文档库 最新最全的文档下载
当前位置:文档库 › 数学破题36大招

数学破题36大招

数学破题36大招
数学破题36大招

目录

目录 (1)

第1关:极值点偏移问题--对数不等式法 (2)

第2关:参数范围问题—常见解题6法 (6)

第3关:数列求和问题—解题策略8法 (9)

第4关:绝对值不等式解法问题—7大类型 (13)

第5关:三角函数最值问题—解题9法 (19)

第6关:求轨迹方程问题—6大常用方法 (24)

第7关:参数方程与极坐标问题—“考点”面面看 (37)

第8关:均值不等式问题—拼凑8法 (43)

第9关:不等式恒成立问题—8种解法探析 (49)

第10关:圆锥曲线最值问题—5大方面 (55)

第11关:排列组合应用问题—解题21法 (59)

第12关:几何概型问题—5类重要题型 (66)

第13关:直线中的对称问题—4类对称题型 (69)

第14关:利用导数证明不等式问题—4大解题技巧 (71)

第15关:函数中易混问题—11对 (76)

第16关:三项展开式问题—破解“四法” (82)

第17关:由递推关系求数列通项问题—“不动点”法 (83)

第18关:类比推理问题—高考命题新亮点 (87)

第19关:函数定义域问题—知识大盘点 (93)

第20关:求函数值域问题—7类题型16种方法 (100)

第21关:求函数解析式问题—7种求法 (121)

第22关:解答立体几何问题—5大数学思想方法 (124)

第23关:数列通项公式—常见9种求法 (129)

第24关:导数应用问题—9种错解剖析 (141)

第25关:三角函数与平面向量综合问题—6种类型 (144)

第26关:概率题错解分类剖析—7大类型 (150)

第27关:抽象函数问题—分类解析 (153)

第28关:三次函数专题—全解全析 (157)

第29关:二次函数在闭区间上的最值问题—大盘点 (169)

第30关:解析几何与向量综合问题—知识点大扫描 (178)

第31关:平面向量与三角形四心知识的交汇 (179)

第32关:数学解题的“灵魂变奏曲”—转化思想 (183)

第33关:函数零点问题—求解策略 (194)

第34关:求离心率取值范围—常见6法 (199)

第35关:高考数学选择题—解题策略 (202)

第36关:高考数学填空题—解题策略 (211)

第1关:极值点偏移问题--对数不等式法

我们熟知平均值不等式:

即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”

等号成立的条件是.

我们还可以引入另一个平均值:对数平均值:

那么上述平均值不等式可变为:对数平均值不等式

以下简单给出证明:

不妨设,设,则原不等式变为:

以下只要证明上述函数不等式即可.

以下我们来看看对数不等式的作用.

题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是

A. B. C. D.有极小值点,且

【答案】C

【解析】函数导函数:

有极值点,而极值,,A正确.

有两个零点:,,即:

①-②得:

根据对数平均值不等式:

,而,B正确,C错误

而①+②得:,即D成立.

题目2:(2011辽宁理)已知函数.

若函数的图像与轴交于两点,线段中点的横坐标为,证明:

【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:

设,,,则,

①-②得:,化简得:

而根据对数平均值不等式:

③等式代换到上述不等式

根据:(由③得出)∴④式变为:

∵,∴,∴在函数单减区间中,即:

题目3:(2010天津理)已知函数.如果,且

.

证明:.

【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:

设,则,,两边取对数

①-②得:

根据对数平均值不等式

题目4:(2014江苏南通市二模)设函数,其图象与

轴交于两点,且.

证明:(为函数的导函数).

【解析】根据题意:,移项取对数得:

①-②得:,即:

根据对数平均值不等式:

,①+②得:

根据均值不等式:

∵函数在单调递减

题目5:已知函数与直线交于两点. 求证:

【解析】由,,可得:

①,②

①-②得:

①+②得:

根据对数平均值不等式

利用③④式可得:

由题于与交于不同两点,易得出则

∴上式简化为:

第2关:参数范围问题—常见解题6法

求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.

一、确定“主元”思想

常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.

例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时

y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.

解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.

由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,

解得x>3或x<-1.∴x的取值范围为x>3或x<-1.

二、分离变量

对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。

例2.若对于任意角总有成立,求的范围.

分析与解:此式是可分离变量型,由原不等式得,

又,则原不等式等价变形为恒成立.

根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最

小值.因为

即时,有最小值为0,故.

评析:一般地,分离变量后有下列几种情形:

①f(x)≥g(k) [f(x)]min≥g(k)

②f(x)> g(k) g(k) < [f(x)] min

③f(x)≤g(k) [f(x)] max≤g(k)

④f(x)

三、数形结合

对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.

例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则

,其图象为上半圆.

设函数,其图象为直线.

在同一坐标系内作出函数图象如图,

依题意要使半圆恒在直线下方,只有圆心到直线

的距离且时成立,即a的取值范围为

四、分类讨论

当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。

例4.当时,不等式恒成立,求a的取值范围.

解:(1)当时,由题设知恒成立,即,而

∴解得

(2)当时,由题设知恒成立,即,而

∴解得.∴a的取值范围是

五、利用判别式

当问题可化为一元二次不等式在实数集上恒成立的问题,可用判别式来求解.

例5.不等式,对一切恒成立,求实数的取值范围.

解:∵在R上恒成立,

,R

∴,解得

故实数的取值范围是.

一般地二次函数f(x)=ax2+bx+c恒正,f(x)=ax2+bx+c恒负.

六、构造函数

构造出函数,通过对函数性质的研究,来达到解决问题的目的.

例6.已知不等式对于一切大于1

的自然数都成立,求实数的取值范围.

分析:注意到不等式仅仅左边是与有关的式子,从函数的观点看,左边是关于的函数,要使原不等式成立,即要求这个函数的最小值大于右式.如何求这个函数的最小值呢?这又是一个非常规问题,应该从研究此函数的单调性入手.

解:设,N

∴是关于N的递增函数,则=.

∴要使不等式成立,只须,解之得.

∴实数的取值范围是.

以上介绍了求参数的取值范围问题的处理方法,在具体解题中可能要用到两种或两种以上的方法,应灵活处理.

第3关:数列求和问题—解题策略8法

数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见解题策略作一归纳,供广大师生参考。

1、公式法求和

若所给数列的通项是关于n的多项式,此时可采用公式法求和,利用下列常用求和公式求和是数列求和的最基本最重要的方法之一。常用求和公式列举如下:

等差数列求和公式:,

等比数列求和公式:

自然数的方幂和:k3=13+23+33++n3= n2 (n+1)2,k=1+2+3++n= n(n+1),

k2=12+22+32++n2= n(n+1)(2 n+ 1)

例1已知数列,其中,记数列的前项和为,数列的前项和为,求。

解:由题意,是首项为,公差为的等差数列

前项和,

2、错位相减法求和

若数列的通项公式为,其中,中有一个是等差数列,另一个

是等比数列,求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q,然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。它在推导等比数列的前n项和公式时曾用到的方法。

例2已知当

时,求数列的前n项和;

解:当时,.由题可知,{}的通项是等差数列{}的通项与等比数列{}的通项之积,这时数列的前项和

.①

①式两边同乘以,得②

①式减去②式,得

若,,

若,

3、反序相加法求和

将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个,S n

表示从第一项依次到第n项的和,然后又将S n表示成第n项依次反序到第一项的和,将所得两式相加,由此得到S n的一种求和方法。也称倒写相加法,这是在推导等差数列的前n 项和公式时曾用到的方法.

例3设,利用课本中推导等差数列的前项和的公式的方法,可求得

的值为:

解:因为f(x)=,∴f(1-x)=

∴f(x)+f(1-x)=.

设S=f(-5)+f(-4)+…+f(6),则S=f(6)+f(5)+…+f(-5)

∴2S=(f(6)+f(-5))+(f(5)+f(-4))+…+(f(-5)+…f(6))=6

∴S=f(-5)+f(-4)+…+f(0)+…+f(6)=3.

4、拆项重组求和.

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,能分为几个等差、等比或常见的数列的和、差,则对拆开后的数列分别求和,再将其合并即可求出原数列的和.也称分组求和法.

例4求数列{n(n+1)(2n+1)}的前n项和.

解:设

∴=

将其每一项拆开再重新组合得:

S n=

5、裂项相消法求和

有些数列求和的问题,可以对相应的数列的通项公式加以变形,将其写成两项的差,这样整个数列求和的各加数都按同样的方法裂成两项之差,其中每项的被减数一定是后面某项的减数,从而经过逐项相互抵消仅剩下有限项,可得出前项和公式.这是分解与组合思想

在数列求和中的具体应用,也称为分裂通项法。它适用于型(其中{}是各项不

为0的等差数列,c为常数)、部分无理数列、含阶乘的数列等。常见拆项公式有:

;;;

;;

;;

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

导数压轴处理套路与大招(上)

导数压轴题处理套路 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 - 微信公众号:中学数学研讨部落 说明:题目全来自网络和QQ群友分享,在此一并谢过

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知 (1)讨论的单调性 (2)设,求证: 例2. 已知函数,。 (1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有。 例3. 设函数 . (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

2015高中数学必修4第三章经典习题含答案

第三章经典习题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150 分。考试时间120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.sin 2 π12-cos 2 π12的值为( ) A .-1 2 B.1 2 C .-3 2 D.32 [答案] C [解析] 原式=-(cos 2 π12-sin 2 π12)=-cos π6=-32. 2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π23 B .π C .2π D .4π [答案] B [解析] f (x )=sin2x -cos2x =2sin(2x -π4),故T =2π 2=π. 3.已知cos θ=13,θ∈(0,π),则cos(3π 2+2θ)=( ) A .-429 B .-79 C.429 D.79

[答案] C [解析] cos(3π2+2θ)=sin2θ=2sin θcos θ=2×223×13=42 9. 4.若tan α=3,tan β=4 3,则tan(α-β)等于( ) A .-3 B .-1 3 C .3 D.13 [答案] D [解析] tan(α-β)=tan α-tan β 1+tan αtan β=3-43 1+3× 43=1 3. 5.cos 275°+cos 215°+cos75°·cos15°的值是( ) A.54 B.62 C.32 D .1+2 3 [答案] A [解析] 原式=sin 2 15°+cos 2 15°+sin15°cos15°=1+12sin30°=5 4. 6.y =cos 2x -sin 2x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2 D .-2 [答案] B [解析] y =cos2x +sin2x =2sin(2x +π 4),∴y max =- 2. 7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( )

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学大题经典习题(2020年九月整理).doc

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1(2)(2)3 f x a x bx a x =-+-+-,则 ()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ?? ? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

(完整word版)高一数学必修一经典高难度测试题含答案

高中数学必修1复习测试题(难题版) 1.设5log 3 1=a ,5 13=b ,3 .051??? ??=c ,则有( ) A .a b c << B .c b a << C .c a b << D .b c a << 2.已知定义域为R 的函数)(x f 在),4(∞+上为减函数,且函数()y f x =的对称轴为4x =,则( ) A .)3()2(f f > B .)5()2(f f > C .)5()3(f f > D .)6()3(f f > 3.函数lg y x = 的图象是( )

4.下列等式能够成立的是( ) A .ππ-=-3)3(66 B = C =34 ()x y =+ 5.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()23(f f f <-<- B .)1()2 3 ()2(-<-

6.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 A . ()(2)f x x x =-+ B .()||(2)f x x x =- C .()(||2)f x x x =- D. ()||(||2)f x x x =- 7.已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .(2,)+∞

高考数学大题训练及解析

高考数学大题训练及解析 1.三角知识(命题意图:在三角形中,考查三角恒等变换、正余弦定理及面积公式的应用) (本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知 sin C 2=104. (1)求cos C 的值; (2)若△ABC 的面积为3154,且sin 2A +sin 2 B =1316sin 2 C ,求a ,b 及c 的值. 解 (1)因为sin C 2=10 4, 所以cos C =1-2sin 2C 2=-1 4. (2)因为sin 2 A +sin 2 B =1316sin 2 C ,由正弦定理得 a 2+ b 2=13 16c 2,① 由余弦定理得a 2 +b 2 =c 2 +2ab cos C ,将cos C =-14代入,得ab =38c 2 , ② 由S △ABC =3154及sin C =1-cos 2C =15 4,得ab =6,③ 由①②③得?????a =2,b =3,c =4,或???? ?a =3,b =2,c =4.

经检验,满足题意. 所以a =2,b =3,c =4或a =3,b =2,c =4. 2.数列(命题意图:考查数列基本量的求取,数列前n 项和的求取,以及利用放缩法解决数列不等式问题等.) (本小题满分12分)已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满 足a n =2S 2n 2S n -1 (n ≥2). (1)求证:数列???? ?? 1S n 是等差数列; (2)证明:当n ≥2时,S 1+12S 2+13S 3+…+1n S n <3 2. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1 , S n -1-S n =2S n S n -1,1S n -1 S n -1=2, 从而???? ?? 1S n 构成以1为首项,2为公差的等差数列. (2)由(1)可知,1S n =1 S 1 +(n -1)×2=2n -1, ∴S n =1 2n -1 , ∴当n ≥2时,1n S n =1n (2n -1)<1 n (2n -2) =12·1n (n -1)=12? ????1n -1-1n 从而S 1+12S 2+13S 3+…+1n S n

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,c n,… (1)写出c1,c2,c3,c4;

(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1. 10.(2011?安徽)在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n,n≥1.

高一数学解题方法汇总

高一数学解题方法汇总 高中生数学怎么才能考高分?高中数学解题技巧有哪些?下 面是给大家带来的高一数学解题技巧,希望能帮助到大家! 高一数学解题技巧1 1、函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围

求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 高一数学解题技巧2 函数导数解题技巧 考点:这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么, 你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。题型:最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)解题思路: 最值、单调性(极值):首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式):其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。未知

高考数学大题突破训练理科(9-12)难度较大

高考数学大题突破训练(九) 1、已知函数()4cos sin()16 f x x x π =+-。 (Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ?? - ??? ?上的最大值和最小值。 2、某商店试销某种商品20天,获得如下数据: 日销售量(件) 0 1 2 3 频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充..至3件,否则不进货...,将频率视为概率。 (Ⅰ)求当天商品不进货... 的概率; (Ⅱ)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望。 3、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o . (Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.

4、已知函数21 (),()32 f x x h x x = += (I)设函数()()()F x f x h x =-,求()F x 的单调区间与极值; (Ⅱ)设a R ∈,解关于x 的方程42233 log [(1)]log ()log (4)24 f x h a x x --=--- (Ⅲ)试比较100 1 (100)(100)()k f h h k =-∑与16的大小. 5、如图7,椭圆22122:1(0)x y C a b a b +=>>的离心率为3,x 轴被曲线2 2:C y x b =- 截得的线段长等 于1C 的长半轴长。(Ⅰ)求1C ,2C 的方程; (Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与 2C 相交于点A,B,直线MA,MB 分别与1C 相交与D,E. (i )证明:MD ME ⊥; (ii)记△MAB,△MDE 的面积分别是12,S S .问:是否存在直线l , 使得21S S =32 17 ?请说明理由。 6、设d 为非零实数,12211*1(2(1)]()n n n n n n n n n a C d C d n C d nC d n N n --= +++-+∈L (1)写出123,,a a a 并判断{}n a 是否为等比数列。若是,给出证明;若不是,说明理由; (II)设* ()n n b nda n N =∈,求数列{}n b 的前n 项和n S .

10道经典高中数学题

1.设Sn是等差数列{An}的前n项和,又S6=36,Sn=324,S(n-6)=144,则n=? ①Sn是等差数列 S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12......& 最后六项的和S=an*6-6(6-1)/2*d=6an-15d S(n-6)=Sn-S=324-(6an-15d)=144,则2an-5d=60......@ &+@:a1+an=36 Sn=(a1+an)/2*n n=18 ②解:Sn-S(n-6)=a(n-5)+a(n-4)+......an=324-144=180 而 S6=a1+a2+...a6=36 有 Sn-S(n-6)+S6= a1+a2+...a6+ a(n-5)+a(n-4)+....an =6(a1+an)=180+36=216 那么 (a1+an)=36 Sn=n(a1+an)/2=324 即 36n/2 =324 所以 n=18 2.已知f(x)=(x-1)^2,g(x)=4(x-1),f(an)和g(an)满足,a1=2,且(an+1-an)g(an)+f(an)=0

(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由。 (2)设bn=3f(an)-[g(an+1)]^2,求数列{bn}的前n项和Sn (1)存在 C=-1 证明如下 (an+1-an)g(an)+f(an)=0 将f(x)、g(x)带入并化简 得4an+1 - 3an -1 =0 变形为4(an+1 -1)=3(an -1) 所以an-1是以3/4为等比 1为首项的等比数列 (2)an-1=(3/4)^n bn=3f(an)-[g(an+1)]^2 将f(an) g(an+1)带入不要急着化简先将an+1 - 1换成 3/4 (an-1) 化简后bn=-6(an -1)^2=-6*(9/16)^n bn是首项为-27/8等比是9/16的等比数列 Sn=a1(1-q^n)/(1-q)=54/7(9/16)^n-54/7 已知函数f(x)=x^2+ax+b,当实数p,q满足p+q=1,试证明pf(x)+qf(y)>=f(px+qy) pf(x)+qf(y)>=f(px+qy) <=> px^2+pax+pb+qy^2+qay+qb>=(px+qy)^2+apx+aqy+b

(完整word版)2019-2020年高考数学大题专题练习——圆锥曲线(一)

2019-2020年高考数学大题专题练习——圆锥曲线(一) 1.设F 1,F 2为椭圆22 143 x y +=的左、右焦点,动点P 的坐标为(-1,m ),过点F 2的直线与 椭圆交于A ,B 两点. (1)求F 1,F 2的坐标; (2)若直线P A ,PF 2,PB 的斜率之和为0,求m 的所有整数值. 2.已知椭圆2 214 x y +=,P 是椭圆的上顶点.过P 作斜率为k (k ≠0)的直线l 交椭圆于另一点A ,设点A 关于原点的对称点为B . (1)求△P AB 面积的最大值; (2)设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,求斜率k 的取值范围. 3.已知椭圆()22 22:10x y C a b a b +=>>的离心率为5,定点()2,0M ,椭圆短轴的端点是 1B ,2B ,且21MB MB ⊥. (1)求椭圆C 的方程; (2)设过点M 且斜率不为0的直线交椭圆C 于,A B 两点,试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标,若不存在,说明理由.

4.已知椭圆C 的标准方程为22 1 1612x y +=,点(0,1)E . (1)经过点E 且倾斜角为 3π 4 的直线l 与椭圆C 交于A 、B 两点,求||AB . (2)问是否存在直线p 与椭圆交于两点M 、N 且||||ME NE =,若存在,求出直线p 斜率的取值范围;若不存在说明理由. 5.椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率2 e =,并且2C 的短轴为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22. (1)求椭圆1C 与2C 的方程; (2)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于E ,F 点. (i)求证:直线PA ,PB 斜率之积为常数; (ii)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高中数学概率大题经典一

高中数学概率大题(经典一) 一.解答题(共10小题) 1.在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.(1)如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X 的数学期望; (2)若主力队员中有2名队员在练习比赛中受轻伤,不宜同时上场;替补队员中有2名队员身材相对矮小,也不宜同时上场;那么为了场上参加比赛的5名队员中至少有3名主力队员,教练员有多少种组队方案? 2.某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分 (1)估计第三个顾客恰好等待4分钟开始办理业务的概率; (2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望. 3.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行. (1)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张? (2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值. 4.一袋中有m(m∈N*)个红球,3个黑球和2个白球,现从中任取2个球. (1)当m=4时,求取出的2个球颜色相同的概率; (2)当m=3时,设ξ表示取出的2个球中黑球的个数,求ξ的概率分布及数学期望; (3)如果取出的2个球颜色不相同的概率小于,求m的最小值. 5.某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖. (Ⅰ)求一次抽奖中奖的概率; (Ⅱ)若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布和期望E(X). 6.将一枚硬币连续抛掷15次,每次抛掷互不影响.记正面向上的次数为奇数的概率为P1,正面向上的次数为偶数的概率为P2. (Ⅰ)若该硬币均匀,试求P1与P2; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较P1与P2的大小. 7.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

相关文档
相关文档 最新文档