文档库 最新最全的文档下载
当前位置:文档库 › 互感器

互感器

互感器
互感器

110kV

#1主变:电流互感器型号:LRB-60(2只)

LRB-110(6只)

LR-110(3只)

#2主变:电流互感器型号:LRB-60(2只)

LRB-110(9只)

181羊腻线:电容式电压互感器型号:TYD110/√3 -0.01H GIS、#1,#2主变进线间隔: GIS电流互感器型号:ZF12-126(L)

PT间隔: 电压互感器型号: JSQXH-110

35kV

#1电抗器柜,#1电容器柜;

羊雄山Ⅰ、Ⅱ、Ⅲ回线;

#1站用变柜;#1主变柜;

母联开关柜;电流互感器型号:LZZBJ9-40.5Q

#2主变进线柜母线侧、低压侧;

#2站用变柜母线侧、高压侧;

#2无功补偿柜;

赶马路Ⅰ、Ⅱ、Ⅲ回线;

站用变室#1接地变:电流互感器型号:LQZ-0.66

站用变室#2接地变:电流互感器型号:LQZJ4-0.66

电压互感器型号:JDZX9-35

Ⅱ段母联TV柜:电压互感器型号:JDZX9-35 SVC室:电流互感器型号:LZZB9-35D

电容器无功补偿装置:电流互感器型号:LZZBW-35B2G

电容式电流互感器

电流互感器结构及原理

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生 的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额 定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3 特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图

电流互感器10差校验的计算方法.

电流互感器10%误差校验的计算方法 简介:本文对<<工业与民用配电手册>>中关于电流互感器10%误差校验的方法提出疑问,并结合<<手册>>中的例题,给出了作者认为的计算方法. 关键字:电流互感器 10%误差校验计算方法 由中国航空工业规划设计研究院组编,中国电力出版社出版的《工业与民用配电设计手册》(以下简称手册)自1983年11月第一版到2005年10月的第三版,发行量近16万册,该手册的权威性、指导性,对工业与民用配电设计行业的影响是勿庸置疑的。正因为广大设计者对该手册的重视和尊重,更要求它是完美的。本文就手册中关于“电流互感器10%误差校验的计算方法”提出不同的意见,供大家参考。尽管如此,本人仍然认为,暇不掩玉,该手册仍然是广大设计者必备的案头参考书。 手册给出的电流互感器允许误差计算步骤如下: 道频 2,根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定控m自电流互感器的允许二次负荷。 oc网.s师i3,按照对电流互感器二次负荷最严重的短路类型计算电流互感器的实际二次负j计eh荷。设s.国k中w.z 4,比较实际二次负荷与允许二次负荷,如实际二次负荷小于允许二次负荷, 表示电流互感器的误差不超过ww10%。 1,按照保护装置类型计算流过电流互感器的一次电流倍数 对于步骤1、2、4,本文并无异议,对步骤3,有值得商榷的地方。现引用《工业与民用配电设计手册》例题【7-9】,6KV线路过流与速断保护为例来说明问题。已知条件如下(对原例题中与本讨论无关的给予了简化):某6KV单侧放射式单回路线路,工作电流Ig.xl为100A,电动机起动时的过负荷电流Igh为181A。经校验实际线路长度能满足瞬时电流速断选择性动作,且短路时母线上有规定的残压。采用DL-11型电流继电器、DL-13型继电器、DSL-12型时间继电器和ZJ6型中间继电器作为线路的电流速断保护和过电流保护(交流操作),电流互感器选用LFZB6-10型,变比150/5,三相星型接线方式。另采用ZD-4型小电流接地信号装置作为线路单相接地保护。已知最大运行方式下,线路末端三相短路时的超瞬态电流I”2k3.MAX=1752A。最小运行方式下,线路末端三相短路时的超瞬态电流I”2k3.Min=1674A。 计算过程为: 1)瞬时电流速断保护的整定: IopK=KrelKjxI”2k3.MAX/nTA=1.2x1x1752/30=70.1A (式1) 式中Krel:可靠系数,取1.2;Kjx:接线系数,接于相电流时取1;IopK:继电器动作值,计算值为70.1A,取70A,装设DL-11/200型继电器。 2)过电流保护整定:

电流互感器10%误差曲线计算及应用

继电保护用电流互感器10%误差曲线的计算方法及其应用 1 电流互感器的误差 电流互感器,用来将一次大电流变换为二次小电流,并将低压设备与高压线路隔离,是一种常见的电气设备。其等值电路如图1所示,向量图如图2所示。 图中I ’1为折算到二次侧的一次电流,R ’1、X ’ 1为折算到二次侧的一次电阻和漏抗;R 2、X 2为二次电阻和漏抗;I 0为电流互感器的励磁电流。在理想的电流互感器中I 0的值为零,I ’ 1=I 2。但实际 上Z 2 为Z 0 相比不能忽略,所以,0I .=1I .-0I . 2≠; 由电流互感器的向量图中可看出,电流互感器的误差主要是由于励磁电流I 0的存在,它使二次电流与换算到二次侧后的一次电流I ’ 1不但在数值上不相等,而且相位也不相同,这就造成了电流互感器的误差。电流互感器的比误差f= 100I I I ' 1 2 ' 1 ?-;角误差为I ’ 1与I 2间的夹角。 做为标准和测量用的电流互感器,要考虑到在正常运行状态下的比误差和角误差;做为保护用的电流互感器,为保证继电保护及自动装置的可靠运行,要考虑当系统出现最大短路电流的情况下,继电保护装置能正常工作,不致因为饱和及误差带来拒动,因而规程的规定,应用于继电保护的电流互感器,在其二次侧负载和一次电流为已知的情况下,电流误差不得超过10%。

2 电流互感器的10%误差及10%误差曲线 设Ki为电流互感器的变比,其一次侧电流与二次电流有I2=I1/Ki的关系,在Ki为常数(电源互感器I2不饱和)时,就是一条直线,如图3所示。当电流互感器铁芯开始饱和后,与I1/Ki 就不再保持线性关系,而是如图中的曲线2所示,呈铁芯的磁化曲线状。继电保护要求电流互感器的一次电流I1等于最大短路电流时,其变比误差小于或等于10%。因此,我们可以在图中找到一个 电流值I1.b,自I1.b作垂线与曲线1、2分别相交于B、A两点,且BA=0.1I ’ 1(为折算到二次的I1 值)。如果电流互感器的一次电流小于I1,其变比误差就不会大于10%;如果电流互感器的一次电流大于I1,其变比误差就大于10%。 图3 图4 另外,电流互感器的变比误差还与其二次负载阻抗有关。为了便于计算,制造厂对每种电流互感器提供了在m10下允许的二次负载阻抗值Zen,曲线m10=f(Zen)就称为电流互感器的10%误差曲线,如图4所示,已知m10的值后,从该曲线上就可很方便地得出允许的负载阻抗。如果它大于或等于实际的负载阻抗,误差就满足要求,否则,应设法降低实际负载阻抗,直至满足要求为止。当然,也可在已知实际负载阻抗后,从该曲线上求出允许的m10,用以与流经电流互感器一次线绕组的最大短路电流作比较。 通常电流互感器的10%误差曲线是由制造厂实验作出,并且在产品说明书中给出。若在产品说明书中未提供,或经多年运行,需重新核对电流互感器的特性时,就要通过试验的方法绘制电流互

超高精度互感器介绍

互感器对电力仪表的影响 目前多数电度表、多功能表、电力仪表,在计算功率时大多都采用互感器,把电流、电压信号隔离传送到AD采样端或者积分采样端,由AD采样电压、电流来计算功率,但互感器有一个很大的缺点:就是在输入低负载和高负载下,角差、比差是非线性变化的。这样就给仪表计算功率带来诸多麻烦,输入小负载时比如5~10W灯泡的电流就是在20mA~100mA之间,计算功率时误差比较大,但到了(2000W空调工作时)输入电流0.5A~1A时,计算功率的误差降低,输入更高些1A~5A计算功率的误差就非常小了。在这样的情况下,仪表行业通常的做法是用软件修正,但这也存在一个问题:即当互感器低端到高端角差变化过大或一致性不好时,会出现修正不了误差,这样就难免导致生产仪表时不良品出现过多,生产调试仪表时也需要调试很多点。对于这个问题,互感器厂家的通常做法为在互感器初级多绕3~6匝(目前电力终端和三相电度表都是采用这种互感器),来提高输入电流,比如输入电流10mA~50mA时,互感器为0.05*6匝,相当于300mA,用这种方式来提高互感器的精度,但这样会带来其他的问题,互感器成本的上升,因初级绕线,带来人工费增加、用线成本增加、体积增大、饱和点降低、交货期过长等诸多问题。 我司通过技术解决了传统互感器这些的缺点,下面我们给出一个传统互感器与我司高精度互感器的对比: 目前市场上销售和应用的互感器大部分为0.1%~0.2%的线性度,所谓线性度就是输入小电流(一般0.05A),到输入额定电流或者最大电流时,互感器的误差不超过0.1%~0.2%。一般输入在0.01A~20A时,输出在特定负载的情况下,相位差从40′~3′变化。 但超高精度互感器跟传统常规互感器有很大的区别,从输入小电流到最大电流,线性度0.01%~0.05%,角差从20′~15′变化(特定负载下)。 三相表用互感器(传统型)高精度互感器

电流互感器检测项目及试验

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1电压互感器原理 2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。

图1.2电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。 第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。 第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘 第四个字母:W—五铁芯柱;B—带补偿角差绕组。连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验 阿德 一试验目的 CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。 二试验方法 试验接线如图所示: SVERKER650 二次 接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。) 试验前应将电流互感器二次绕组引线和接地线均拆除。试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。通入的电流或电压以不超过制造厂技术条件的规定为准。当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。试验后,根据试验数据绘出伏安特性曲线。 三注意事项 1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。 2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。若有显著降低,应检查二次绕组是否存在匝间短路。当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。 3.电流表宜采用内接法。 4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。 四典型U-I特性曲线

树脂绝缘互感器制造工艺培训文件

环氧树脂绝缘互感器 1 环氧树脂绝缘互感器的特点 1.1 作为互感器绝缘介质的环氧树脂,分为户内型和户外型。户外型采纳酯环族树脂,能耐受紫外线的破坏。 环氧树脂具有优良的工艺性能和优良的绝缘性能,当它是液体状态时,流淌性好,容易充满绕组的各间隙。当它的混合料固化后又有专门高的电气及机械强度。 环氧树脂的差不多成分为双酚A和环氧氯丙烷,加入不同的改性剂,通过工艺处理而成为各种不同性能的环氧树脂。它的性能指标为:灰分、粘度、饱和蒸汽压等。 低电压互感器常常使用不饱和树脂浇注。不饱和树脂由不饱和酸与二元醇。经聚缩反应而制成。不饱和树脂在常下浇注,在常温下固化。 1.2 环氧树脂绝缘互感器的结构特点 互感器的结构特点能够归纳为:缓冲、封闭和电场屏蔽。 介绍如下。 a)缓冲 互感器铁心、电流互感器大电流一次绕组(导电杆、导电板、引线端子)需要包缓冲层。铁心包缓冲,是为了幸免环氧树

脂固化时产生的收缩力压迫铁心,使铁心受力而导磁性能变坏。导电杆、导电板和引线端子包缓冲,是为了幸免环氧树脂固化时产生的收缩力使大电流一次绕组外的树脂开裂(铜导体不可压缩);或者一次大电流绕组流过短路电流时,受热膨胀的导体产生的胀力使其不处的树脂开裂。 加缓冲后,柔软的缓冲材料被压缩,将环氧树脂固化时产生的收缩力汲取,将大电流一次导线产生的胀力汲取,使固化后的环氧树脂可不能开裂。 缓冲材料应为多孔性、耐高温、可压缩的板形材料。常用的缓冲材料有压缩海绵、瓦棱纸、毛毡、耐温橡胶带以及多层皱纹纸等。 b)封闭 有缓冲的部位(如铁心、电流互感器导电杆一次绕组等)必须密封,目的 是不让环氧树脂进入缓冲层,假如环氧树脂进入缓冲层后,缓冲层变硬,失去缓冲作用。 没有缓冲的部位(多匝导线的一次绕组等)也必须密封,不让环氧树脂进入多匝一次绕组内,假如环氧树脂填满多匝一次绕组后,多匝一次绕组将成为不可压缩的固体,当多匝一次绕组

互感器常用电气参数简介

互感器常用电气参数简介 王兆军1李彬彬2白妮1张健1 (1.西安西电开关电气有限公司,2.西安西电国际工程有限责任公司,西安710077) 摘要电流互感器和电压互感器是电力系统中常用的设备,它是将大电流和高电压变换为可以测量的小电流、低电压。本文介绍了互感器的一些常用电气参数的意义和经常选用的值。 关键词电流互感器;电压互感器;电气参数 Introduction of Common Electrical Parameters for Transformers Wang Zhaojun1Li Binbin2Bai Ni1Zhang Jian1 (1. Xian XD Switchgear Electric Co.,LTD 2. Xian Electric Engineering Co.,LTD Xian 710077 China) Abstract Current transformers and voltage transformers are commonly used in power systems, which convert high voltage and high current into measurable low voltage and low current. This article describes the meaning of some common electrical parameters of the transformer and the frequently used values. Keywords:Current transformer,V oltage transformer, Electrical parameters 0引言 互感器分为电压互感器和电流互感器,它是在电网中将高电压和大电流变换为可以测量的低电压、小电流,供给仪表和继电保护装置实现测量、计量、保护等作用。互感器的变比误差、角度误差、铁芯饱和特性等性能的好坏将直接影响保护装置动作特性和测量系统的测量精度等二次设备的性能。 本文介绍了互感器的一些常用电气参数的意义和经常选用的值,希望能够对读者在使用互感器方面有所帮助。 1 电流互感器的额定值 按照不同用途可以将电流互感器分为测量和保护两大类,测量、监控回路应选用测量级电流互感器,保护回路应选用保护级电流互感器。保护级电流互感器按其性能、用途不同可以分为用于稳态保护的P级、PR级、PX级、PXR级和用于暂态保护的TPX级、TPY级、TPZ级。 1.1额定一次电流和额定连续热电流 额定一次电流(I pr)是电流互感器性能基准的一次电流。一次电流标准值为:10A、12.5A、15A、20A、25A、30A、40A、50A、60A、75A以及它们十进位倍数或小数。有下划线者为优先值。 电流互感器额定一次电流的选择宜满足正常运行的实际负荷电流达到额定值的60%,且不应小于30%(S级为20%)的要求,也可选用较小变比或二次绕组带抽头的电流互感器。 额定连续热电流(I cth)是指在二次绕组接有额定负荷情况下,一次绕组能够连续通过且温升不超过规定值的一次电流值。额定连续热电流的标准值为额定一次电流。准确级为0.1~1级的测量级电流互感器也

电流互感器检测项目及试验

电流互感器检测项目及 试验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或 P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图所示,此时A-a端子的电压是两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。

互感器的选择要求

互感器的选择要求: 电压互感器的额定一次电压、电流互感器的额定一次电流应满足电力负荷的要求,同时在规定的负荷范围内还应满足准确等级的要求; 各类计量装置的准确等级 测量、计量用电流互感器误差限值 保护用电流互感器误差限值

测量用电压互感器的电压误差和相位限值 保护用电压互感器的电压误差和相位限值 电流互感器的选择要求: 1、安装在电网中的电流互感器,不论是测量用还是保护用,均应满足装设地点的短路容量要求; 2、对于负荷比较稳定的回路,为满足保护装置和测量、计量仪表准确度的要求,电流互感器的额定一次电流宜取回路负荷电流的1.5~2倍,对于负荷波动范围较大、保护准确限制系数较大或短路容量较大的情况,为满足负荷和测量、计量仪表的要求,电流互感器宜采用S测量级,额定一次电流宜取回路负荷电流的4~5倍; 3、对多级次电流互感器,不同功能的级次,可以采用不同的变比,保护用级次额定一次电流可为正常负荷电流的2~5倍,测量、计量用级次额定一次电流宜取正常负荷电流的1.5~2倍; 4、测量、计量仪表对电流互感器二次输出容量的要求: 无论常规指示仪表或变送器,其电流回路功耗很小。所以,对户外式电流互感器,互感器连线电阻将起决定作用;对户内式电流互感器,由于连线很短,所以回路功耗更小,一般取5VA甚至更小一些即可满足要求。

测量仪表及变送器电流回路功耗 当采用机电一体式电能表时,考虑有功和无功计量,每套计量装置(含有功、无功电能表各一块)电流回路功耗最大不超过8.5VA,实测通常为5~7VA,再加上连线电阻,一般取10VA;如果采用电子式电能表,则回路负载主要由连线电阻决定。 电能表电流回路功耗 5、继电保护、自动装置对电流互感器二次输出容量的要求: 当继电保护、自动装置均采用电子式时,互感器的二次负载主要取决于二次连线阻抗,当采用其它形式时,根据各类设备的保护和自动装置电流回路最大功耗计算互感器的二次负载一般见下表: 保护用电流互感器绕组要求容量

电流互感器准确级大全完整版

电流互感器准确级大全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。

5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 2、暂态保护用电流互感器的准确级分为TPX、TPY、TPZ。 TPX:电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±5%,相位差不大于±30度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的5%,电流过零时相位差不大于3度。 TPY:电流互感器环形铁芯中带小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减。在额定电流和负载下,其电流误差不大于±1%,相位差为1度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的7.5%,电流过零时相位差不大于4.5度。 TPZ:电流互感器环形铁芯中带较大气隙,气隙长度约为磁路平均长度的0.1%,由于气隙使铁芯不易饱和,特别适合快速重合闸。间隙大,剩磁可以忽略,铁芯磁化曲线线性度好,二次回路时间常数小,对交流分量的传变性能好,但是传变直流分量能力差。 500KV线路保护用的互感器一般选用TPY级暂态型互感器。 采用暂态型电流互感器的必要性? (1)500KV电力系统的时间常数增大。22KV系统时间常数一般小于60MS,而500KV系统时间常数在80MS-200MS之间,系统时间常数增大,导致短路电流非周期分量的衰减时间加长,短路电流的暂态持续时间加长。 (2)系统容量增大,短路电流的幅值也增大。 (3)由于系统稳定的要求,500KV系统主保护动作时间一般在20MS左右,总的切除故障时间小于100MS,系统主保护是在故障的暂态过程中动作的。 由于电力系统短路,暂态电流流过电流互感器时,在互感器内产生一个暂态过程。如果不采取措施,电流互感器铁芯很快趋于饱和。特别是在装有重合闸的电路上,在第一次故障造成的暂态过程尚未衰减完毕的情况下,再叠加另一次短路的暂态过程,由于电流互感器剩磁的存在,有可能使铁芯更快的饱和。其结果是电流互感器传变电流信息准确性受到破坏,造成继电保护不正确动作。

自己整理的互感器行业分析

互感器 一、互感器概述: 电流电压互感器是电力系统中不可缺少的重要设备,其作用是按比例将输电线路上的高电压和大电流降到需要的数值。电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装臵提供电源。电力系统用互感器是将电网高电压、大电流的信息传递到低电压、小电流二次侧的计量、测量仪表及继电保护、自动装臵的一种特殊变压器,是一次系统和二次系统的联络元件,其一次绕组接入电网,二次绕组分别与测量仪表、保护装臵等互相连接。互感器与测量仪表和计量装臵配合,可以测量一次系统的电压、电流和电能;与继电保护和自动装臵配合,可以构成对电网各种故障的电气保护和自动控制。互感器性能的好坏,直接影响到电力系统测量、计量的准确性和继电器保护装臵动作的可靠性。新型互感器主要应用在智能电网和智能变电站,作为其实现智能化的基础性部件,实现测量功能(将任一数值的电压电流转化为用标准仪器可以直接测量的电压电流或将任意数值的电压电流转换成可以供给继电保护装臵的电压电流)和保护功能(使高压回路与维护人员可以接近的测量仪表及继电器绝缘)。 目前市场上的互感器主要分为常规互感器和电子式互感器。电子式互感器又分为有源互感器(主要原理是电磁测量:变化的磁场产生电场,变化的电场产生磁场,基本原理与变压器类似)和无源互感器(即光学互感器,原理为法拉第磁光效应)。2004年起,有源电子式互感器先于光学互感器进入市场应用,有源电子式互感器高压侧将电流信号转换为数字信号经光纤传至地电位,像光学传感方案一样,实现了高低压之间的光隔离绝

树脂绝缘互感器制造工艺

环氧树脂绝缘互感器 1环氧树脂绝缘互感器的特点 作为互感器绝缘介质的环氧树脂,分为户内型和户外型。户外型采用酯环族树脂,能耐受紫外线的破坏。 环氧树脂具有优良的工艺性能和优良的绝缘性能,当它是液体状态时,流动性好,容易充满绕组的各间隙。当它的混合料固化后又有很高的电气及机械强度。 环氧树脂的基本成分为双酚A和环氧氯丙烷,加入不同的改性剂,经过工艺处理而成为各种不同性能的环氧树脂。它的性能指标为:灰分、粘度、饱和蒸汽压等。 低电压互感器常常使用不饱和树脂浇注。不饱和树脂由不饱和酸与二元醇。经聚缩反应而制成。不饱和树脂在常下浇注,在常温下固化。 环氧树脂绝缘互感器的结构特点 互感器的结构特点可以归纳为:缓冲、封闭和电场屏蔽。介绍如下。 a)缓冲 互感器铁心、电流互感器大电流一次绕组(导电杆、导电板、引线端子)需要包缓冲层。铁心包缓冲,是为了避免环氧树脂固化时产生的收缩力压迫铁心,使铁心受力而导磁性能变坏。导电杆、导电板和引线端子包缓冲,是为了避免环氧树脂固化时产生的收缩力使大电流一次绕组外的树脂开裂(铜导体不可压缩);或者一次大电流绕组流过短路电流时,受热膨胀的导体产生的胀力使其外面的树脂开裂。 加缓冲后,柔软的缓冲材料被压缩,将环氧树脂固化时产生的收缩力吸收,将大电流一次导线产生的胀力吸收,使固化后的环氧树脂不会开裂。 缓冲材料应为多孔性、耐高温、可压缩的板形材料。常用的缓冲材料有压缩海绵、瓦棱纸、毛毡、耐温橡胶带以及多层皱纹纸等。 b)封闭 有缓冲的部位(如铁心、电流互感器导电杆一次绕组等)必须密封,目的 是不让环氧树脂进入缓冲层,如果环氧树脂进入缓冲层后,缓冲层变硬,失去缓冲作用。 没有缓冲的部位(多匝导线的一次绕组等)也必须密封,不让环氧树脂进入多匝一次绕组内,如果环氧树脂填满多匝一次绕组后,多匝一次绕组将成为不可压缩的固体,当多匝一次绕组流过短路电流时,环氧树脂会开裂。 封闭要在下列条件下进行:被封闭的材料如铁心、导线、绝缘材料、缓冲材料等要预先加热除去大部分水分。如果这些材料含水量很多,在绕组干燥、浇注、加热固化过程中,水分会汽化。水蒸汽出不来,当水蒸汽压力大于大气压力时,水蒸汽可能从封闭层薄弱处逸出,在浇注体内形成汽泡;环氧树脂会进入被封闭的材料内,破坏了缓冲作用;水蒸汽会使绝缘材料受潮,绝缘性能降低;水蒸汽会使铁心及金属件生锈。 常用的封闭材料是耐高温密封胶带。 c)电场屏蔽 电场屏蔽是环氧树脂绝缘互感器,绝缘结构的主要特点。 一、二次绕组均需包屏蔽层。一是因为绕组有棱角,屏蔽后曲率增大, 电场变均匀,提高放电电压;再者,将电压施加在充满单一环氧树脂的一、二次绕组的屏蔽层之间,绝缘强度高。如果没有一、二次绕组屏蔽层,电压将施加在一、二次绕组导线之间,导线外包的缓冲层及封闭层将处于电场之中,它们的绝缘强度很低,会增加局部放电量。 将绕组装入模具时,应对二次绕组引出线及其端子、固定安装底板的嵌装螺母、

电流互感器技术参数选择

电流互感器技术参数选择问题的探讨 1 电流互感器的一次电流选择 电流互感器的额定一次电流由电力工程的实际负荷来决定,一般情况下按负荷电流乘以1.2~1.25的系数来确定互感器的额定电流,此值应变换到互感器国标GB1208中规定的标准电流值。在中压开关柜中,一些用户往往按断路器的标准电流值作为互感器的额定电流,这种选择方法在大多数情况下是可以,但有几档电流值不适合互感器。例如断路器额定电流标准值中有31.5 A、63 A、315A、630 A、3150 A等,而互感器与之相应的电流标准值为30 A、60 A、300 A、600 A、3000 A等。如按断路器标准选择,对设计制造及使用都是不利的,对设计制造而言,这些电流可能使二次绕组匝数出现分数匝。在使用时,误差校验及电流表、电度表的制度要重新制定,有的规则均要更改,难度太大。所以,对互感器额定电流数值的确定应对应互感器的标准。 2 互感器额定二次负荷的选择 互感器的额定二次负荷是决定互感器准确级、外形尺寸、成本的关键参数,应该根据工程的实际情况来合理选择。很多用户认为互感器的额定负荷选得越大越好,这个观点是不正确的。 按照国家标准GB1207~电流互感器》规定,测量准确级误差限值的保证条件除了对一次电流的数值大小有要求外,既不同的测量准确级误差限值对应不同的一次电流,例如:1%、5 9/5、20 、100和120% 的额定一次电流( I1N),二次负荷的范围是25 9/6~ 100 的额定负荷。这样,当工程实际中二次负荷超出这个范围,则其误差就不能保证在相应准确级误差限值范围内,特别是当实际负荷小于25 的额定负荷时,互感器的实际误差可能要超出限值,如图1所示。因为互感器的设计制造过程中一般采取了一定的因数补偿,补偿前与补偿后的误差曲线是平移的,由图1可见,额定一次电流在100 额定值附近时,误差正的方向超出了限值,结果适得其反。 另外,现在对于测量级一般都有仪表保安系数(instrument security factor,FS)的要求,例FS小于5。按国家标准GB1207规定,FS只是在额定二次负荷下保证的。因为对于已经是制造完成的互感器,其仪表保安系数与二次负荷成反比关系。因此,如果工程实际负荷小于额定负荷,则实际的仪表保安系数就增大,仪表保安系数大于5或大于1O,这所谓的仪表保安系数就不“保安”了,原来提出FS的初衷也就无意义了。如此,希望实际负荷要与额定负荷相接近。对于保护用电流互感器,从继电保护使用上讲,实际负荷小于额定负荷对继电保护是有利的。但过大的额定负荷使互感器的体积和成本过大而不经济,甚至要影响到开关柜(对于中压互感器)的尺寸放大,而难以实现。 综合上述规定,可以看出互感器的额定负荷应该作合理选择。现在随着测量仪表的进步及微机保护的推广使用,工程的实际负荷已比早期的确定要小得多了。要合理的选择二次负荷,最好对实际的工程进行计算来决定。 当经过计算得出的工程实际负荷比较大时,甚至远远超过常用互感器的负荷时,可以与互感器厂家进行沟通,如果还不能得到满意的回答,则可考虑选择二次电流为1 A(通常为5 A)。选用1 A,大大提高二次所接的阻抗,同时有利于互感器的设计制造,更降低成本。因

互感器的分类(全)

互感器分为电压互感器和电流互感器两大类。电压互感器可在高压和超高压的电力系统中用于电压和功率的测量等。电流互感器可用在交换电流的测量、交换电度的测量和电力拖动线路中的保护。 一、电压互感器分类 1. 按用途分 测量用电压互感器(或电压互感器的测量绕组),在正常电压范围内,向测量、计量装置提供电网电压信息。 保护用电压互感器(或电压互感器的保护绕组),在电网故障状态下,向继电保护等装置提供电网故障电压信息。 2. 按绝缘介质分 干式电压互感器。由普通绝缘材料浸渍绝缘漆作为绝缘,多用在500V及以下低电压等级。 浇注绝缘电压互感器。由环氧树脂或其他树脂混合材料浇注成型,多用在35KV及以下电压等级。 油浸式电压互感器。由绝缘纸和绝缘油作为绝缘,是我国最常见的结构型式,常用在220KV及以下电压等级。 气体绝缘电压互感器。由气体作主绝缘,多用在超高压、特高压。 3. 按相数分 单相电压互感器,一般在35KV及以上电压等级采用。 三相电压互感器,一般在35KV及以下电压等级采用。 4. 按电压变换原理分 电磁式电压互感器。根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在220KV及以下电压等级采用。 电容式电压互感器。由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,目前我国110KV-500KV电压等级均有应用,超高压只生产电容式电压互感器。 光电式电压互感器。通过光电变换原理以实现电压变换,近年来才开始使用。 5. 按使用条件分 户内型电压互感器。安装在室内配电装置中,一般用在35KV及以下电压等级。户外型电压互感器。安装在户外配电装置中,多用在35KV及以上电压等级。 6. 按一次绕组对地运行状态分 一次绕组接地的电压互感器。单相电压互感器一次绕组的末端或三相电压互感器一次绕组的中性点直接接地,末端绝缘水平较低。 一次绕组不接地的电压互感器。单相电压互感器一次绕组两端子对地都是绝缘的;三相电压互感器一次绕组的各部分,包括接线端子对地都是绝缘的,而且绝缘水平与额定绝缘水平一致。 7. 按磁路结构分

GIS电流互感器

湖南星能电力建设有限公司 试验报告 送检单位/工程名称哈密景峡中电投110KV升压站工程 GIS电流互感器 试品名称 LRB-110型电流互感器 型号/规格 电压等级126kV 试验性质交接试验 试验项目/试验类别电流互感器综合实验 检定依据DL/T50150—2006电气设备交接试验规程 符合运行条件 检定结论 (检定专用章)批准人试验负责人试验人员 试验日期2015 年11 月21日

GIS 3#主变间隔 1.设备参数 型号LRB-110 A相CT1 CT2 CT3 出厂编号151622344404937 151622544404937 151622144404937 端子标号1S1-1S2 1S1-1S3 2S1-2S2 2S1-2S3 3S1-3S2 3S1-3S3 额定变比(A) 400/1 800/1 400/1 800/1 400/1 800/1 输出容量(V A) 25 25 25 25 25 25 准确等级5P30 5P30 5P30 5P30 5P30 5P30 额定电压(kV) 126kv 绝缘水平(kV) 短时热电流(kA)动稳定电流(kA) 制造厂家泰开集团山东泰开互感器有限公司 出厂日期 型号LRB-110 A相CT4 CT5 CT6 出厂编号151622444400214 151623644340135 151623544341835 端子标号1S1-1S2 1S1-1S3 2S1-2S2 2S1-2S3 3S1-3S2 3S1-3S3 额定变比(A) 400/1 800/1 400/1 800/1 400/1 800/1 输出容量(V A) 25 25 25 25 25 25 准确等级5P30 5P30 0.5 0.5 0.2S 0.2S 额定电压(kV) 126kv 绝缘水平(kV) 短时热电流(kA)动稳定电流(kA) 制造厂家泰开集团山东泰开互感器有限公司 出厂日期 2.设备参数 型号LRB-110 B相CT1 CT2 CT3 出厂编号151623044400414 151622944400414 151622744400535 端子标号1S1-1S2 1S1-1S3 2S1-2S2 2S1-2S3 3S1-3S2 3S1-3S3 额定变比(A) 400/1 800/1 400/1 800/1 400/1 800/1 输出容量(V A) 25 25 25 25 25 25 准确等级5P30 5P30 5P30 5P30 5P30 5P30 额定电压(kV) 126kv 绝缘水平(kV) 短时热电流(kA)动稳定电流(kA) 制造厂家泰开集团山东泰开互感器有限公司 出厂日期 型号LRB-110 B相CT4 CT5 CT6 出厂编号151622244400214 151623844344937 151623344343214

电压电流互感器的试验方法

电压电流互感器的常规试验方法 一、电压、电流互感器的概述 典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V 和100V/ 两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A、1A、0.5A等。 1.电压互感器的原理 电压互感器的原理与变压器相似,如图1.1所示。一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。根据电磁感应定律,绕组的电压U与电压频率f、绕组的匝数W、磁通Ф的关系为: 图1.1 电压互感器原理

2.电流互感器的原理 在原理上也与变压器相似,如图1.2所示。与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F(F=IW)大小相等,方向相反。 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。 图1.2 电流互感器的原理 3.互感器绕组的端子和极性 电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV左右。常见的用A和X分别表示电压互感器一次绕组的首端和尾端,用a、x或P1、 P2 表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L1 、

L2分别表示一次绕组首端和尾端,二次绕组则用K1、K2或S1、S2 表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。 当端子的感应电势方向一致时,称为同名端;反过来说,如 果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a所示,此时A-a端子的电压是 两个绕组感应电势相减的结果。在互感器中正确的标号规定为减极性。 4.电压互感器和电流互感器在结构上的主要差别 (1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。 (2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。 (3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。 5.电压互感器型号意义 第一个字母:J—电压互感器。

相关文档