文档库 最新最全的文档下载
当前位置:文档库 › 污水生化处理

污水生化处理

1、气水比算法

曝气器是微孔曝气,充氧效率是25%,是否是按照处理一公斤的BOD 消耗一公斤的氧气来计算。

如果BOD是500,进水量为1000方,则:

总BOD为:1000*1000L*500/1000=500000克

消耗的DO量为500000克

DO的摩尔数为:500000/32=15625MOL (氧气的摩尔质量为32克/摩尔)

DO的体积为:15625*22。4=350000L=350方

由于充氧效率是25%,故所需氧量为:350/0。25=1400方

由于空气含21%的氧气。故所需空气量为:1400/0。21=6667方

这样算法不适合应用于生产和设计,如果用于生产和设计,一般的概算法如下

如果BOD是500,进水量为1000方,则:

总BOD为:1000*500=500000克

则AOR为:500000克

则SOR为:500000×1.5=750千克

故所需空气量为:750/0.28/0.25

2、污泥膨胀原因及对策

所谓活性污泥膨胀是指活性污泥质量变轻,体积膨大,沉降性能恶化,在二沉池内不能正常沉池下来,污泥指数异常增高达400以上。

活性污泥膨胀,根据诱因可分为:因丝状菌异常增殖所导致的丝状菌性膨胀和因粘性物质大量产生积累的非丝状菌膨胀。前者为易发与多发性膨胀,导致产生丝状菌性污泥膨胀的细菌主要有:球衣菌属,假单胞菌属,黄杆菌属,酶菌属。

污泥膨胀的对策,当在活性污泥系统产生污泥膨胀现象时,可按下图所列程序对污泥膨胀的类型,诱因与性质进行调查,并采取相应的措施加以消除。具体措施说明如下:

措施A,投药处理,能够杀灭丝状菌的药剂有氯,臭氧,过氧化氢等,有效氯为10—20mg/l时,就能够有效杀灭球衣菌,贝代硫菌:高于20mg/l时,可能对絮凝体形成菌产生危害,因此,在使用氯时一定要按投加量的允许范围合理投加。而臭氧,过氧化氢等氧化剂只有在较高的计量条件下才对球衣菌有杀灭效果。

措施B,改善,提高活性污泥的絮凝性,在曝气池的入口处投加硫酸铝,三氯化铁,高分子混凝剂等絮凝剂。

措施C,改善,提高活性污泥的沉降性,密实性。在曝气池的入口处投加粘土,消石灰,生污泥或消化污泥。

措施D,加大回流污泥量,通过这一措施,高粘性膨胀的致因物质,即多糖类物降低了,在多数情况下,能够解脱高粘性膨胀。有条件的地方还可在回流污泥前进行内源呼吸期,提高了絮凝体形成细菌群摄取有机物的能力和与丝状菌竞争的能力,丝状菌性膨胀也能够得到抑制。在曝气过程中,可以考虑加入氯,磷等营养物质,这样可以强化

污泥活性。

措施E,使废水经常处于新鲜状态,防止形成厌氧状态,如有条件采取预曝气措施,使废水经常处于预曝气状态,吹脱硫化氢等有害气体,并避免贝代硫菌加以利用增殖。

措施F,加强曝气,提高混和液DO浓度,防止混和液缺氧或厌氧状态,即或是局部的或是一时的呈厌氧状态,也不利于絮体形成菌的生理活动,而有利于丝状菌的增殖。

措施G,在有利条件下,可以考虑改变水温,水温在15摄氏度以下易于发生高粘性膨胀,而丝状菌性膨胀则多发生在20摄氏度以上。

措施H,降低污泥在二沉池内停留时间,防止形成厌氧状态。

措施I,调整污泥负荷,运行经验表明,如果污泥负荷超过0.35kgBOD/kgMLSS.d易于发生丝状菌性污泥膨胀。

措施J,调整混合液中的营养物质平衡,即保证BOD:N:P=10:5:1的要求,当混和液失去营养平衡时,往往会发生高粘性污泥膨胀。

措施K,控制丝状菌的增殖,对已产生大量球衣菌属的活性污泥,用浓度为50mg/l的硫酸铜,保持5mg/l的残留浓度,能够抑制球衣菌属的增殖。

解体多为系统控制不当造成的,一般有几个原因

1.污泥负荷过高或是过低

2.系统溶氧过高

3.中毒

腐化一般是系统死角,厌氧状态为常见原因。

在实际运行中,以上几类方法是相辐相称的,污泥膨胀发生以后,首先应通过观察现象,借助理化分析手段,判明膨胀的种类及发生原因,对症下药,采取有效的控制措施。

水面泡沫产生原因及解决办法

培养初期,由于水体里的丝状菌的一种,诺卡式大量繁殖,在池面上会形成大量漂浮状的白色泡沫。

随着污泥的增长,丝状菌的数量受到抑制,漂浮状泡沫就会逐步消失。

表面活性剂也会产生泡沫,

但不是那种粘稠状的,而且易碎。(老酒)

①喷洒水。这是一种最常用的物理方法。通过喷洒水流或水珠以打碎浮在水面的气泡,来减少泡沫。打散的污泥颗粒部分重新恢复沉降性能,但丝状细菌仍然存在于混合液中,所以,不能根本消除泡沫现象。

②投加消泡剂。可以采用具有强氧化性的杀菌剂,如氯、臭氧和过氧化物等。还有利用聚乙二醇、硅酮生产的市售药剂,以及氯化铁和铜材酸洗液的混合药剂等。药剂的作用仅仅能降低泡沫的增长,却不能消除泡沫的形成。而广泛应用的杀菌剂普遍存在负作用,因为过量或投加位置不当,会大量降低反应池中絮成菌的数量及生物总量[2]。

③降低污泥龄。一般采用降低曝气池中污泥的停留时间,以抑制有较长生长期的放线菌的生长。有实践证明,当污泥停留时间在5~6 d 时,能有效控制Nocardia菌属的生长,以避免由其产生的泡沫问题[8、

9]。但降低污泥龄也有许多不适用的方面:当需要硝化时,则污泥停留时间在寒冷季节至少需要6 d,这与采用此法矛盾;另外,Microthrix parvicella和一些丝状菌却不受污泥龄变化的影响。

④回流厌氧消化池上清液。已有试验表明,采用厌氧消化池上清液回流到曝气池的方法,能控制曝气池表面的气泡形成。厌氧消化池上清液的主要作用是能抑制Rhodococcus菌,但利用此法在几个污水处理厂进行实际操作时,并没有取得象实验室那样的成功。由于厌氧消化池上清液中含有高浓度好氧底物和氨氮,它们都会影响最后的出水质量[5],应慎重采用。

⑤投加特别微生物。有研究提出,一部分特殊菌种可以消除Nocardia菌的活力,其中包括原生动物肾形虫等。另外,增加捕食性和拮抗性的微生物,对部分泡沫细菌有控制作用[5]。

⑥选择器。选择器是通过创造各种反应环境(氧、有机负荷或污泥浓度等),以选择优先生长的微生物,淘汰其他微生物。有研究报道:好氧选择器能一定程度地控制M.parvicella,但对Nocardia菌属无大影响;而缺氧选择器对Nocardia菌属有控制作用,却对M.parvicella 无作用[10]。(hy6969132)

泡沫问题原因很多,要看具体情况,除了上面那位说的原因外,以下几种也可能造成产生大量的泡沫.1.水中磷酸盐含量过高也会产生泡沫

2.水中含有表活性物质

3. 丝状菌过量生长会导致菌胶团携带大量空气从而在水面形成稳定的,难以去除的浮渣泡沫,现在已证明丝状菌的过量生长是生成泡沫

的主要原因

4.如果废水中含有过量的脂肪酸,系统的污泥停留时间较长,污泥回流率较低,较低的F/M比会造成丝状菌的过量生长,导致泡沫产生.

消除和控制:

常用的有:表面高速流喷射,

控制污泥停留时间

提高回流比和F/M比

消泡剂的使用

以上的问题不是效率不高,就是成本高

目前有种被称谓:FFO的工艺可以借鉴,即可从工艺设计考虑

FFO操作技术是养分与贫缺技术的英文的缩写,是根据丝状菌和普通菌的生长动力学的区别为原理而设计的二段活污方法(大家应知怎样做了吧)

初级为高F/M,0.8左右,低回流比0.06左右,二级为低F/M0.2左右,高回流比0.21左右

哈,只要控制住老丝的生长,问题就好解决了

泡沫主要分化学泡沫和生物泡沫两种。

化学泡沫由污水中的洗涤剂以及一些工业用表面物质在曝气的搅拌和吹脱作用下形成的,随着活性污泥的增多,大量洗涤剂或表面物质会被微生物吸收分解掉,泡沫也会逐渐消失。加消泡剂是可以的,或者可以加粉末活性炭,即能吸附一些活性剂和有害物质,也能提供生物载体,增加生物量。

入流污水中含油及脂类物质较多的处理厂或气浮池浮渣去除不彻底的处理厂易产生物泡沫,主要为诺卡氏菌造成的。检查你的汽浮池,看是否是气浮池没调试好(包括汽水比、释放器是否受阻、加药系统及进水量是否太大)。关键是要能把油脂类物质去掉。

水处理知识新手入门

让一个新手能够最快、最准的了解污水处理相关知识。

1、活性污泥法主要工艺分类?

答:普通活性污泥法(传统、硝化、A/O脱氮、A/O除磷、A2/O同步脱氮除磷、AB法)

氧化沟(卡鲁塞尔、双沟、三沟、奥贝尔、一体化氧化沟)

SBR(传统SBR、ICEAS、CAST、DAT-IAT、UNITANK)

接触氧化法(生物转盘?)

厌氧(UASB、水解酸化)

2、传统活性污泥法?

答:没啥好说的吧,扫盲贴之一已经讲解了,这里说一下设计时注意的问题~

⑴泥龄短,停留时间短,曝气池缓冲能力差,设计流量取最大日最大时流量进行计算。

⑵生化反应速率随水温变化。水温高,反应速率快,所需泥龄短;水温低,反应速率下降,所需泥龄长。

⑶需氧量随水温变化,水温高,需氧量增大,设计时按最不利的最热月平均水温计算。

⑷鼓风机风量要考虑高程的影响。

3、硝化工艺?为什么有此工艺?

答:现代污水处理中有好多只要求氨氮指标,而并未要求总氮指标,也就是说,可以只硝化不脱氮的工艺。

硝化需要碱度!设计计算要点:

⑴硝化工艺泥龄长,水力停留时间长,设计流量按高日流量计算。

⑵需氧量按最热月平均水温计算。

⑶对碱度要核算,如不够,需加碱或反硝化措施。

⑷若污水属于容易发生污泥膨胀的水质,可在生物反应池前端设置生物选择池,以抵制丝状菌的繁殖。

4、A/O脱氮工艺?

答:脱氮说白了就是反硝化嘛,硝酸盐反硝化产生N2而去除。反硝化需要缺氧环境(DO<=0.5mg/L,所需碳源物质)

反硝化率用回流比控制:Fde=(R+r)/(R+r+1),其中r为内回流比当缺氧和厌氧污泥总量大于好氧污泥量,活性污泥的沉降性能就恶化,故实际中缺+厌<=好

生物脱氮是通过缺氧污泥进行的,当C:N低时,反硝化速率下降。需要的缺氧污泥量大。C:N过低,且计算的

缺>好时,采取污水不进初沉提高C:N比或外加碳源,或降低脱氮要求。

5、A/O除磷工艺?

答:生物除磷的原理即:好氧状态下吸收磷,厌氧状态下释放磷,通过排泥而实现生物除磷。厌氧条件下释放越充分,

好氧吸收越好,除P越高。厌氧环境(DO=0,硝酸盐浓度=0,造就了与脱氮刚好相反的环境,因此脱氮与除磷永远是冤家。

设计计算要点:

厌氧池容积要有足够的水力停留时间,实践得出厌氧池最小实际水力停留时间(包括回流污泥在内)不小于0.75h

⑴厌氧池停留时间长,有利于生物除磷。但过长,投资加大,故一般<=2h。

⑵厌氧池须处于绝对厌氧状态,即DO=0、硝态氮=0,也即好氧池不能产生硝化,好氧池泥龄不能达到硝化泥龄

⑶生物除磷有一定的限度,当进水C/P过低,或出水磷浓度要求很低时,需补充化学除磷。

⑷出水中磷有两种形态:溶解态和含于活性污泥中的固态。

曝气生物滤池

工艺机理主要利用微生物吸附、氧化作用和滤料的过滤作用去除污染物

系统组成必须有初沉池,一般不需二沉池,可进行模块化设计

填(滤)料一般应用陶粒等粒状滤料,粒径在3—8mm

系统运行需进行反冲洗,可进行自控管理

污泥产量较多

优缺点 1.出水水质好(尤其NH3-N去除较高)2.能抗日常冲击负荷3.动力消耗较大(反冲洗)

生物接触氧化

工艺机理主要利用微生物吸附、氧化分解作用去除污染物

系统组成可有初沉池,必须有二沉池,一般常采用接触沉淀,处理城市污水的应用二段式居多

填(滤)料可应用碎石、炉渣、塑料等粒状填料,也可应用波纹板、软性纤维、蜂窝等填料

系统运行一般不需进行反冲洗

污泥产量较少

优缺点 1.动力消耗较少2.出水水质好3.抗冲击能力差

生物接触氧化主要利用微生物吸附、氧化分解作用去除污染物,必须有二沉池;生物滤池除了具有这个作用还有过滤作用,因此不需要二沉池,但是生物滤池需要反冲,施工和操作比较麻烦,自动化程度要求高。SBR 工艺的总结

摘要:序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

关键词:SBR工艺

序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系

统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。SBR 工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。因此,SBR工艺发展速度极快,并衍生出许多种新型SBR处理工艺。

间歇式循环延时曝气活性污泥法(ICEAS—Intermittent Cyclic Extended System)是在1968年由澳大利亚新威尔士大学与美国ABJ公司合作开发的。1976年世界上第一座ICEAS工艺污水厂投产运行。ICEAS 与传统SBR相比,最大特点是:在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统SBR低。由于全过程连续进水,沉淀阶段泥水分离差,限制了进水量。

好氧间歇曝气系统(DAT-IAT—Demand Aeration Tank-Intermittent Tank)是由天津市政工程设计研究院提出的一种SBR新工艺。主体构筑物是由需氧池DAT池和间歇曝气池IAT池组成,DAT池连续进水连续曝气,其出水从中间墙进入IAT池,IAT池连续进水间歇排水。同时,IAT 池污泥回流DAT池。它具有抗冲击能力强的特点,并有除磷脱氮功能。循环式活性污泥法(CASS—Cyclic Activated Sludge System)是

Gotonszy教授在ICEAS工艺的基础上开发出来的,是SBR工艺的一种新形式。将ICEAS的预反应区用容积更小,设计更加合理优化的生物选择器代替。通常CASS池分三个反应区:生物选择器、缺氧区和好氧区,容积比一般为1:5:30。整个过程间歇运行,进水同时曝气并污泥回流。该处理系统具有除氮脱磷功能。

UNITANK单元水池活性污泥处理系统是比利时SEGHERS公司提出的,它是SBR工艺的又一种变形。它集合了SBR工艺和氧化沟工艺的特点,一体化设计使整个系统连续进水连续出水,而单个池子相对为间歇进水间歇排水。此系统可以灵活的进行时间和空间控制,适当的增大水力停留时间,可以实现污水的脱氮除磷。

改良式序列间歇反应器(M SBR—Modified Sequencing Batch Reactor)是C,Y.Yang等人根据SBR技术特点结合A2-O工艺,研究开发的一种更为理想的污水处理系统。采用单池多方格方式,在恒定水位下连续运行。通常M SBR池分为主曝气池、序批池1、序批池2、厌氧池A、厌氧池B、缺氧池、泥水分离池。

每个周期分为6个时段,每3个时段为一个半周期。一个半周期的运行状况:污水首先进入厌氧池A脱氮,再进入厌氧池B除磷,进入主曝气池好氧处理,然后进入序批池,两个序批池交替运行(缺氧—好氧/沉淀—出水)。脱氮除磷能力更强。

SBR工艺优点

1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。

2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。

3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。

4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。

5、处理设备少,构造简单,便于操作和维护管理。

6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。

7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。

8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。

9、工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。

SBR系统的适用范围

由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。就近期的技术条件,SBR系统更适合以下情况:

1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。

2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。

3) 水资源紧缺的地方。SBR系统可在生物处理后进行物化处理,不需要

增加设施,便于水的回收利用。

4) 用地紧张的地方。

5) 对已建连续流污水处理厂的改造等。

6) 非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。SBR设计要点、主要参数

SBR设计要点

1、运行周期(T)的确定

SBR的运行周期由充水时间、反应时间、沉淀时间、排水排泥时间和闲置时间来确定。充水时间(tv)应有一个最优值。如上所述,充水时间应根据具体的水质及运行过程中所采用的曝气方式来确定。当采用限量曝气方式及进水中污染物的浓度较高时,充水时间应适当取长一些;当采用非限量曝气方式及进水中污染物的浓度较低时,充水时间可适当取短一些。充水时间一般取1~4h。反应时间(tR)是确定SBR反应器容积的一个非常主要的工艺设计参数,其数值的确定同样取决于运行过程中污水的性质、反应器中污泥的浓度及曝气方式等因素。对于生活污水类易处理废水,反应时间可以取短一些,反之对含有难降解物质或有毒物质的废水,反应时间可适当取长一些。一般在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲置时间(tE)一般按2h设计。一个周期所需时间tC≥tR﹢tS﹢tD ,周期数 n﹦24/tC

2、反应池容积的计算

假设每个系列的污水量为q,则在每个周期进入各反应池的污水量为q/n·N。各反应池的容积为:

V:各反应池的容量

1/m:排出比

n:周期数(周期/d)

N:每一系列的反应池数量

q:每一系列的污水进水量(设计最大日污水量)(m3/d)

3、曝气系统

序批式活性污泥法中,曝气装置的能力应是在规定的曝气时间内能供给的需氧量,在设计中,高负荷运行时每单位进水BOD为0.5~1.5kgO2/kgBOD,低负荷运行时为1.5~2.5kgO2/kgBOD。

在序批式活性污泥法中,由于在同一反应池内进行活性污泥的曝气和沉淀,曝气装置必须是不易堵塞的,同时考虑反应池的搅拌性能。常用的曝气系统有气液混合喷射式、机械搅拌式、穿孔曝气管、微孔曝气器,一般选射流曝气,因其在不曝气时尚有混合作用,同时避免堵塞。

4、排水系统

⑴上清液排除出装置应能在设定的排水时间内,活性污泥不发生上浮的情况下排出上清液,排出方式有重力排出和水泵排出。

⑵为预防上清液排出装置的故障,应设置事故用排水装置。

⑶在上清液排出装置中,应设有防浮渣流出的机构。

序批式活性污泥的排出装置在沉淀排水期,应排出与活性污泥分离的上清液,并且具备以下的特征:

1) 应能既不扰动沉淀的污泥,又不会使污泥上浮,按规定的流量排出上清液。(定量排水)

2) 为获得分离后清澄的处理水,集水机构应尽量*近水面,并可随上清液排出后的水位变化而进行排水。(追随水位的性能)

3) 排水及停止排水的动作应平稳进行,动作准确,持久可*。(可*性)排水装置的结构形式,根据升降的方式的不同,有浮子式、机械式和不作升降的固定式。

5、排泥设备

设计污泥干固体量=设计污水量×设计进水SS浓度×污泥产率/1000 ,在高负荷运行(0.1~0.4 kg-BOD/kg-ss·d)时污泥产量以每流入1 kgSS 产生1 kg计算,在低负荷运行(0.03~0.1 kg-BOD/kg-ss·d)时以每流入1 kgSS产生0.75 kg计算。

在反应池中设置简易的污泥浓缩槽,能够获得2~3%的浓缩污泥。由于序批式活性污泥法不设初沉池,易流入较多的杂物,污泥泵应采用不易堵塞的泵型。

SBR设计主要参数

序批式活性污泥法的设计参数,必须考虑处理厂的地域特性和设计条件(用地面积、维护管理、处理水质指标等)适当的确定。

用于设施设计的设计参数应以下值为准:

项目参数

BOD-SS负荷(kg-BOD/kg-ss·d) 0.03~0.4

MLSS(mg/l) 1500~5000

排出比(1/m) 1/2~1/6

安全高度ε(cm)(活性污泥界面以上的最小水深) 50以上

序批式活性污泥法是一种根据有机负荷的不同而从低负荷(相当于氧化沟法)到高负荷(相当于标准活性污泥法)的范围内都可以运行的方法。序批式活性污泥法的BOD-SS负荷,由于将曝气时间作为反应时间来考虑,定义公式如下:

QS:污水进水量(m3/d)

CS:进水的平均BOD5(mg/l)

CA:曝气池内混合液平均MLSS浓度(mg/l)

V:曝气池容积

e:曝气时间比e=n·TA/24

n:周期数 TA:一个周期的曝气时间

序批式活性污泥法的负荷条件是根据每个周期内,反应池容积对污水进水量之比和每日的周期数来决定,此外,在序批式活性污泥法中,因池内容易保持较好的MLSS浓度,所以通过MLSS浓度的变化,也可调节有机物负荷。进一步说,由于曝气时间容易调节,故通过改变曝气时间,也可调节有机物负荷。

在脱氮和脱硫为对象时,除了有机物负荷之外,还必须对排出比、周期数、每日曝气时间等进行研究。

在用地面积受限制的设施中,适宜于高负荷运行,进水流量小负荷变化大的小规模设施中,最好是低负荷运行。因此,有效的方式是在投产初期按低负荷运行,而随着水量的增加,也可按高负荷运行。

不同负荷条件下的特征

有机物负荷条件(进水条件)高负荷运行低负荷运行

间歇进水间歇进水、连续

运行条件BOD-SS负荷(kg-BOD/kg-ss·d)0.1~0.4 0.03~0.1

周期数大(3~4)小(2~3)

排出比大小

处理特性有机物去除处理水BOD<20mg/l 去除率比较高

脱氮较低高

脱磷高较低

污泥产量多少

维护管理抗负荷变化性能比低负荷差对负荷变化的适应性强,运行的灵活性强

用地面积反应池容积小,省地反应池容积较大

适用范围能有效地处理中等规模以上的污水,适用于处理规模约为2000m3/d以上的设施适用于小型污水处理厂,处理规模约为2000m3/d 以下,适用于不需要脱氮的设施

SBR设计需特别注意的问题

(一)主要设施与设备

1、设施的组成

本法原则上不设初次沉淀池,本法应用于小型污水处理厂的主要原因是设施较简单和维护管理较为集中。为适应流量的变化,反应池的容积应留有余量或采用设定运行周期等方法。但是,对于游览地等流量变化很大的场合,应根据维护管理和经济条件,研究流量调节池的设置。

2、反应池

反应池的形式为完全混合型,反应池十分紧凑,占地很少。形状以矩形为准,池宽与池长之比大约为1:1~1:2,水深4~6米。

反应池水深过深,基于以下理由是不经济的:①如果反应池的水深大,排出水的深度相应增大,则固液分离所需的沉淀时间就会增加。②专用的上清液排出装置受到结构上的限制,上清液排出水的深度不能过深。反应池水深过浅,基于以下理由是不希望的:①在排水期间,由于受到活性污泥界面以上的最小水深限制,上清液排出的深度不能过深。②与其他相同BOD—SS负荷的处理方式相比,其优点是用地面积较少。

反应池的数量,考虑清洗和检修等情况,原则上设2个以上。在规模较小或投产初期污水量较小时,也可建一个池。

3、排水装置

排水系统是SBR处理工艺设计的重要内容,也是其设计中最具特色和关系到系统运行成败的关键部分。目前,国内外报道的SBR排水装置大致可归纳为以下几种:⑴潜水泵单点或多点排水。这种方式电耗大且容易吸出沉淀污泥;⑵池端(侧)多点固定阀门排水,由上自下开启阀门。缺点操作不方便,排水容易带泥;⑶专用设备滗水器。滗水器是是一种能随水位变化而调节的出水堰,排水口淹没在水面下一定深度,可防止浮渣进入。理想的排水装置应满足以下几个条件:①单位时间内出水量大,流速小,不会使沉淀污泥重新翻起;②集水口随水位下降,排水期间始终保持反应当中的静止沉淀状态;③排水设备坚固耐用且排水量可无级调控,自动化程度高。

在设定一个周期的排水时间时,必须注意以下项目:

①上清液排出装置的溢流负荷——确定需要的设备数量;

②活性污泥界面上的最小水深——主要是为了防止污泥上浮,由上清液排出装置和溢流负荷确定,性能方面,水深要尽可能小;

③随着上清液排出装置的溢流负荷的增加,单位时间的处理水排出量增大,可缩短排水时间,相应的后续处理构筑物容量须扩大;

④ 在排水期,沉淀的活性污泥上浮是发生在排水即将结束的时候,从沉淀工序的中期就开始排水符合SBR法的运行原理。

SBR工艺的需氧与供氧

SBR工艺有机物的降解规律与推流式曝气池类似,推流式曝气池是空间(长度)上的推流,而SBR反应池是时间意义上的推流。由于SBR工艺有机物浓度是逐渐变化的,在反应初期,池内有机物浓度较高,如果供氧速率小于耗氧速率,则混合液中的溶解氧为零,对单一的微生物而言,氧气的得到可能是间断的,供氧速率决定了有机物的降解速率。随着好氧进程的深入,有机物浓度降低,供氧速率开始大于耗氧速率,溶解氧开始出现,微生物开始可以得到充足的氧气供应,有机物浓度的高低成为影响有机物降解速率的一个重要因素。从耗氧与供氧的关系来看,在反应初期SBR反应池保持充足的供氧,可以提高有机物的降解速度,随着溶解氧的出现,逐渐减少供氧量,可以节约运行费用,缩短反应时间。SBR反应池通过曝气系统的设计,采用渐减曝气更经济、合理一些。SBR工艺排出比(1/m)的选择

SBR工艺排出比(1/m)的大小决定了SBR工艺反应初期有机物浓度的高低。排出比小,初始有机物浓度低,反之则高。根据微生物降解有机物

污水处理生化调试技术方案

污水处理生化调试技术方案 一污泥的培养 方法有同步与异步培养与接种,同步是培奍与驯化同时进行或交替进行,异步是先培后驯化,接种是利用类似污水的剩余污泥接种。 活性污泥可用糞便水经曝气培养而得,因为粪便污水中,细菌种类多,本身含有的营养丰富,细菌易于繁殖。?通常为了缩短培菌周期,我们会选择接种培养。?先说粪便水培菌?具体步骤:?将经过过滤的粪便水投入曝气池,再用生活污水或河水稀释,至BOD约为300-400,进行连续曝气。这样过二,三天后,为补充微生物的营养物质和排除由微生物产生的代谢产物,应进行换水,换水根据操作情况分为间断和连续操作。?1.间断操作:?当第一次加料曝气并出现模糊的活性污泥绒絮后,就可停止曝气,使混合液静止沉淀,经1-1.5小时后排放上清液,把排放的上清液约占总体积的60-70%。?然后再加生活污水和粪便水,这时的粪便水可视曝气池内的污泥量来调整,这样一直下去,直至SV达到30%。一般需2周,水温低时时间要延长。 在每次换水时,从停止曝气,沉淀到重新曝气的总时间要控制在2小时之内为宜?成熟的污泥应具有良好的混凝,沉降性能,污泥内有大量的菌胶菌和终生?纤毛类原生动物,如钟虫,等枝虫,盖纤虫等,并可使污水的生化需氧量去除率达90%左右 2.连续操作:?在第一次加料出现绒絮后,就不断地往曝气池投加生活污水或河水,添加粪便水的控制原则与间断投配相同。往曝气池的投加的水量,应保证池内的水量能每天更换一次,随着培奍的进展,逐渐加大水量使在培养后期达到每天更换二次。在曝气池出水进入二次沉淀池后不久(0.5-1)就开始回流污泥,污泥的回流量为曝气池进水量的50%?驯化的方法:可在进水中逐渐增加被处理的污水的比例,或提高浓度,使生物逐渐适应新的环境开始时,被处理污水的加入量可用曝气池设计负荷的20-30%,达到较好的处理效率后,再继续增加,每次以增加设计负荷的10-20%为宜,每次增加负荷后,须等生物适应巩固后再继续增加,直至满负荷为止。?如果被处理工业污水中,缺氮和磷以及其它营养物时,可根据BOD:N:P为100:5:1的比例来调整。?个人认为在此阶段,必要的超赿管路要具备,工艺没设计的可用消防管代替。 而且各种分析要跟上去,和种参数需及时测定,特别是镜检,因为有经验的人可能通过镜检和数据就可以很好的完成任务,另外良好的心理素质也比较重要,有些现象要果断处理,有些则需等侍再认定上面是异步法,同步就是在污泥培养过程中,不断加入工业污水,使污泥在增长过程中逐渐适应工业污水的环境,这样虽可缩短培养和驯化的时间,但在这一过程中发生的问题,又缺实践经验则难以判断问题出在哪一个环节上。 若有条件,就是接种培养,这样可缩短时间,若是相似的污水的污泥,更可提高驯化效果。 二、试运行

污水处理的生化调试

污水处理的生化调试 摘要:通过工程实例总结,就如何缩短污水生化调试所需时间,从调试前期准备到污水全负荷投入运行,分3个阶段予以解剖分析。介绍了前期准备工作的内容和所需物料的种类及数量;调试各阶段物料投加量及所需控制的条件;调试过程所需注意的事项。文中所述内容尤其适用于以鼓风机曝气为主的生化处理设施。 污水处理设施在正式投入使用时,其生化处理装置均需进行污泥接种、驯化(俗称调试)。对于规模较大的污水处理设施尽量缩短调试时间,使处理主体尽快投入正常运行,在实际操作过程中有着重要的意义。我们通过多个日处理万吨的污水处理设施的生化调试发现,在生化调试过程中,如果准备充分,正常气温下一般7~10d即可完成生化设施的培菌接种工作;10d后就可以对污水进行驯化,20d左右便可进入正常运行。 本文将分三方面对生化调试工作中需注意的问题进行简要分析。为方便起见,文中所列数据均以生化池体积5000m3为基准。 1、前期准备阶段 1.1、物料准备 ①污泥准备 对于万立方米级污水处理装置而言,其生化池体积较大,为了保证生化池初始污泥浓度,需要准备投加的原始污泥量很大。理论上讲,投加后生化池的污泥的质量浓度最好控制在2 500mg/L左右。实际运行时,为了节约成本,调试期间初始污泥的质量浓度可控制在1 500mg/L左右,一日处理1×104m3污水生化时间为12h的污水处理装置为例,调试前需准备含水率在80%的活性污泥约40m3。污泥品种最好是同类或相似的活性污泥。如有困难,其它活性较强的污泥也可使用。污泥在使用前为保证一定的活性,对待用的污泥需进行喷水保湿处理,在保湿条件下污泥的活性至少可保持15d以上。 ②碳源培养寄的准备 生化调试过程中理想的碳源是大粪及淀粉。一般来说调试前期以加入大粪为主,中后期以加入淀粉为主,为节省成本,淀粉可用地脚面粉替代。由于大粪无法事先储存,因此,事前需和有关部门确定好调试期间需要的数量。调试期间碳源准备量一般按如下原则进行估算。每天投加到生化池的COD量按混合后生化池COD的质量浓度在200~300mg/L水平计,其中地脚面粉COD的质量折算量约为1t[COD]/t[面粉]。大粪的COD折算比较困

医院污水、废水处理——“A/O”二级生化处理

医院污水、废水处理——“A/O”二级生化处理 医院的污、废水除一般的生活污水外,还含有化学物质、放射性废水和病原体。因此,若不进行有效的处理,势必严重影响周围环境。根据医院污、废水排放标准,采用较为成熟、可靠的“A/O”二级生化处理的工艺,再加上后续处理,使其能稳定达到排放标准。 标签:“A/O”;水解酸化池;接触氧化池 医院医疗污、废水中含有大量有毒有害的有机物及微生细菌,如不进行有效的处理,势必严重影响周围环境。我公司根据多年来处理该项污水的成功经验,受业主委托,根据有关规范和要求,对该院污、废水处理工程编制本设计方案。本方案的主体工艺采用生化法及物化法相结合,设备结构采用钢筋混凝土和钢制设备相结合;设备的布置形式主体为埋地式,埋地设备上部覆土植草后用作停车场,设备的运行方式为全自动运行操作管理;出水达到标准排放。 1 设计水量、进水水质及达标出水水质 1.1 设计水量 系统设计处理水量1800m3/d(包括1.2期),由于设置调节池调节水质水量,时处理水量确定为80m3/h,并为检修及安全需要设置两条线运行,当系统一条线检修或事故时,保证单条线处理全部水量而效果不低于排放标准的80%。 1.2 进水水质及要求达标水质 进水水质按一般医院污水水质、要求出水水质按国家《医疗机构水污染物排放标准》(GB18466-2005),详见表1。 表1 阳湖医院污水处理进水及达标出水水质 2 工艺流程图、说明 2.1 工艺流程图 污水处理工艺流程: 2.2 工艺说明 本工艺采用较为成熟、可靠的“A/O”二级生化处理的工艺,再加上后续处理,使其能稳定达到排放标准,具体说明如下: 2.2.1 格栅井

污水生化处理装置操作规程修订稿

污水生化处理装置操作 规程 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

污水处理操作规程 总则1.为加强污水处理的设备管理、工艺管理和水质管理,保证污水处理安全正常运行,达到净化水质、处理和处置污泥、保护环境的目的,制定本规程。 2.污水处理的运行、维护及其安全除应符合本规程外,尚应符合国家现行有关标准的规定。 1一般要求 运行管理要求 1.运行管理人员必须熟悉本厂处理工艺和设施、设备的运行要求与技术指标。 2.操作人员必须了解本厂处理工艺,熟悉本岗位设施、设备的运行要求和技术指标。 3.各岗位应有工艺系统网络图、安全操作规程等,并应示于明显部位。 4.运行管理人员和操作人员应按要求巡视检查构筑物、设备、电器和仪表的运行情况。 5.各岗位的操作人员应按时做好运行记录。数据应准确无误。 6.操作人员发现运行不正常时,应及时处理或上报主管部门。 7.各种机械设备应保持清洁,无漏水、漏气等。 8.水处理构筑物堰口、池壁应保持清洁、完好。 9.根据不同机电设备要求,应定时检查,添加或更换润滑油或润滑脂。 安全操作要求 1.各岗位操作人员和维修人员必须经过技术培训和生产实践,并考试合格后方可上岗。 2.启动设备应在做好启动准备工作后进行。

3.电源电压大于或小于额定电压5%时,不宜启动电机。 4.操作人员在启闭电器开关时,应按电工操作规程进行。 5.各种设备维修时必须断电,并应在开关处悬挂维修标牌后,方可操作。 6.雨天或冰雪天气,操作人员在构筑物上巡视或操作时,应注意防滑。 7.清理机电设备及周围环境卫生进,严禁擦拭设备运转部位,冲洗水不得溅到电缆头和电机带电部位及润滑部位。 8.各岗位操作人员应穿戴齐全劳保用品,做好安全防范工作。 9.应在构筑物的明显位置配备防护救生设施及用品。 10.严禁非岗位人员启闭本岗位的机电设备。 维护保养要求 1.运行管理人员和维修人员应熟悉机电设备的维修规定。 2.应对构筑物的结构及各种闸阀、护栏、爬梯、管道等定期进行检查、维修及防腐处理,并及时更换被损坏的照明设备。 3.应经常检查和紧固各种设备连接件,定期更换联轴器的易损件。 4.各种管道闸阀应定期做启闭试验。 5.应定期检查、清扫电器控制柜,并测试其各种技术性能。 6.应定期检查电动闸阀的限位开关、手动与电动的联锁装置。 7.在每次停泵后,应检查填料或油封的密封情况,进行必要的处理。并根据需要填加或更换填料、润滑油、润滑脂。 8.凡设有钢丝绳的装置,绳的磨损量大于原直径10%,或其中的一股已经断裂时,必须更换。

常用的生化法处理污水

随着水污染的日益严重,水资源的短缺,对污水的处理越来越受到人们的重视。目前所采用的生物处理方法主要包括普通活性污泥法和生物接触氧化法,普通活性污泥法又称传统活性污泥法,活性污泥废水生物处理系统的传统方式,系统由曝气池、二沉池和污泥回流管/线及设备三部分组成。 需要曝气池容积大,占用的土地较多,基建费用高;好氧菌作用速率会随水中氧含量进行变化,而供氧速度难于与其相吻合、适应,运行效果易受水质、水量变化的影响。今天,博尔环保就给大家说说曝气法处理污水分析。 曝气设备是活性污泥法污水处理工艺系统中的重要组成部分,通过曝气设备向曝气池供氧,同时曝气设备还有混合搅拌的功能,以增强污染物在水处理系统

中的传质条件,提高处理效果。 曝气方法主要有①鼓风曝气②机械曝气 机械曝气也称为表面曝气,机械曝气器大多以装在曝气池水面的叶轮快速转动,进行表层充氧。按转轴方向不同,可分为立式和卧式两类。常用的立式表面曝气机有平板叶轮、倒伞型叶轮和泵型叶轮等,卧式表面曝气机有转刷曝气机和转盘曝气机等。 曝气叶轮的充氧能力和提升能力同叶轮浸没深度、叶轮的转速等因素有关,在适宜的浸深和转速下,叶轮的充氧能力大,并可保证池内污泥浓度和溶解氧浓度均匀。 一般而言,机械曝气常用于曝气池较小的场合,可减少动力消耗,维护管理也较方便。鼓风曝气供应空气的伸缩性较大,曝气效果也较好,一般用于较大的曝气池。 污水处理的曝气方法及其装置,其具有以下优点和功效: (1)藉由上述在水反应槽中,将曝气管设置呈距离槽底面有一段高度距离位置的方式,便能大量培养出对污水槽中环境有益性的微生物菌群。 (2)各水反应槽都设有微曝气设备,藉由水中超微细气体带动水中杂物产生

污水生化处理

污水生化处理 污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的,其工艺构成多种多样,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化沟法、稳定塘法、土地处理法等多种处理方法。日前大多数城市污水处理厂都采用活性污泥法。生物处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀池固液分离,从净化后的污水中除去。 在污水生化处理过程中,影响微生物活性的因素可分为基质类和环境类两大类: 一、基质类包括营养物质,如以碳元素为主的有机化合物即碳源物质、氮源、磷源等营养物质、以及铁、锌、锰等微量元素;另外,还包括一些有毒有害化学物质如酚类、苯类等化合物、也包括一些重金属离子如铜、镉、铅离子等。 二、外环境类影响因素主要有: (1)温度。温度对微生物的影响是很广泛的,尽管在高温环境(50℃~70℃)和低温环境(-5~0℃)中也活跃着某些类的细菌,但污水处理中绝大部分微生物最适宜生长的温度范围是20-30℃。在适宜的温度范围内,微生物的生理活动旺盛,其活性随温度的增高而增强,处理效果也越好。超出此范围,微生物的活性变差,生物反应过程就会受影响。一般的,控制反应进程的最高和最低限值分别为35℃和10℃。 (2)PH值。活性污泥系统微生物最适宜的PH值范围是6.5-8.5,酸性或碱性过强的环境均不利于微生物的生存和生长,严重时会使污泥絮体遭到破坏,菌胶团解体,处理效果急剧恶化。 (3)溶解氧。对好氧生物反应来说,保持混合液中一定浓度的溶解氧至关重要。当环境中的溶解氧高于0.3mg/l时,兼性菌和好氧菌都进行好氧呼吸;当溶解氧低于0.2-0.3mg/l接近于零时,兼性菌则转入厌氧呼吸,绝大部分好氧菌基本停止呼吸,而有部分好氧菌(多数为丝状菌)还可能生长良好,在系统中占据优势后常导致污泥膨胀。一般的,曝气池出口处的溶解氧以保持2mg/l左右为宜,过高则增加能耗,经济上不合算。 (4)适当的营养。微生物生长的过程中,需要适当的C、N、P、等营养元素。由于预处理水的化学成分,可适当向生化池里添加N和P营养元素,并要密切注意C/N关系,防止对处理效果产生一定的负面作用。 在所有影响因素中,基质类因素和PH值决定于进水水质,对这些因素的控制,主要靠日常的监测和有关条例、法规的严格执行。对一般城市污水而言,这些因素大都不会构成太大的影响,各参数基本能维持在适当范围内。温度的变化与气候有关,对于万吨级的城市污水处理厂,特别是采用活性污泥工艺时,对温度的控制难以实施,在经济上和工程上都不是十分可行的。因此,一般是通过设计参数的适当选取来满足不同温度变化的处理要求,以达到处理目标。因此,工艺控制的主要目标就落在活性污泥本身以及可通过调控手段来改变的环境因素上,控制的主要任务就是采取合适的措施,克服外界因素对活性污泥系统的影响,使其能持续稳定地发挥作用。实现对生物反应系统的过程控制关键在于控制对象或控制参数的选取,而这又与处理工艺或处理目标密切相关。

生化处理工艺说明

生化处理工艺说明 厌氧池 调节池的水由潜水泵打入厌氧池。 厌氧微生物对于杂环化合物和多环芳烃中环的裂解,具有不同于好氧微生物的代谢过程,其裂解为还原性裂解和非还原性裂解。 厌氧生物发酵池的主要目的是去除COD和改善废水的可生化性。厌氧过程对于浓度较高的有机废水,可以将废水中的有机物分解为甲基等,以气体的形式从池中排中,可以去除废水中50~80%左右之COD。同时,还可以将废水中的芳烃类有机质所带的苯、萘、蒽醌等环打开,提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件。厌氧过程分为四个阶段:水解阶段、酸化阶段、酸性衰退阶段及甲烷化阶段。在水解阶段,固胶体性有机物质降解为溶解性有机物质,大分子物质降解为小分子物质。厌氧反应池是把反应控制在第二阶段完成之前,故水力停留时间短,效率高,同时提高了污水的可生化性。 厌氧池启动后,污水由布水系统进入池体,由池底向上流动,经细菌形成的污泥层,污泥层对悬浮物、染料颗粒及细小纤维进行吸附、网捕、生物学絮凝、生物降解作用,使污水在降解COD的同时也得以澄清。 焦化废水厌氧工艺水力停留时间较其他废水长,COD去除率15~30%,同时具有很强的抗冲击负荷能力。 缺氧池 缺氧池是生物脱氮的主要工艺设备,废水中NH3-N在下一级好氧硝化反应池中被硝化菌与亚硝化菌转化为NO3--N与NO2--N的硝化混合液,循环回流于缺氧池,通过反硝菌生物还原作用,NO3--N与NO2--N转化为N2。此转化条件,一是废水中含有足够的电子供体,包括与氧结合的氢源和反硝化异养菌所需之足够的有机碳源,二是厌氧或缺氧条件。由第一

级厌氧池之出水,已留有足够的有机碳源,可供反硝化菌消耗,但不能太大的过量碳源,以免出水含碳源过多,影响后续硝化反应。反硝化反应影响因素: 碳源进入缺氧池之废水中,BOD5/TN>3—5,即认为碳源充足,本系统内碳源充足; pH pH在6.5—7.5为宜,原废水满足要求; 水中溶解氧<0.5mg/L; 适宜温度20~40℃; 硝化混合液回流率100~400%。 厌氧池排出的厌氧消化液在进入好氧活性污泥处理工艺前进行缺氧曝气,其作用如下: 缺氧池回流入大量的曝气池的沉淀污泥,使缺氧池和好氧池组合为A-O工艺,具有较好的脱氮效果; 在缺氧过程中溶解氧控制在0.5mg/L一下,兼性脱氮菌利用进水中的COD作为氢供给体,将好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气排入大气,同时利用厌氧生物处理反应过程中的产酸过程,把一些复杂的大分子稠环化合物分解成低分子有机物。 好氧池 好氧池采用推流式活性污泥曝气池,它由池体、布水和布气系统三部分组成。 缺氧池流出的废水自流入推流式活性污泥曝气池,在此完成含氨氮废水的硝化过程。硝化菌为自养好氧菌,在好氧条件下,将废水中NH3—N氧化为NO3--N,此过程消耗废水中碳酸盐碱度计),一方面须中和过程产生的H+,另一方面,硝化菌细胞生长需要消耗一定量碱度。每硝化1g氨氮,需消耗7.1g碱度(以CaCO3计)。因此需要在此投加适量Na2CO3,以补充碱度。反应温度20~40℃;pH8.0~8.4。此过程,要求较低的含碳有机质,以免异氧菌增殖过快,影响硝化菌的增殖。气水比20:1。与悬浮活性污泥接触,水中的有机物被活性污泥吸附、氧化分解并部分转达化为新的微生物菌胶团,废水得到净化。该工艺在水底直接布气,活性污泥直接受到气流的搅动,加速了微生物的更新,使其经常保持较高的活性。

污水生化处理环境类影响因素

污水生化处理环境类影响因素 水处理技术:(1)温度。温度对微生物的影响是很广泛的,尽管在高温环境(50℃~70℃)和低温环境(-5~0℃)中也活跃着某些类的细菌,但污水处理中绝大部分微生物最适宜生长的温度范围是20-30℃。在适宜的温度范围内,微生物的生理活动旺盛,其活性随温度的增高而增强,处理效果也越好。超出此范围,微生物的活性变差,生物反应过程就会受影响。一般的,控制反应进程的最高和最低限值分别为35℃和10℃。 (2)PH值。活性污泥系统微生物最适宜的PH值范围是6.5-8.5,酸性或碱性过强的环境均不利于微生物的生存和生长,严重时会使污泥絮体遭到破坏,菌胶团解体,处理效果急剧恶化。 (3)溶解氧。对好氧生物反应来说,保持混合液中一定浓度的溶解氧至关重要。当环境中的溶解氧高于0.3mg/l时,兼性菌和好氧菌都进行好氧呼吸;当溶解氧低于0.2-0.3mg/l接近于零时,兼性菌则转入厌氧呼吸,绝大部分好氧菌基本停止呼吸,而有部分好氧菌(多数为丝状菌)还可能生长良好,在系统中占据优势后常导致污泥膨胀。一般的,曝气池出口处的溶解氧以保持2mg/l左右为宜,过高则增加能耗,经济上不合算。 在所有影响因素中,基质类因素和PH值决定于进水水质,对这些因素的控制,主要靠日常的监测和有关条例、法规的严格执行。对一般污水而言,这些因素大都不会构成太大的影响,各参数基本能维持在适当范围内。温度的变化与气候有关,对

于万吨级的污水处理厂,特别是采用活性污泥工艺时,对温度的控制难以实施,在经济上和工程上都不是十分可行的。因此,一般是通过设计参数的适当选取来满足不同温度变化的处理要求,以达到处理目标。因此,工艺控制的主要目标就落在活性污泥本身以及可通过调控手段来改变的环境因素上,控制的主要任务就是采取合适的措施,克服外界因素对活性污泥系统的影响,使其能持续稳定地发挥作用。 实现对生物反应系统的过程控制关键在于控制对象或控制参数的选取,而这又与处理工艺或处理目标密切相关。 前已述及溶解氧是生物反应类型和过程中一个非常重要的指示参数,它能直观且比较迅速地反映出整个系统的运行状况,运行管理方便,仪器、仪表的安装及维护也较简单,这也是近十年我国新建的污水处理厂基本都实现了溶解氧现场和在线监测的原因。

生化污水处理岗位职责

生化工岗位责任制 1、在值班长和组长的带领下,完成其交代的任务。 2、熟悉工艺流程,了解设备的工作原理,掌握正确的操作方法。 3、按规定和要求定时巡视各工序的运行状况,并作好记录,对发现的问题及时处理汇报,对重大问题及时报告车间领导。 4、负责设备的日常保养和维护及卫生清洁工作;做到窗明几净,物见本色。 5、认真填写操作记录、报表,如实反映本班运行情况。 6、协助化验室采样、机修人员维修设备。 7、负责所属区域的卫生清洁。 8、负责随时清理生化各池水面上的漂浮物,决不允许大块杂物浮于水面上。 9、负责随时清理调节池、除油均和池、厌氧池表面积油。 10、负责剩余污泥压泥,污泥转运工作,运泥至指定地点。 11、负责所属工器具的维护保养。 12、每班必须做沉降比,观察菌种活性,活性低时及时添加药剂。 13、负责纯碱、磷等药剂投加,确保足量均匀投加到各加药点。 14、负责调节调节池水量水质,确保系统平稳运行。 生化组长岗位责任制 1、在值班长的代领下,完成其交代的任务。 2、熟悉设备性能和操作程序,定期保养好处理设备,密切注意水质,水量变化,确保设备安全运行。 3、掌握好处理药剂,污水流量和污水水质的比例,经常关注处理污水效果,做到未处理的污水不排放,不达到标准不排放, 4、熟悉生化处理工艺流程、工艺参数,掌握有关构筑物设备,仪表,管路系统的功能和用途。 5、按照工艺操作程序,准确控制运行过程,按时进行规定的操作。确保工艺正常运行,使水处理效果和质量达到技术要求。 6、每一小时巡视一次,作好巡查记录,发现问题及时报告车间领导。夜间巡视必须二人以上,严禁单人上池。 7、负责按规定时间进行取样,并及时关注化验结果。 8、认真填写操作记录、报表、交接班日志,如实反映本班运行情况; 9、督促检查各组员工作的完成情况。 10、注重安全生产,确保设备、人员安全。谢绝未批准的无关人员上岗上池。 11、负责所属工器具的维护保养。负责监管三轮车的使用,确保合理使用。 12、负责监管运输剩余污泥至指定地点。 13、交接班时,做好各项准备工作和交接班人员共同到现场全面巡视一次,交班应做到“三清’.交清水质,水量,气量及处理效果,交清运行记录和及具体工作内容。交清安全设施,工具物品,设备情况。如发现交班不清,可拒绝接班,由交班人完成后再接班。

生物法处理废水

生物法处理废水 研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。目前,常用于污水治理的方法可归纳为物理法、化学法、生物法。物理法常作为一种预处理的手段应用于废水处理;化学处理法是指向废水中加入化学药剂如明矾等,使其与污染物发生化学反应而生成无害物的过程,这种方法也常常作为预处理方法使用;而生物处理法是利用微生物降解代有机物为无机物来处理废水。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。根据使用微生物的种类,可分为好氧法、厌氧法和生物酶法等。 一好氧处理法 该办法是根据需好氧微生物生活的特点,提供充足的氧气,使好氧微生物大量繁殖, 通过微生物的新代活动使废水中的有机物最 终氧化分解成CO2 、水、硝酸盐等简单的无机物,已达到净化污水的目的。好氧处理方法包括: 活性污泥法、生物膜法 (一)活性污泥法 1912年英国人Clark and Cage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lackett进一步研究,发现由于实验容器洗不干净,瓶壁留下残渣反而使处理效果提高,从而发现活性微生物菌胶团,定名为活性污泥。活性污泥法是利用悬浮在废水中人工培养的微生物群体——活性污泥,对废水中

的有机物和某些无机物产生吸附、氧化分解而使废水得到净化,是目前较为经济、应用广泛、处理效果较好的净化废水方法。 1影响活性污泥性能的环境因素 (1)溶解 生化处理的基本要素:营养物、活性微生物、溶解氧,所以要使生化处理正常运行,供氧是重要因素。一般说,溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 (2)水温 维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 (3)营养料 细菌的化学组成实验式为C 5H 7 O 2 N,霉菌为C 10 H 17 O 6 原生动物为 C 7H 14 O 3 N,所以在培养微生物时,可按菌体的主要成分比例供给营养。 微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机 碳源。氮源--无机氮(NH 3及NH 4 +)和有机氮(尿素,氨基酸,蛋白 质等)。一般比例关系:BOD:N:P=100:5:1。好氧生物处 BOD 5 =500——1000mg/l (4)有毒物质 主要毒物有重金属离子(如锌,铜,镍,铅,铬等)和一些非金属化合物(如酚,醛,氰化物,硫化物等)。 2基本流程 典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。1916年英国建成第一座污水处理厂,下图为活

污水处理厂工艺流程范本.docx

第二部分 污水处理厂 一、工艺流程 典型的城市污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段,如图1。由机械处理以及生化处理构成的系统属于二级处理系统,其BOD5 和 SS 去除率可达到9 0%~ 98%。处理效果介于一级和二级处理之间的一般称为强化一级处理、一级半处理或不 完全二级处理,主要有高负荷生物处理法和化学法两大类,BOD5 去除率可达到45%~ 75%。具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。为了去除特定的物质,在二级处理之后设置的处理系统属三级处理,例如化学除磷、絮凝过滤、活性炭吸附等。 机械处理工段 机械(一级)处理工段包括格栅、污水提升泵房、沉砂池、初沉池等构筑物,以去除粗 大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离, 这是普遍采用的污水处理方式。机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5 和 SS 的典型去除率分别为25% 和 50%。

生化处理工段 生化处理是整个污水处理过程的核心,因此我们称污水处理工艺是特指这部分,如氧化 沟法、 SBR 法、 A/O 法等。污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可 生物降解有机物为主要目的。目前大多数城市污水处理厂都采用活性污泥法。生化处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO 2)、液体产物(水)以及富含有机物的固体产物(微生物群 体或称生物污泥);多余的生物污泥在沉淀池中经沉淀固液分离,从净化后的污水中除去。 污泥处理工段 生化处理工段的污泥,先到污泥泵房,部分污泥回流至生化处理工段,另一部分污泥(剩余污泥)用污泥泵快速输入到污泥浓缩池。污泥浓缩池浓缩一定时间后,上清液回流到污水提升泵房的集水池;浓缩后的污泥再回到另一格污泥调节池,用污泥泵提升到污泥脱水机房。 污泥在脱水机房脱水后,制成泥饼外运。 格栅

生化污水处理站职业健康安全规程.docx

生化污水处理站职业健康安全规程 1. 未经公司有关部门和车间领导的同意,非岗位人员不得进入本工段(检修人员例外),进出人员必须履行登记手续。 2.位员工严格遵守认真执行上班前应穿戴好劳保用品,否则不准进入生产岗位,进入塔区必须戴好安全帽. 3. 班前班中不准饮酒,岗位上不准会客劳动纪律处坚持工作岗位安全规程,拒绝违章操作. 4.因工作和检修需要,需进行危险作业和动火作业时,必须先办理危险 作业证和动火作业证,并按要求采取措施经批准后方可作业. 5.严禁用铁块和石快等物敲击带压容器或管线。 6.使用软梯进入构筑物内,必须将软梯扎牢寄好,防止脱落伤人。 7.进行地下工房内操作时必须有两人以上进行,并佩带防毒面具,在有通风措施的地方要通风15——20分钟后方可进人。 8.对安全护栏,走廊,爬梯定期检查其牢固程度,对有损坏部位要及时维护防腐。对损坏的照明设备要及时更换。 9.安全监测仪表应每年检测一次。 10.任何污水处理设施不得丢入杂物或其他废弃材料。 11.为确保上位机对整个工艺过趁程的控制,严禁使用无关软盘、光盘、严禁在上位机上从事与工作无关的操作。 12.倒摔伤消防器材应培置齐全完好,并定期检查按期更换,做到人人会用,不得挪作它用。

13. 上下楼梯要注意安全,冬季要及时排除积雪和积水,以免滑。 14.严禁电气设备发生故障必须找电工处理,非电工人员禁止拆修电气设备. 15. 严禁用水布放在轴承上冷却温度. 16. 机械在运转过程中禁止修理,严禁用抹布和棉纱擦拭转动设备的通风.。 17.排水要求 1)、除雨水外,其它污水不应设明沟外排。 2)、酚、氰污水必须经过处理,使之达到现行的工业三废排放标准。禁止采用稀方法排放。 3)、雨水和其他污水不得排入酚水下水道。 4)、生产单元内从排水缶到集水井的酚水下水道可用明沟,出生产单元的酚水下 水道应尽量采用地上管线。 5)、含油废水的下水道应在下列地点设置水封井,水封高度不得小于2.5× 103Pa(2.55×102mmH2()): A、. 产生含油废水的生产单元、建筑物、贮罐组及管沟的下水道出口处; B、.生产装置内产生含油废水的炉、塔、泵或换热设备等的围堰下水道出口处; C、.隔油池的进出口处。

生化法处理油脂化工废水

生化法处理油脂化工废水 某油脂化工厂以动植物油、废甘油等为原料生产各类硬脂酸、甘油、油酸等产品,废水发黑,COD cr,,BOD5浓度高,呈酸性。目前国内成功治理该类废水的范例较少,在实验室实验的基础上,应用厌氧折流反应器—序批式活性污泥工艺(简称ABR—SBR法)对该废水进行治理,经过一年多的调试和运行,出水水质稳定,可达到国家一级排放标准(CB8978—96),设备运行稳定。 1 废水处理设计 该厂废水主要来自酸化、水解、清洗等工艺,废水中主要含有动植物油、各类硬脂酸、油酸、无机酸等。 设计水量为重50m3/d,.废水经处理后应达到国家一级排放标准(CB8978—96),进出水水质情况见表1。

1.1 废水处理工艺 该工程采用生物法为主体处理工艺,以隔油池,沉淀池为预处理工艺。污泥定期排入污泥池,干化后外运。工艺流程见图1。 1.2主要构筑物及设备 1.2.1隔油池 采用平流隔油池,水力停留时间2h。浮油进行回收。平面尺寸2.0m×3.0m,有效水深3.0m。 1.2.2调节池 调节池停留时间为14h。平面尺寸6.0m×4.0m,有效水深3.2m。 1.2.3斜管沉淀池 沉淀池前端为旋流反应区,混凝区,后段为斜管沉淀区。反应区利用提升水泵的冲力,在反应区内形成旋流,使石灰乳与废水充分反应,Ca(OH)2既可作为一种很好的混凝剂,使废水中的胶体物质发生电中和形成絮体,从而使绝大部分有机物沉淀下来,形成明显的固液分离,又可提高废水的pH值,同时又可降低废水中的SO42-的浓度,有利于后续厌氧水解处理。沉淀区采用斜管沉淀,表面负荷为1.1m3/m2,总停留时间为2.8h。平面尺寸为5.0m×2.0m,有效水深3.5m。 1.2.4 ABR反应器

AO生化处理工艺处理废水

A/O生化处理工艺处理废水 一、概述 太原市妇幼保健院,位于太原市中心,属环境敏感区,该院医疗废水在院区处理后排入城市下水管网,最终进入XX市第一污水处理厂。医院废水污染物浓度较高,且具有相对毒性,污染周围环境,影响地表水质,危害人体健康。目前该院产科综合大楼项目基本建成,根据新的《医疗机构水污染排放标准》(GB18446—2005)和《医院污水处理技术指南》中的要求,为保证医院废水长期稳定达标排放,本方案采用两级处理+消毒工艺。处理后的排放废水必须达到《医疗机构水污染排放标准》(GB18446—2005)。 二、设计依据 1、污水量: 根据业主提供参数,目前排放水量:80t/d,还需预留今后发展要求,则本方案设计 排放水量:120t/d,平均时流量:Q=5m3/h。 2、污水水质: 参考建筑中水设计规范: 项目CODCrBOD5SS植物油氨氮pH 指标300—360mg/l250mg/l200mg/l100mg/l25mg/l7—9 3、根据《医疗机构水污染排放标准》(GB18446—2005)。 项目CODCrBOD5SS植物油氨氮石油类总余氯pH 指标≤60mg/l≤20mg/l≤20mg/l5mg/l15mg/l5mg/l0.5mg/l6—9 说明:粪大肠菌群数:500MPN/L,肠道致病菌、肠道病毒均不得检出。 4、消毒剂采用二氧化氯: 二氧化氯投加量:20mg/l 平均时投氯量:G1=20×5=100g/h=2400g/d 5、有关设计规范及标准: (1)建筑给水排水设计规范(GBJ15—88)

(2)建筑中水设计规范(CECS30:90) (3)室外排水设计规范(GBJ14—87) (4)《医院污水处理技术指南》 (5)国家有关给水排水设计规范及污水处理工程建设项目有关技术规范 三、设计原则 1、采用先进、成熟、节能的工艺及设备,处理后排放水达到《医疗机构水污染排放标准》(GB18446—2005); 2、整个流程采用一级提升,降低运行费用; 3、处理装置采用自动化控制系统,降低工人劳动强度; 4、处理装置不产生二次污染; 5、选用技术先进、质量稳定可靠的设备,以保证处理设施正常运行。 四、工艺流程 五、工艺特点

污水生化处理常用术语

污水生化处理常用术语 (2009-09-21 14:10:57) 标签: 杂谈 污水生化处理常用术语 BOD(Biochemical Oxygen Demand)——生化需氧量 在有氧条件下,由于微生物的作用,水中可以分解的有机物完全氧化分解时所需要的溶解氧量,叫生化需氧量,用mg/L表示。 由于有机物的种类很多,欲测出其中各自的含量是办不到的,故常用BOD这个综合指标来表示。微生物分解有机物所消耗的氧量与有机物的浓度密切相关,有机物含量愈高,消耗的氧也就愈多,这就是用BOD值来间接反映有机物含量多少的根据。 完全氧化分解污水中的有机物约需100天左右,而20天的BOD值十分接近完全的BOD值(相差1%左右)。因此,常把20日BOD值(即BOD20)当作完全BOD 值。但20日仍嫌太长,实际上采用5日BOD值,即BOD5。 BOD5与BOD20相差较大,但就一般污水而言,二者存在比较固定的比值,如生活污水BOD5:BOD20=0.7。 COD(Chemical Oxygen Demand)——化学需氧量 在一定条件下,水中能被强氧化剂氧化的所有污染物质(包括有机物和无机物)的量,以氧的mg/L表示,叫化学需氧量。 有机物基本上属于还原性物质,能被化学氧化剂氧化。有机物愈多,消耗的氧化剂量也愈多,因此可以用消耗的氧化剂量(换算成O2的mg/L)来间接反映有机物的

含量。但有机物不是全部能被氧化的,如以醋酸为主的低级脂肪酸就几乎不能被氧化。此外,被氧化的污染物质还包括还原性的无机物——Fe2+、NO2-等。 COD的测定方法分铬法(以重铬酸钾做氧化剂)和锰法(以高锰酸钾做氧化剂)两种,分别记为COD Cr和COD Mn。 高锰酸钾法测定的结果受操作条件影响较大,且高锰酸钾溶液不稳定,对氧化程度也有影响,因而测定结果不能代表水中污染物质的确切含量。而重铬酸钾法则克服了上述缺陷,它具有更强的氧化能力,能将污水中绝大部分有机物和还原性无机物氧化。其溶液非常稳定。该法已被广泛采用。其与猛法之间的比值一般为:COD Cr:COD Mn=3:2。 由于BOD5的测定比较麻烦,可以找出其与COD之间的相关关系,做出二者的相关曲线,这样,测出COD便可由相关曲线查出BOD5值。但这种做法有一定局限性,因为BOD5和COD的比值是随水质成份的变化而变化的。有些有毒物质BOD5测不出来,COD却能测出;而某些羧基化合物易于在BOD5中反映出来,而在COD中又反映不出,故对水质复杂,进水负荷波动频繁的生产工艺,其BOD5与COD的相关关系不是固定不变的。但对试验用的配制污水和生产工艺稳定、进水负荷波动很小的污水,在一定时间内利用二者的相关曲线还是可行的。 TOC(Total Organic Carbon)——总有机碳 污水中有机物含量的总和。它还包括了强氧化剂重铬酸钾难以氧化的有机物质,因此,它比COD Cr在某种意义上更准确、全面。国外多采用TOC这个指标。其测定方法是将水样在高温下燃烧,有机碳则氧化为CO2,测出所产生的CO2量,便可求得水样的总有机碳(TOC)值,单位以碳的mg/L表示。在作该项分析时,须采取措施去除无机碳的干扰。总有机碳的测定已有仪器可供使用,其测定迅速,可在短时间内完成分析工作,但由于所需设备比较昂贵,目前国内尚不能普遍采用。

生化法污水处理技术

生化法污水处理技术 在我国城市污水处理中,鉴于低成本、高效率等优势, 生化法已经得到了业界的一致好评。污水处理的本质就是要有效去除污水中的有机物,在生化法的应用中其效率容易受到微生物的活性和污泥性状的影响,从而影响到污水处理的效果。所以,现在对生化法技术和工艺应用进行探讨和分析意义重大。 1 现在城市污水特点和处理分析 现代城市中,居民生活和城市中的工业生产每天都会排放大量的污水,并且在污水中含有大量的有机物和微生物,比如油、氨氮化合物以及寄生虫等。在城市人口不断增长的情况下,城市污水排放量也在大幅增加,水污染也呈现出日益严重的状况,在城市持续发展的背景下,就必须要加大对城市污水的处理力度。 1.1 水体污染负荷控制难度大 由于现代人们生活所用的产品和物质类型不断丰富,从而导致城市污水的杂质种类和化学物质的种类也在不断增加,加大了城市污水的处理难度。在城市污水处理中,主要的工作就是要有效去除污水处理中的杂质和各种有害颗粒,通常是应用物理方式或者物理和化学相结合的方式去除水体污染物。鉴于目前城市污水的多样化特征,污水处理难度增加。另外,污水中的污染物也会根据季节和气候的变化而发生变化,从而导致现有污水处理技术已经难以满足污水的处理要求,导致现在城市污水处理能力也相对下降,污水处理效果不佳。 1.2 污水处理能耗较高 在经济高度发展的背景下,人们已经不再在乎用水量的多少,在我国水资源不断减少的情况下,城市的污水处理也必须要协助城市走持续性发展的道路,在保证污水处理效果的同时,还要减少对能源的消耗。但是,基于当前城市污水处理技术,多项研究表明,很多传统的污水处理技术相对比较单一,污水处理设备落后,在污水处理中往往会需要消耗大量的能源,所以,传统污水处理技术已经不能符合现代城市持续发展的理念。 2 城市污水处理常用技术 2.1 生物处理技术 生物处理技术是目前城市污水处理中应用较多的处理方式,由污水中的细菌和有机物自由结合产生胶体,再对污水进行沉淀和过滤,然后再利用氧化技术对最终没有被分解的细菌和无机物等进行降解作用。生物处理技术就是利用水中微生物对有机物的分解和代谢作用,将水中的有机物进行转化,减少水中污染物的危害,这种方法操作简便,在城市污水处理中应用较广。 2.2 化学处理技术 从字面意思就可以看出,化学处理技术即是通过化学物质融入城市污水中,然后利用污染物和化学物质之间发生化学反应,来降低污染物含量,实现污水处理的技术。当前,对污水中的油脂进行处理应用较多的就是化学处理技术,主要是通过新型絮凝剂的应用,其中,大型油脂企业在进行污水处理中应用较多的就是无机絮凝剂,且污水处理效果非常好。具体联系污水宝或参见https://www.wendangku.net/doc/889689936.html,更多相关技术文档。 2.3 生物化学法 生物化学法也就是本文所研究的生化法,也是目前污水处理中最新的技术。其主要是通过将PLC 控制技术和SBR+MBR 膜分离技术进行科学融合,通过活性污泥中的好氧菌对生活污水中的有机物进行充分吸附,经过曝气后,在生物化学的作用下,有效分解污水中的有机物,然后再利用MBR 膜来对其进行分离和过滤,从而降低污水的污染物含量,提高污水标准。该方法的主要优点就在于其处理能力相对持久,并且能够减少能源的消耗,实现节能目的。同时,利用生化法

判断污水可生化性

判断污水可生化性 废水的可生化性是废水重要特征指标之一。准确判断废水的可生化性对于处理工艺的设计十分重要。文章详细介绍了国内外目前应用的各项废水可生化性指标的概念、原理及应用过程中的优势和不足,为处理工艺中废水可生化性判定指标的选择提供了参考和指导。废水的可生化性(Biodegradability),也称废水的生物可降解性,即废水中有机污染物被生物降解的难易程度,是废水的重要特性之一。 废水存在可生化性差异的主要原因在于废水所含的有机物中,除一些易被微生物分解、利用外,还含有一些不易被微生物降解、甚至对微生物的生长产生抑制作用,这些有机物质的生物降解性质以及在废水中的相对含量决定了该种废水采用生物法处理(通常指好氧生物处理)的可行性及难易程度[1-5]。在特定情况下,废水的可生化性除了体现废水中有机污染物能否可以被利用以及被利用的程度外,还反映了处理过程中微生物对有机污染物的利用速度:一旦微生物的分解利用速度过慢,导致处理过程所需时间过长,在实际的废水工程中很难实现,因此,一般也认为该种废水的可生化性不高[6]。确定处理对象废水的可生化性,对于废水处理方法的选择、确定生化处理工段进水量、有机负荷等重要工艺参数具有重要的意义。国内外对于可生化性的判定方法根据采用的判定参数大致可以分为好氧呼吸参量法、微生物生理指标法、模拟实验法以及综合模型法等。 1好氧呼吸参量法 微生物对有机污染物的好氧降解过程中,除COD(Chemical Oxygen Demand化学需氧量)、BOD(Biological Oxygen Demand生化需氧量)等水质指标的变化外,同时伴随着O2的消耗和CO2的生成。好氧呼吸参量法是就是利用上述事实,通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的O2或CO2含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO2生成量测定法。 1.1水质指标评价法 BOD5/CODCr比值法是最经典、也是目前最为常用的一种评价废水可生化性的水质指标评价法[7]。BOD是指有氧条件下好氧微生物分解利用废水中有机污染物进行新陈代谢过程中所消耗的氧量,我们通常是将BOD5(五天生化需氧量)直接代表废水中可生物降解的那部分有机物。CODCr是指利用化学氧化剂(K2Cr2O7)彻底氧化废水中有机污染物过程中所消耗氧的量,通常将CODCr代表废水中有机污染物的总量。传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。目前普遍认为,BOD/COD<0.3的废水属于难生物降解废水,在进行必要的预处理之前不易采用好氧生物处理;而BOD/COD>0.3的废水属于可生物降解废水。该比值越高,表明废水采用好氧生物处理所达到的效果越好[8,9,10]。在各种有机污染指标中,总有机碳(TOC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。随着近几年来上述指标测定方法的发展、改进,国外多采用BOD /TOD及BOD /TOC的比值作为废水可生化性判定指标,并给出了一系列的标准[11]。但无论BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通过测定可生物降解的有机物(BOD)占总有机物(COD、TOD或TOC)的比例来判定废水可生化性的。该种判定方法的主要优点在于:BOD、COD等水质指标的意义已被广泛了解和接受,且测定方法成熟,所需仪器简单。但该判定方法也存在明显不足,导致该种方法在应用过程中有较大的局限性。首先,BOD本身是一个经验参数,必须在严格一致的测试条件下才能比较它们的重现性和可比性。测试条件的任何偏差都将导致极不稳定的测试结果,稀释过程、分析者的经验以及接种材料的变化都可以导致BOD

相关文档