定。但常常加入一些澄清剂或其他原料后,就能改变温度曲线。在实际上这是一个复杂的问题,不通过实践是不能解决的,不能单靠理论推算,因为影响熔制的因素很多。 即使确定了合理的温度制度,还不一定能熔制好玻璃,除了严格控制温度条件外,还

浮法玻璃熔制技术

浮法玻璃熔制技术

浮法玻璃熔制技术 1、浮法玻璃熔制技术工艺流程 浮法玻璃的熔制过程是将合格的配合料经过高温加热形成均匀、纯净、透明并符合成型要求的玻璃液的过程,是浮法玻璃制造过程中的主要过程之一。熔制速度和熔制的合理性对玻璃的产量、质量、合格率、生产成本、燃料消耗和池窑寿命等影响很大。 浮法玻璃熔制技术工艺流程示意图: 2、玻璃熔制工艺原理 浮法玻璃的熔制过程是一个很复杂的过程,包括一系列的物理、化学、物理化学反应,而这些反应的进行与玻璃的产量和质量有密切关系。各种不同配合料在熔制过程中发生的反应见下表: 各种不同配合料在熔制过程中发生的反应 物理反应化学反应物理化学反应 配合料加热配合料脱水 固相反应 碳酸盐、硫酸盐、硝 共熔体的形成 固态的溶解与液态间

各个组分的熔化晶相转化 个别组分的挥发 酸盐分解 水化合物的分解 化学结合水的分解 硅酸盐的形成与相互 作用 互溶 玻璃液、炉气、气泡 间的相互作用 玻璃液与耐火材料间 的作用 —— 根据熔制过程中的不同特点,从加热配合料到最终成为符合成型要求玻璃液的过程,可分为五个阶段,即硅酸盐形成阶段、玻璃液形成阶段、玻璃液澄清阶段、玻璃液均化阶段和玻璃液冷却阶段。直观地,也可分为配合料堆的反应烧结阶段;硅酸盐形成及其熔化物熔化阶段,主要是残余石英砂溶解于已形成的硅酸盐中;澄清消除气泡阶段,主要是降低各种气体在玻璃液中的过饱和程度;逐渐冷却至成型温度阶段。 (1)硅酸盐形成阶段配合料入窑后,在800~1000℃温度范围发生一系列物理的、化学的和物理-化学的反应,如粉料受热、水分蒸发、盐类分解、多晶转变、组分熔化以及石英砂与其他组分之间进行的固相反应。这个阶段结束时,大部分气态产物从配合料中逸出,配合料最后变成由硅酸盐和二氧化硅组成的不透明烧结物。硅酸盐形成速度取决于配合料性质和加料方式。 (2)玻璃形成阶段当温度升到1200℃时,烧结物中的低共熔物开始熔化,出现了一些熔融体,同时硅酸盐与未反应的石英砂粒

高硼硅玻璃熔制过程第二节

高硼硅玻璃熔制过程第二节,溶解工培训讲义 玻璃的概念及性质 玻璃是一种熔融、冷却、固化的非结晶态的无机物。具有透明,坚硬,良好的耐腐蚀、耐热和电学、光学性质;能够用多种成型和加工方法制成各种形状和大小的制品;可以通过调整化学组成改变其性质,以适应不同的使用要求。 2. 高硼硅玻璃采用的原料是什么?各种原料在玻璃形成过程中的作用是什么? 答:原料为:石英砂(SiO2)、硼砂(Na2B4O7·10H2O)、硼酸(H3BO3)、硝酸钠(NaNO3)、氢氧化铝(Al(OH)3)、食盐(NaCl)、氟硅酸钠(Na2SiF6)、碎玻璃。 ①石英砂:主要引入二氧化硅(SiO2)。二氧化硅是重要的玻璃形成氧化物,在玻璃中以硅氧四面体[SiO4]的结构单元形成不规则的连续结构,构成玻璃的骨架。二氧化硅能降低玻璃的热膨胀系数,提高玻璃的热稳定性、化学稳定性、软化温度、耐热性、硬度、机械强度、透明度和粘度。 ②硼砂:熔制时同时引入Na2O和B2O3,B2O3易挥发。B2O3能降低玻璃的热膨胀系数,提高玻璃的热稳定性、化学稳定性,改善玻璃的光泽,提高玻璃的机械强度。B2O3在高温时能降低玻璃的粘度,在低温时则提高玻璃的粘度。B2O3还起助熔作用。 ③硼酸:高温受热分解变为熔融的B2O3。B2O3的作用如上述硼砂中所述。 ④氢氧化铝:高温分解生成Al2O3,Al2O3在玻璃中能提高玻璃的化学稳定性,增加机械强度,并能降低玻璃的析晶倾向。Al2O3还能降低玻璃的热膨胀系数,提高玻璃的热稳定性,减轻玻璃熔体对耐火材料的侵蚀,但是,Al2O3含量增加会使玻璃熔体的粘度大幅度提高。 ⑤食盐:食盐在高温时气化挥发,促进玻璃澄清。 ⑥氟硅酸钠:氟硅酸钠用作澄清济、助溶剂和乳浊济。 ⑦硝酸钠:NaNO3熔点和分解温度较低,受热分解为Na2O、N2、O2,可与二氧化硅(SiO2)形成低共熔物,同时还具有强氧化和澄清作用,因而加速了玻璃的熔制。 ⑧碎玻璃:采用碎玻璃不但可以利用废物,而且在合理的使用下,还可以加速玻璃的熔制过程,降低熔制的热消耗,从而降低玻璃的生产成本并提高产量。 3. 配合料的质量要求是什么? 具有正确性和稳定性,配合料中各种原料的化学成份、水分及颗粒度等应保持相对稳定,以保证熔制玻璃成份具有正确性和稳定性。 有一定的水分,水分对配合料均匀度起着有利的作用,干物料不易混合均匀,易分层,对熔制不利,原料颗粒度发生变化,配合料加水量也发生变化,颗粒愈细,加水应愈多。 有一定的气体率,为使玻璃易于澄清和均化配合料中必须含有一部分能分解出气体的原料如硼酸、氢氧化铝、硝酸钠等逸出的气体量与配合料重量之比称为气体率。 混合均匀,配合料不均匀会使配合料中易熔的纯碱硼砂等原料熔化速度加快,而配合料中的石英砂等难熔物熔化困难最后导致玻璃液中存在残留未熔化的石英砂颗粒,破坏玻璃的均匀性从而产生结石、条纹、气泡等缺陷。另外由于配合料混合不均匀在易原料存在处对耐火材料腐蚀严重。所以我们要求配合料均匀度必须大于95%。 4. 高硼硅碎玻璃质量标准: 高硼硅玻璃中不应含有非同质玻璃,如镀膜管及颜色相同的普通高白料碎玻璃、平板玻璃、甁罐玻璃等。碎玻璃中不应含有外来杂质:如砖、水泥、金属杂质、泥沙、石子、包装帽、废纸绳等。 高硼硅碎玻璃块的粒度30mm范围内,壁厚≤1.8mm的玻璃长度≤150mm,壁厚>1.8mm的玻璃管长度≤100mm,玻璃棒长度≤30mm。 5.玻璃的熔制过程分为几个阶段?各个阶段的的作用是什么?

玻璃的制备工艺

1.玻璃的结构和性质(实验目的): 1、掌握玻璃组成的设计方法和配方的计算方法; 2、了解玻璃熔制的原理和过程以及影响玻璃熔制的各种因素; 3、熟悉高温炉和退火炉的使用方法和玻璃熔制的操作技能。 2.玻璃的原料及其作用(实验试剂): 注:原料混合需要加水,防止原料反应的粉尘污染而且可以增大物料之间的反应表面积。但含水率太高,在批料加热熔融时,水分蒸发要多消耗热能,延长融融时间。所以含水率要控制在5%以下。 着色剂的投放应循序渐进,不要一下子投放太多,否则玻璃会出现偏色时会很难纠正。(1)玻璃设计配方:

此方被称为768 号玻璃,其组成成分( %) 如下:SiO2 75 ,B2O3 0. 54 ,CaO 3. 7 ,MgO 1. 08 ,PbO 0. 48 ,ZnO 0. 74 ,K2O 0. 91 ,Na2O 17. 3。组成中除含有17. 3 %的Na2O 外, 还有B2O3 、PbO等,硬化速度较慢,属于“长”(慢凝) 玻璃,由于轻瓶壁厚减薄,冷却速度加快,采用“长”玻璃,可使玻璃液在模型中合理分布,壁厚均匀,有利于提高强度和热稳定性。熔制温度为1480~1500 ℃,成型温度为1200 ℃,退火温度为540 ℃,退火质量对强度影响较大,可使强度变化20 %或更多。 (3)玻璃原料的作用 SiO2;玻璃的主要成分,占玻璃65~75%以上。 Al2O3;提高玻璃的化学稳定性,热稳定性,机械强度、硬度和折射率,减轻玻璃对耐火材料的侵蚀。 Fe2O3;与Cr2O3共用,可制得绿色玻璃。 Ca O :作稳定剂,但含量大于12.5%时,能使玻璃结晶化增大,发脆。 MgO : 作稳定剂。 BaO :作助溶剂,防辐射。 Na2O :降低玻璃粘度,使之易于熔融和成型。 Cuso:使物质对光线产生选择性吸收,显出蓝绿色。 Na2SO4 :作澄清剂,在玻璃熔制过程中能分解产生气体,或能降低玻璃的粘度,促进排除玻璃液中气泡。 3.实验原理: 根据玻璃制品的性能要求,设计玻璃的化学成分组成,并为此为主要依据进行配料,制备好的配合料在高温下加热,将进行一系列的物理的、化学的、物理化学的变化,变化

玻璃熔制一

“玻璃熔制” 课 程 任 务 书 系:材料工程系 班级:玻璃132 部门:一 任务:一

目录 一、任务题目:300t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-粘度曲线 2、确定玻璃熔制的各种熔制制度 3、分析熔制制度对玻璃质量的影响 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组 织生产 2、熔制制度参数选择合理、先进 3、熟悉玻璃熔制制度对玻璃质量的影响 4、提交一份打印的任务说明书与电子文档 5、提交本小组成员的成绩表

一、确定玻璃熔制过程的温度-粘度曲线 玻璃熔制是按照玻璃配方混合好配合料,经过高温加热形成均匀透明的、无缺陷的并符合成型要求的玻璃液的过程。影响玻璃熔制过程的因素 1、熔化温度:温度增加,反应速度加快,温度每升高10℃,反应速度也上升10%。 2、物料颗粒度:粒度减小,速度上升,粒度过小,结团速度下降。 3、配合料均匀度:均匀度上升,速度加快。 4、原料的种类、形成:块、粒状速度快。 投料方法与质量:正面投料,料层薄,熔化快 黏度:速度梯度为1时单位接触面积上的内摩擦力。 黏度的工艺意义 1. 影响玻璃的熔制质量,黏度大,石英熔化困难,气泡排除 困难。 2. 决定玻璃的产量。 3. 决定玻璃制品的成型质量,不同的制品和成型方法,其成 型黏度也不同。 4. 决定制品退火温度和热处理温度。 5. 黏度与温度的关系 6. 由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变 化趋势有显著的差别。晶体在高于熔点时,熔化变化很小,

当达到凝固点时,由于熔融态转变成晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 所以实用硅酸盐玻璃,其黏度随温度的变化都属于同一类型,只是黏度随温度变化的速度以及对应于某给定黏度的温度有所不同。随着温度的变化,玻璃的黏度变化速率不同,这被称为具有不同的料性。分为长性玻璃和短性玻璃。 随温度降低长性玻璃的硬化速度较慢,被称为慢凝玻璃,而短性玻璃的硬化速度较快,又被称为快凝玻璃。 1、黏度与玻璃组成的关系 2、玻璃组成与黏度之间存在复杂的关系,加入某种氧化物后所引起的黏度的改变,不仅取决于该氧化物的性质,而且还取决于玻璃本身的成分。一般来说,当引入SiO2、Al2O 3、ZrO2等氧化物时,因这些阳离子电荷多、离子半径小,故作用力大,总是倾向于形成更为复杂且巨大的阴离子团,黏滞活化能变大,玻璃的黏度增加。当引入碱金属氧化物时,因能提供“游离氧”,使原来复杂的硅氧阴离子团解离,黏滞活化能变小,玻璃的黏度降低。当引入二价氧化物时对黏度的影响较为复杂,它们一方面与碱金属离子一样,放出游离氧使复杂的硅氧阴离子团解离,使黏度减小,另一方面这些阳离子电价较高、离子半径又不大,可能夺取原来复合硅氧阴离子团中的氧离子以致使复合阴离子团“缔合”

玻璃配方组成设计与管理

玻璃配方组成设计与管理 何旭远 (五粮液集团环球有限公司,宜宾644007) 摘要:玻璃配方组成对产品的理化性质、生产成本和工艺控制均会产生重大的影响,组成设计不当,不但会造成产品质量下降、废品增加、成本提高,而且会给熔制、成形、退火等工艺控制带来严重后果,甚至无法生产,企业的经济效益和信誉将受到极大的损害。文章主要介绍了配方组成优化设计的原理、计算机模拟设计方法、配方的计算、组成的监控与调整。 关键词:玻璃配方;新品开发;组成设计与管理 Design of Glass Formula Composition and Management HE X u-yuan (T echnology R&D Center of G lobal Gr oup Co,L td.Wuliang ye Group,Y ibin644007,China) Abstract:Glass formula co mposition has significant impact on physical and chemical properties,production cost and pro-cess control.If composition desig n is not adequate,it shall result in low product quality,reject incr ease and cost rise,and also shall bring ser ious consequence to process control,such as melting,forming,annealing,etc,and even product ion stop,caus-ing serious damage to enterpr ise economic benefit and credit.T his article introduces the pr inciple of formula composition opt-i mizing design,metho d of computer simulation design,calculation of formula,monitoring and adjustment of composition. Key words:glass formula;new product development;composition design and manag ement 根据经验、配方,凭直觉建立经验规则的经验性配方设计将使得企业面临2个致命的问题:一是无法将顾客对产品的要求转化为玻璃的性质要求,进而根据性质设计出合理的配方来满足顾客要求。在现代玻璃制造业中这个矛盾尤为突出;二是经验性配方工艺人员个人的经验总结停留在感性阶段,无法从理论上去验证经验总结的正确性,不能及时分析和处理生产中的问题。也正是因为经验的缘故,很难尽快地去改进已有产品的性能。文章详细介绍玻璃配方组成设计的原理及方法、配方及性质计算和应用实例。 1配方组成设计的意义 物质的结构决定了它的性质,改变物质结构就可以改变它的性质。玻璃也一样,玻璃的结构决定了玻璃的性质见式(1),玻璃的组成决定了玻璃的结构见式(2)。由此可见,改变玻璃组成可以改变玻璃性质见式(3)。也正是因为这样,可以将顾客对产品的要求转化对玻璃性质要求,进而改变组成,生产出符合顾客要求的产品。 G p=f(S g)(1) P i=U(G p)(2) G p=U(P i)(3)式中:G p为玻璃的性质;f、U为函数形式;S g为玻璃结构;P i为玻璃组成。 从式(2)中可以看出,P i与G p对应关系的非唯一性,也就是说可以有多种组成满足同一性质指标的要求,因为有的性质与组成之间呈简单的加和关系,如密度、折射率等;有的性质与组成之间不呈简单的加和关系,而与玻璃系统中各组分间化学作用 9

玻璃的配料与溶制实验报告_1

玻璃的配料与溶制实验报告 篇一:玻璃的设计与烧制实验报告——12材料B组第六小组华南师范大学实验报告 学生姓名:李宝仪、李晓君学号:XX2400136、XX2400123 专业:材料化学年级、班级: XX 课程名称:无机非金属材料实验实验项目:玻璃的制备实验指导老师: 罗穗莲实验评分: 一、实验目的: 1、在实验室条件下进行玻璃成分的设计,原料的选择,配料的计算,配合料的制备,用小型坩埚进行玻璃的熔制,玻璃试样的成型。 2、了解熔制玻璃的设备爱及其测试仪器。 3、观察熔制温度,保温时间和助熔剂的含量对熔化过程的影响。 4、根据实验结果分析玻璃成分,熔制温度是否合理。 二、实验原理: 玻璃的熔制,就是把合格的配合料加热熔化使之成为合乎成型要求的玻璃液,把配合料熔制成的玻璃液,把其中的不均质进一步改善成均质的玻璃液,并使之冷却到成型所需粘度,分为配合料的熔制阶段和玻璃液的精炼阶段。 三、实验药品与仪器 实验药品:石英砂(SiO2)、碳酸钠(Na2CO3)、碳酸钾

(K2CO3)、碳酸钙(Ca2CO3)、碱式碳酸钙、氧化铝、硫酸铜、镁盐(均为化学纯) 仪器:高温电炉一台、高铝坩埚、研钵一个、料勺若干、百分之一天平、坩埚钳、石棉手套、浇注玻璃液样品的模具、退火用马沸炉 四、实验步骤 1、玻璃成分的设计 确定玻璃的物理化学性质及工艺性质,依此选择所能形成玻璃的氧化物系统,确定决定玻璃只要性质的氧化物,然后确定各氧化物含量,首先确定玻璃成 分。 23机械强度,因此加入3% Al2O3 3、CaO可以增加玻璃的化学稳定性和机械强度,含量一般不超过12.5%,能降低玻璃液粘度,加速玻璃的熔化和澄清,也是澄清剂的一种,因此加入8%。 实验现象:玻璃透明无气泡,呈浅蓝色。表面具有光泽,平滑无凹凸面。内部无气泡,有裂纹,透明度高。 结果分析:玻璃透明无气泡,说明均化澄清阶段效果好,气体率控制得当。玻璃呈现蓝色,仅仅加入了0.2%的CuO,说明着色剂效果强,用量很少即可。玻璃出现裂纹,但是表面仍然光滑,裂纹没有影响表面光滑度,说明可能是由于冷却阶段过快引起玻璃出现裂纹,并非是由于玻璃的均化效果

玻璃工艺流程

玻璃是如何生产出来的呢?这个问题对于专家来说可能很简单,但是对于普通的消费者来说可能还是有了解的兴趣的,今天,我们和中华包装瓶网的小编一起去简要的了解一下。玻璃的生产工艺包括:配料、熔制、成形、退火等工序。分别介绍如下: 1.配料,按照设计好的料方单,将各种原料称量后在一混料机内混合均匀。玻璃的主要原料有:石英砂、石灰石、长石、纯碱、硼酸等。 2.熔制,将配好的原料经过高温加热,形成均匀的无气泡的玻璃液。这是一个很复杂的物理、化学反应过程。玻璃的熔制在熔窑内进行。熔窑主要有两种类型:一种是坩埚窑,玻璃料盛在坩埚内,在坩埚外面加热。小的坩埚窑只放一个坩埚,大的可多到20个坩埚。坩埚窑是间隙式生产的,现在仅有光学玻璃和颜色玻璃采用坩埚窑生产。另一种是池窑,玻璃料在窑池内熔制,明火在玻璃液面上部加热。玻璃的熔制温度大多在1300~1600゜C。大多数用火焰加热,也有少量用电流加热的,称为电熔窑。现在,池窑都是连续生产的,小的池窑可以是几个米,大的可以大到400多米。 3.成形,是将熔制好的玻璃液转变成具有固定形状的固体制品。成形必须在一定温度范围内才能进行,这是一个冷却过程,玻璃首先由粘性液态转变为可塑态,再转变成脆性固态。成形方法可分为人工成形和机械成形两大类。 A.人工成形。又有(1)吹制,用一根镍铬合金吹管,挑一团玻璃在模具中边转边吹。主要用来成形玻璃泡、瓶、球(划眼镜片用)等。(2)拉制,在吹成小泡后,另一工人用顶盘粘住,二人边吹边拉主要用来制造玻璃管或棒。(3)压制,挑一团玻璃,用剪刀剪下使它掉入凹模中,再用凸模一压。主要用来成形杯、盘等。(4)自由成形,挑料后用钳子、剪刀、镊子等工具直接制成工艺品。 B.机械成形。因为人工成形劳动强度大,温度高,条件差,所以,除自由成形外,大部分已被机械成形所取代。机械成形除了压制、吹制、拉制外,还有(1)压延法,用来生产厚的平板玻璃、刻花玻璃、夹金属丝玻璃等。(2)浇铸法,生产光学玻璃。(3)离心浇铸法,用于制造大直径的玻璃管、器皿和大容量的反应锅。这是将玻璃熔体注入高速旋转的模子中,由于离心力使玻璃紧贴到模子壁上,旋转继续进行直到玻璃硬化为止。(4)烧结法,用于生产泡沫玻璃。它是在玻璃粉末中加入发泡剂,在有盖的金属模具中加热,玻璃在加热过程中形成很多闭口气泡这是一种很好的绝热、隔音材料。此外,平板玻璃的成形有垂直引上法、平拉法和浮法。浮法是让玻璃液流漂浮在熔融金属(锡)表面上形成平板玻璃的方法,其主要优点是玻璃质量高(平整、光洁),拉引速度快,产量大。 4.退火,玻璃在成形过成中经受了激烈的温度变化和形状变化,这种变化在玻璃中留下了热应力。这种热应力会降低玻璃制品的强度和热稳定性。如果直接冷却,很可能在冷却过程中或以后的存放、运输和使用过程中自行破裂(俗称玻璃的冷爆)。为了消除冷爆现象,玻璃制品在成形后必须进行退火。退火就是在某一温度范围内保温或缓慢降温一段时间以消除或减少玻璃中热应力到允许值。 此外,某些玻璃制品为了增加其强度,可进行刚化处理。包括:物理刚化(淬火),用于较厚的玻璃杯、桌面玻璃、汽车挡风玻璃等;和化学刚化(离子交换),用于手表表蒙玻璃、航空玻璃等。刚化的原理是在玻璃表面层产生压应力,以增加其强度。

相关文档