文档库 最新最全的文档下载
当前位置:文档库 › removal of synthetic dyes from wastewater

removal of synthetic dyes from wastewater

removal of synthetic dyes from wastewater
removal of synthetic dyes from wastewater

Review article

Removal of synthetic dyes from wastewaters:a review

Esther Forgacs a,*,Tibor Cserha

′ti a ,Gyula Oros b a

Research Laboratory of Materials and Environmental Chemistry,Chemical Research Center,Hungarian Academy of Sciences,

P .O.Box 17,1525Budapest,Hungary

b

Plant Protection Institute,Hungarian Academy of Sciences,Pf.102,Budapest 114,1525,Hungary

Received 28September 2003;accepted 28January 2004

Available online 6May 2004

Abstract

The more recent methods for the removal of synthetic dyes from waters and wastewater are complied.The various methods of removal such as adsorption on various sorbents,chemical decomposition by oxidation,photodegradation,and microbiological decoloration,employing activated sludge,pure cultures and microbe consortiums are described.The advantages and disadvantages of the various methods are discussed and their efficacies are compared.D 2004Elsevier Ltd.All rights reserved.

Keywords:Synthetic dyes;Wastewater;Adsorption;Oxidation;Biodegradation

1.Introduction

Synthetic dyes are extensively used in many fields of up-to-date technology,e.g.,in various branches of the textile industry (Gupta et al.,1992;Shukla and Gupta,1992;Sokolowska-Gajda et al.,1996),of the leather tanning industry (Tu ¨nay et al.,1999;Kabadasil et al.,1999)in paper production (Ivanov et al.,1996),in food technology (Bhat and Mathur,1998;Slampova et al.,2001),in agri-cultural research (Cook and Linden,1997;Kross et al.,1996),in light-harvesting arrays (Wagner and Lindsey,1996),in photoelectrochemical cells (Wrobel et al.,2001),and in hair colorings (Scarpi et al.,1998).Moreover,synthetic dyes have been employed for the control of the efficacy of sewage (Morgan-Sagastume et al.,1997)and wastewater treatment (Hsu and Chiang,1997;Orhon et al.,1999),for the determination of specific surface area of activated sludge (Sorensen and Wakeman,1996)for ground water tracing (Field et al.,1995),etc.

Synthetic dyes exhibit considerable structural diversity (Fig.1).The chemical classes of dyes employed more frequently on industrial scale are the azo,anthraquinone,sulfur,indigoid,triphenylmethyl (trityl),and phthalocyanine

derivatives.However,it has to be emphasized that the overwhelming majority of synthetic dyes currently used in the industry are azo derivatives.It should be noted that azo-keto hydrazone equilibria can be a vital factor in the easy breakdown of many of the azo dye system.Some dyes quoted in the review have only a marginal importance from the point of view of industrial application.

Unfortunately,the exact amount of dyes produced in the world is not known.It is estimated to be over 10,000tons per year.Exact data on the quantity of dyes discharged in the environment are also not available.It is assumed that a loss of 1–2%in production and 1–10%loss in use are a fair estimate.For reactive dyes,this figure can be about 4%.Due to large-scale production and extensive application,synthet-ic dyes can cause considerable environmental pollution and are serious health-risk factors.Although,the growing im-pact of environmental protection on industrial development promotes the development of ecofriendly technologies (Desphande,2001),reduced consumption of freshwater and lower output of wastewater (Knittel and Schollmeyer,1996;Petek and Glavic,1996),the release of important amounts of synthetic dyes to the environment causes public concern,legislation problems and are a serious challenge to environmental scientists.

Because of their commercial importance,the impact (Guaratini and Zanoni,2000)and toxicity (Walthall and Stark,1999;Tsuda et al.,2001)of dyes that are released in

0160-4120/$-see front matter D 2004Elsevier Ltd.All rights reserved.doi:10.1016/j.envint.2004.02.001

*Corresponding author.Tel.:+36-1-325-7900;fax:+36-1-325-7554.E-mail address:forgacs@chemres.hu (E.Forgacs).

https://www.wendangku.net/doc/8810598712.html,/locate/envint

Environment International 30(2004)953–

971

the environment have been extensively studied (Hunger,1995;Calin and Miron,1995).The formation of a carci-nogenic amine from the dye Direct Blue 14by human skin bacteria (Platzek et al.,1999)and the antifungal activity of 13diazobenzene dyes have been established (Oros et al.,2001).As several thousand different synthetic dyes that are employed exhibit various biological activities,it is under-standable that our knowledge concerning their behavior in the environment and health hazards involved in their use is still incomplete.

Traditional wastewater treatment technologies have proven to be markedly ineffective for handling wastewater of synthetic textile dyes because of the chemical stability of these pollutants.Thus,it has been verified that,of the 18azo dyes studied 11compounds passed through the activated sludge process practically untreated,4(Acid Blue 113,Acid Red 151,Direct Violet 9,and Direct Violet 28)were adsorbed on the waste activated sludge and only 3(Acid Orange 7,Acid Orange 8,and Acid Red 88)were biodegraded (Shaul et al.,1991).

A wide range of methods has been developed for the removal of synthetic dyes from waters and wastewaters to decrease their impact on the environment.The technologies involve adsorption on inorganic or organic matrices,decol-orization by photocatalysis,and/or by oxidation processes,microbiological or enzymatic decomposition,etc.(Hao et al.,2000).The efficacy of the various methods of dye removal,such as chemical precipitation,chemical

oxidation,

Fig.1.The chemical structure of synthetic dyes most frequently studied in degradation experiments.

E.Forgacs et al./Environment International 30(2004)953–971

954

adsorption along with their effects on subsequent biological treatment was compared in an earlier paper(Tunay et al., 1996).Chemical oxidation was very effective but the efficiency strongly influenced by the type of oxidant.

The objectives of this review are the compilation of the newer achievements in the technologies developed for the removal of synthetic dyes from water and wastewater, classification and short description of the methods,critical evaluation of the technological processes and the compar-ison of their advantages and disadvantages.

2.Removal of synthetic dyes from wastewaters by adsorption and other physicochemical methods As synthetic dyes in wastewater cannot be efficiently decolorized by traditional methods,the adsorption of syn-thetic dyes on inexpensive and efficient solid supports was considered as a simple and economical method for their removal from water and wastewater.The adsorption char-acteristics of a wide variety of inorganic and organic supports have been measured and their capacity to remove synthetic dyes has been evaluated.

2.1.Inorganic supports

Because of their good mechanical and chemical stability, high specific surface area and resistance to microbiological degradation-specific inorganic supports have been preferen-tially applied in adsorption studies.

2.1.1.Carbon-based inorganic supports

The excellent adsorption properties of carbon-based supports have been exploited for the decolorization of dyes in the industrial effluents.For a better understanding of the physicochemistry of adsorption processes on the carbon surface,a homogeneous surface diffusion model was devel-oped and successfully applied for the description of the adsorption of dyes and other wastes on the surface of granulated activated carbon(Roy et al.,1993).

It has been repeatedly shown that the type of carbon sorbent and its mode of preparation exert a marked influ-ence on the adsorption capacity.It has been found that the adsorption characteristics of lignite-based carbon markedly depended on the mode of preparation.Maximal dye adsorp-tion was achieved by a lignite that has been treated with 50%solution of sodium tungstate at800j C(Duggan and Allen,1997).The efficacy of various wood charcoals has also been compared for the removal of Basic Red22and Acid Blue25from textile mill effluents.The data indicated that the media obtained from fluted charcoal,pine and chestnut trees were superior to lamellar charcoal,and to the media acquired from beech wood and oak trees(Marm-ier-Dussoubs et al.,1991).The adsorption process on the surface of carbonized spent bleaching earth has been studied in detail.Basic Blue3,Methylene Blue,Acid Blue and Reactive Yellow2were adsorbed on this sorbent.It has been demonstrated even in this instance that the mode of preparation of the sorbent had a considerable influence on the adsorption parameters,whereas the effect of pH was negligible(Low et al.,1995).

The good sorption characteristics of sulfonated coals for the removal of synthetic dyes have also been demonstrated (Mittal and Venkobachar,1993).It has been further found that powdered active carbon efficiently removes the azo dyes Orange P and Red Px from wastewater(Danis et al., 1999).A similar study proved that granular activated carbon can bind acid dyes(Walker and Weatherley, 1997)and the kinetics of adsorption have been elucidated (Walker and Weatherley,1999).

The results discussed above clearly state that carbon-based sorbents show excellent adsorption properties for a consid-erable number of synthetic dyes(Table1).However,the preparation of carbon sorbents is generally energy consum-ing.Consequently,the commercially available products are fairly expensive.Since a large amount of carbon sorbent is needed for the removal of dyes from a large volume of effluent,the expenses involved hamper their application. 2.1.2.Other inorganic supports

As substituents for carbon-based sorbents the adsorption capacity of a wide variety of other inorganic supports was also measured using different dye-support pairs.

The efficacy of coal,fly ash,wollastonite,and china clay was compared for the removal of Omega Chrom Red ME from effluents.It was found that each sorbent could be employed in the adsorption process(Shukla and Gupta, 1992).The use of acid-activated clay for the removal of basic,acidic,disperse,direct and reactive dyes was also reported.The highest adsorption capacity was observed for basic dyes and the support was proposed as an efficient adsorption medium for their removal from aqueous solution (Juang et al.,1997).Furthermore,china clay was found to be an effective sorbent for the removal of Omega Chrom Red ME from house wastewater.An acidic pH,low tem-perature and smaller particle size of china clay increased the efficacy of removal(Gupta et al.,1992).

The good adsorption capacity of silica was exploited in the removal of the textile dye Basic Blue3from effluents (Ahmed and Ram,1992)and was employed for the adsorp-tion of Rhodamine B,Acid Red4,and Nile Blue sulfate from aqueous solutions(Saleem et al.,1993).Alumina has also been used for the removal of Rhodamine B and Nile Blue Sulfate from wastewater(Salem et al.,1994).It has been established that the adsorption of dyes on alumina follows the Langmuir isotherm equation and the analysis of thermodynamical parameters revealed that the adsorption of these dyes is more favorable at high temperatures.Not only pure Al2O3but also waste red mud,a by-product of aluminium production were employed for the removal of Congo Red from wastewater using,90-min of equilibrium time(Namasivayam and Arasi,1997).

E.Forgacs et al./Environment International30(2004)953–971955

Table1

List of organisms intensively decolorizing synthetic dyes No.of organism Dye Reference Prokaryota

Gram negative bacteria

(1)Aeromonas hydrophila Acid Orange7,

Acid Red106,

Direct Orange39,

Direct Yellow4,

Direct Yellow12,

Reactive Black NR,

Reactive Blue160,

Reactive Blue222,

Reactive Red198

Chen et al.(2003)

(2)Burkholderia cepacia Acid Orange7,

Anthraquinone-

2-sulfonate,

Remazol Red F3B

Laszlo(2000)

(3)Citrobacter sp.Brilliant Green,

Crystal Violet,

Gentian Violet,

Malachite Green,

Methyl Red,

An et al.(2002)

(4)Desulfovibrio desulfuricans Reactive

Orange96

Yoo et al.(2001)

(5)Escherichia coli Ethyl Red,

Methyl Red Nakanishi et al. (2001)

Reactive Red22Chang and Lin

(2001) Reactive Red22Chang and Kuo

(2000)

(6)Geobacter sulfurreducens Anthraquinone-2,

6-disulfonate

Cervantes et al.

(2003)

(7)Klebsiella pneumoniae Methyl Red Wong and Yuen

(1998)

(8)Proteus mirabilis Deep Red Chen et al.(1999)

(9)Pseudomonas luteola Crystal Violet,

Red Pigment2B,

Red Pigment V2

Hu(1998,2001)

Reactive Red22Chang et al.(2001),

Chen(2002)

(10)Pseudomonas mendocina Methyl Violet Sarnaik and

Kanekar(1999)

(11)Pseudomonas putida Tectilon Blue

4R-01

Walker and

Weatherley(2000)

(12)Pseudomonas

stutzeri

Methyl Red Itoh et al.(2002)

(13)Sphingomonas xenophaga Acid Orange7,

Acid Orange8,

Acid Orange10,

Acid Red4,

Acid Red88

Coughlin et al.

(1999)

Congo Red Diniz et al.(2002) Naphthalene-2-

sulfonate,

Naphtol Blue

Black

Keck et al.(2002)

Reactive Red2Zee van der et al.

(2003)

(14)Stenotrophomonas

maltophilia

Crystal Violet Kim et al.(2002a,b)

(15)Xenophilus azovorans Carboxy-

Orange II

Blumel et al.(2002)

Table1(continued)

No.of organism Dye Reference

Gram positive bacteria

(16)Arthobacter

globiformis

Acridine Orange,

Crystal Violet

Itoh et al.(1998a,b)

(17)Bacillus

benzenovorans

Tectilon Blue4R-01Walker and

Weatherley(2000)

(18)Bacillus cereus Azobenzene Koneva and

Kruglov(2001)

(19)Bacillus gordonae Tectilon Blue

4R-01

Walker and

Weatherley(2000)

(20)Bacillus polymixa Azobenzene Koneva and

Kruglov(2001)

(21)Caulobacter

subvibrioides

Acid Orange6,

Acid Orange7,

Acid Orange8,

Acid Orange12,

Acid Red151,

Acid Red88,

Methyl Red

Mazumder et al.

(1999)

(22)Clostridium

perfringens

Amaranth Semde et al.(1998)

Bromophenol

Blue,

Crystal Violet,

Methyl Orange

Kim et al.(2002a,b)

(23)Kurthia sp.Brilliant Green,

Crystal Violet,

Magenta

Wong and Yuen

(1998)

Malachite Green Sani and Banerjee

(1999)

Pararosaniline Wong and Yuen

(1998)

(24)Nocardia

corallina

Crystal Violet Azmi et al.(1998)

(25)Paenibacillus

azoreducens

Remazol

Black B

Meehan et al.(2001)

(26)Streptomyces

viridosporus

Poly R-478Ball and Colton

(1996)

Eukaryota

Yeasts—Ascomycota

(27)Candida curvata Chrysoidine Kakuta et al.(1998)

(28)Candida lipolytica Reactive Blue19Aksu and Donmez

(2003)

(29)Candida tropicalis Reactive Black5,

Reactive Blue19,

Reactive Red

Donmez(2002)

(30)Candida zeylanoides Acid Orange7Ramalho et al.(2002)

Azobenzenesulfonates Martins et al.(1999)

p-Methoxyazobenzene Martins et al.(1999)

(31)Geotrichum

candidum

Reactive Blue5Lee et al.(2000)

Reactive Black5,

Reactive Red158,

Reactive Yellow27

Maximo et al.(2003)

(32)Kluyveromyces

marxianus

Reactive Blue19Aksu and Donmez

(2003)

Remazol Black B Meehan et al.(2000),

Bustard et al.(1998)

Remazol Red Bustard et al.(1998)

Remazol Turquoise

Blue

Bustard et al.(1998)

E.Forgacs et al./Environment International30(2004)953–971

956

Table1(continued)

No.of organism Dye Reference Eukaryota

Yeasts—Ascomycota

(33)Pichia anomala Disperse Red15Itoh et al.(1996)

(34)Saccharomyces cerevisiae Reactive Blue19Aksu and

Donmez(2003)

(35)Schizosaccharomyces pombe Reactive Blue19Aksu and

Donmez(2003)

Filamentous Fungi—Ascomycota

(36)Aspergillus ficuum Direct Black22Dong et al.(2001)

(37)Aspergillus foetidus Drimarene

Black HFGR1

Sumathi and

Manju(2000) Drimarene Navy

BF Blue F2G1

Sumathi and

Manju(2000) Drimarene Red

BR F3B1

Sumathi and

Manju(2000)

(38)Aspergillus niger Congo Red Fu and Viraraghavan

(2002)

(39)Myceliophthora

thermophila

Poly R-478Alcade et al.(2002) (40)Penicillium sp.Poly R-478,

Poly S-119

Zheng et al.(1999)

(41)Rhizopus arrhizus Reactive

Orange16O’Mahony et al. (2002)

Filamentous fungi—Basidiomycota

(42)Bjerkandera adusta Amaranth,

Remazol Black B,

Remazol Orange,

Tropaeolin O Swamy and Ramsay (1999a,b)

Reactive Blue15, Reactive Blue38Heinfling-Weidtmann et al.(2001)

(43)Coprinus cinereus Direct Blue1Schneider et al.(1999)

(44)Coriolus versicolor Acid Orange7Sam and Yesilada

(2001);Lin et al.

(2003)

Everzol Turquoise Blue G Kapdas and Kargi (2002)

Methylene Blue Mazmanci et al.

(2002)

Pigment Violet12Itoh et al.(1998a,b) (45)Cunninghamella

elegans

Malachite Green Cha et al.(2001)

(46)Cunninghamella

polymorpha

Disperse Blue60Sugimori et al.(1999)

(47)Datronica

concentrica

Poly R-478Tekere et al.(2001)

(48)Dichotmius sqaluens Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al.(2002)

(49)Eichhornia

crassipes

Acid Blue25Lee et al.(1999)

Reactive Blue2Lee et al.(1999)

(50)Flavodon flavus Azure B,Congo

Red,Poly B411,

Reactive Blue19

Raghukumar(2000)

Congo Red Tatarko and Bumpus

(1998)

(51)Funalia trogii Acid Orange7Sam and Yesilada

(2001)

(52)Ganoderma sp.Reactive Blue19Maximo et al.(2003)

(53)Irpex lacteus Reactive Blue19Maximo et al.(2003),

Bhatt et al.(2000),

Kasinath et al.(2003)Table1(continued)

No.of organism Dye Reference Filamentous fungi—Basidiomycota

(54)Lentinula edodes Amido Black10B,

Bromophenol Blue,

Methyl Red,

Reactive Blue19

Nagai et al.(2002)

Acid Orange7Hatvani and Mecs

(2002)

Poly R-478Chiu et al.(1999),

Hatvani and Mecs

(2002)

(55)Phanerochaete Amaranth Swamy and Ramsay chrysosporium Disperse Orange

K-GL,Everzol

Yellow4GL,

Everzol Red RBN,

Everdirect Supra

yellow PG,

Everzol Turquoise

Blue G

(1999a,b)

Kapdan et al.(2000)

Indigo Carmine Podgornik et al.

(2001),

Gemeay et al.(2003)

Poly R-478Couto et al.(2000a),

Mielgo et al.(2002)

Red HE8B Sani et al.(1998)

Remazol Black B Swamy and Ramsay

(1999a,b)

Remazol Turquoise

Blue

Conneely et al.(1999)

(56)Phanerochaete

magnoliae

Reactive Blue19,

Reactive Red158,

Reactive Yellow27

Maximo et al.(2003)

Phanerochete crassa Poly R-478Takano et al.(2001) (57)Phellinus gilvus Indigo Balan and Monteiro

(2001)

(58)Phlebia fascicularia Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al.(2002)

(59)Phlebia floridensis Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al.(2002)

(60)Phlebia tremellosa Remazol Black B Kirby et al.(2000)

(61)Pleurotus eryngii Reactive Black5Heinfling et al.(1998)

(62)Pleurotus

ostreatus

Eosin Yellowish,

Evans Blue Phenol,

Red Poly B411

Eichlerova et al.

(2002)

(63)Pleurotus

pulmonarius

Amido Black

10B,Brilliant

Cresyl Blue,Congo

Red,Ethyl Violet,

Methyl Green,Methyl

Violet,Reactive

Blue19,Trypan Blue

Zilly et al.(2002)

(64)Pleurotus

sajor-caju

Indigo Balan and Monteiro

(2001)

(65)Pycnoporus

cinnabarinus

Reactive Blue19Balan and Monteiro

(2001)

(66)Pycnoporus

sanguineus

Bromophenol

Blue

Pointing et al.

(2000)

Indigo Balan and Monteiro

(2001)

Malachite Green Pointing et al.(2000)

(continued on next page)

E.Forgacs et al./Environment International30(2004)953–971957

Vermiculite extract solutions as coagulants and vermic-ulite as the adsorbent were used for the removal of Basic Blue from dye wastewaters.The results indicated that the efficacy of vermiculite as both coagulant and adsorbent was better than that of conventional coagulants and adsorbents (Choi and Cho,1996).

Aqueous solutions of Acridine Orange,Alcian Blue 8GX,Alizarin Red,Azure A,Azure B,Brilliant Blue G,Brilliant Blue R,Congo Red,Cresyl Violet Acetate,Crystal Violet,Eosin B,Eosin Y ,Eryhtrosin B,Ehidium Bromide,Giemsa Stain,Janus Green B,Methylene Blue,Neutral Red,Nigrosin,Orcein,Propidium Iodide,Rose Bengal,Safranine 0,Toluidine Blue 0,and Trypan Blue were successfully decolorized passing the solution through a column that was previously filled with Amberlite XAD-16.The efficacy of removal was higher for dyes with low molecular mass,with lower flowrate and smaller particle size of the resin.The adsorbed dyes were easily extracted by washing the column with methanol (Lunn et al.,1994).The decontaminated solutions showed no mutagenicity towards Salmonella typhimurium (Lunn and Sansone,1991).

The application of various inexpensive industrial wastes has also been elucidated for adsorption.Thus,a waste containing trivalent iron and trivalent chromium hydroxide

Table 1(continued )No.of organism

Dye

Reference

Filamentous fungi—Basidiomycota (67)Rigidoporus sp.Reactive Blue 19,

Reactive Red 158,Reactive Yellow 27

Maximo et al.(2003)

(68)Sclerotium rolfsii Acid Blue 74,Reactive Blue 19Nyanhongo et al.(2002)

(69)Trametes cingulata Cresol Red,Poly R-478Tekere et al.(2001)

(70)Trametes hirsuta Acid Blue 225,Basic Red 9,

Direct Blue 71Nyanhongo et al.(2002)

Crystal Violet Abadulla et al.(2000)Indigo

Campos et al.(2001)Poly R-478

Maceiras et al.(2001)Reactive Blue 19,Reactive Blue 221

Nyanhongo et al.(2002)

(71)Trametes modesta Acid Blue 74,Reactive Blue 221,

Direct Blue 71,Basic Red 9,Acid Blue 225,Reactive Blue 19

Nyanhongo et al.(2002)

(72)Trametes pocas Cresol Red,

Crystal Violet

Tekere et al.(2001)(73)Trametes trogii Poly R-478Lenin et al.(2002)(74)Trametes versicolo

Acid Blue 74Nyanhongo et al.(2002)

Acid Violet 7Zhang and Yu (2000)Acid Violet 17

Nyanhongo et al.(2002)

Amaranth

Swamy and Ramsay (1999a,b),Ramsay and Nguyen (2002),Shin et al.(2002)Brilliant Blue R Borchert and Libra (2001)

Congo Red Ramsay and Nguyen (2002)

Phenol Red Lorenzo et al.(2002)Poly R-478Leidig et al.(1999)Ponceau Red 4R Keharia and

Madamwar (2002)Procion Red Keharia and

Madamwar (2002)Reactive Black 5

Maximo et al.(2003),Borchert and Libra (2001),

Ramsay and Nguyen (2002)

Reactive Blue 15

Ramsay and Nguyen (2002),

Swamy and Ramsay (1999a,b)

Reactive Blue 19

Borchert and Libra (2001),Minussi et al.(2001),Nyanhongo et al.(2002)

Reactive Blue 28Keharia and

Madamwar (2002)Reactive Blue 221Nyanhongo et al.(2002)

Reactive Golden Yellow R

Keharia and

Madamwar (2002)

Table 1(continued )

No.of organism

Dye

Reference

Filamentous fungi—Basidiomycota

Reactive Red 158Maximo et al.(2003)Reactive Red 198

Borchert and Libra (2001)

Reactive Violet 5Keharia and

Madamwar (2002)Reactive Yellow 27Maximo et al.(2003)

Remazol Black B Swamy and Ramsay (1999a,b)

Remazol Orange

Swamy and Ramsay (1999a,b)

Tropaeolin O

Swamy and Ramsay (1999a,b),

Ramsay and Nguyen (2002)

(75)Trametes villosa Reactive Blue 19

Minussi et al.(2001)

Algae

(76)Chlorella pyrenoidosa Direct Brown NM

Huang et al.(2000)(77)Spirogyra sp.Reactive Yellow 22

Blumel et al.(2002)

Planta

(78)Mentha puligeum

Poly R-478Strycharz and Shetty,2002

(79)Rosmarinus officinalis

Poly S-119Zheng et al.(1999)(80)Wolffia arrhiza Methyl Violet Kanekar et al.(1993)(81)Thymus vulgaris Poly S-119Zheng et al.(1999)(82)Spirodella polyrrhiza

Methyl Violet

Kanekar et al.(1993)

E.Forgacs et al./Environment International 30(2004)953–971

958

was employed for the removal of an azo dye from waste-water.The removal efficiency of color was91%at pH3. The adsorption followed both the Langmuir isotherm and the Freundlich isotherm and was governed by ion exchange processes between the polar substructures of the azo dye and the hydrophilic adsorption centers of the sorbent(Namasi-vayam and Senthilkumar,1995;Namasivayam et al.,1994). The aninoic dye New Coccine was also effectively adsorbed on sludge particles(Wang et al.,1998).

The findings compiled above suggest that carbon-based supports can be replaced by other,less expensive ones. https://www.wendangku.net/doc/8810598712.html,anic supports

Organic supports have some advantages over inorganic ones.They generally originate from renewable sources and are wastes or by-products of industrial processes without any commercial value.The adsorption capacity of a number of such supports has been determined for synthetic dyes as has their potential of their practical application were evaluated.

Biogas waste slurry was dried,powdered and used for the extraction of Rhodamine B from the wastewater of a textile plant.It was found that adsorption followed the Freundlich isotherm and the efficiency increased at acidic pH(optimum pH2.3)(Namasivayam and Yamuna,1992). Efficient removal of the direct dye Brilliant Yellow from aqueous media with cross-linked chitosan fiber was also detected(Yoshida and Takemori,1997).The application of orange peel(cellulosic waste)for the adsorption of Congo Red,Procion Orange and Rhodamine B has also been assessed.It was determined that the adsorption can be described by Langmuir and Freundlich isotherms and fol-lows first-order kinetics.Acidic pH condition promoted adsorption while alkaline pH condition enhanced the de-sorption of dyes(Namasivayam et al.,1996).

The application of pasteurized wastewater solids was assessed for the adsorption of Methylene Blue.It has been established that elimination of the biological activity of the solids was a prerequisite for effective adsorption(Dobbs et al.,1995).Bagasse pith was tested as a sorbent for the adsorption of dyes.The adsorption process was described by a three resistance number mass transfer model(external mass transport,macropore and micropore diffusion)(Al Duri et al.,1990).Waste banana pith was used for the removal of Rhodamine B from aqueous solutions.The maximum efficacy(87%)was observed at pH4.It has been concluded from the results that waste banana pith offers an economical resource for the removal of dyes from waste-waters(Namasivayam et al.,1993).The results demonstrat-ed that the rate constants markedly depend on the type of sorbents,with the higher values being attained on cellulosic waste orange peel.

An interesting approach was to use of dead and pulver-ized macrofungus,Fomitopsis carnea as a sorbent for the basic dyes Orlamar Red BG,Orlamar Blue G,and Orlamar Red GTL.Pulverized fungus proved to be a good sorbent for the dyes,the adsorption in creased with increasing pH of the dye wastewater and followed first-order kinetics(Mittal and Gupta,1996).A continuous flow study showed that the non-living roots of water hyacinth can efficiently adsorb Acid Blue25and Reactive Blue2(Lee et al.,1999).

The adsorption methods,independently of the inorganic or organic character of the supports have some drawbacks. Since adsorption processes are generally not selective,the other components of the wastewater can also be adsorbed by the support and the competition among the adsorbates can influence the dye binding capacity of supports in an unpre-dictable manner.Moreover,an adsorption process removes the synthetic dyes from wastewater by concentrating them on the surface retaining their structure practically un-changed.When the support is to be regenerated,the fate of the resulting concentrated solution of dyes presents a problem that is not satisfactorily solved.Even the mineral-ization of dyes on the surface of support cannot be achieved. Large-scale applications based on the adsorption process have to take into consideration the problems discussed above.

2.3.Other physicochemical methods

Adsorptive bubble separation techniques(ion flotation, solvent sublation and adsorbing colloid flotation)resulted in the efficient removal(99%)of Direct Blue from wastewater (Horng and Huang,1993).The application of coagulation processes for the removal of dyes from wastewater has also been assessed.The efficiencies dependent on the type of flocculant and on the pH of the medium(Koprivanac et al., 1993).Electrocoagulation was used for the effective remov-al of Acilan Blue from the wastewater of an operating textile plant in a bipolar packed-bed electrochemical reactor(Ogut-veren et al.,1992).

3.Photocatalytic decolorization and oxidation of synthetic dyes

Commercial dyes are designed to resist photodegrada-tion,so the selection of optimal photocatalytic conditions for the decolorization of dyes requires considerable exper-tise.Because of the significant commercial and environ-mental interest the efficacy of a large number of catalysts and irradiation conditions has been established for the decolorization of various synthetic dyes.

3.1.Photocatalysis and oxidation with hydrogen peroxide

Hydrogen peroxide has been frequently applied to the decolorization of synthetic dyes in waters.Hydrogen per-oxide can effectively decolorize dye wastewaters in the presence of Fe(II)sulfate,with the higher rates of decolor-ization at higher concentrations of the reagents(Kuo,1992).

E.Forgacs et al./Environment International30(2004)953–971959

Iron(III)with hydrogen peroxide were successfully employed for the degradation of the dye intermediate anthraquinone-2-sulfonic acid sodium salt(Kiwi et al., 1993).Not only an iron catalyst but also a UV/H2O2 oxidation process has been used for the decolorization of Reactive Black5in textile wastewaters(Ince and Gonenc, 1997).The degradation of anthraquinone sulfonate dyes was facilitated by H2O2in the presence of TiO2(Kiwi,1994). Iron powder and hydrogen peroxide in combination were employed in the decolorization of Reactive Red120,Direct Blue160and Acid Blue40,in aqueous solutions.The non-biodegradable azo dye Orange II was effectively mineral-ized with iron and hydrogen peroxide,with pH exerting a considerable effect on the decomposition rate(Bandara et al.,1997).Optimal conditions for decolorization were found to be different for each dye,indicating that the development of a general oxidation method for a mixture of dyes would be very difficult.Thus,compromise must be made that is suitable for the decomposition of each dye at a reasonable oxidation rate(Tang and Chen,1996).UV irradiation combined with hydrogen peroxide treatment was used for the decolorization of the mono-azo dyes Acid Red1and Acid Yellow23.Decolorization followed a pseudo first-order rate profile and the rate increased with increasing concentration of H2O2in the solution(Tang et al.,1997). Acetone as a photosensitizer has also been used to facilitate the photocatalytic degradation of Reactive Red2in aqueous solutions.The reaction followed pseudo first-order decay kinetics and involved both dechlorination and reduction (Tsui and Chu,2001).The possibility of UV/H2O2treatment of dyes with different structures has been studied in detail. The results indicated that the method could be successfully used for the decolorization of acid dyes,direct dyes,basic dyes and reactive dyes but it proved to be inadequate for vat dyes and disperse dyes(Yang et al.,1998).

3.2.Ozonation

Ozonation,as an effective oxidation process,has found application in the decolorization of synthetic dyes.The technique employed in the decoloration of Orange II. Oxalate.Formate and benzene sulfonate ions were the most important decomposition products(Tang and An,1995a,b). It was reported that ozone effectively decomposed azo dyes in textile wastewater.The decomposition rate was consid-erably higher at acidic pH.However,the influence of temperature and UV irradiation on the decomposition rate was negligible(Koyuncu and Afsar,1996).The negligible influence of UV irradiation on the decomposition rate of azo dyes by ozone has been supported by other authors.The effect of chemical structure on the decomposition rate has been demonstrated(Davis et al.,1994).The effect of ozonation on the toxicity of wastewater effluents has been investigated using the nematode Caenorhabditis elegans. The data indicated that the toxicity highly depended on the type of dye to be decomposed(Hitchcock et al.,1998).The influence of operating parameters on the decolorization of a reactive dye by ozone has been studied in detail.The results indicated that the decomposition rate increased with increas-ing pH and temperature(Wu and Wang,2001).A method employing a combination of membrane filtration with subsequent ozonation of retentates has been developed for the effective purification of colored textile wastewaters(Wu et al.,1998).

3.3.Photodecomposition in the presence of TiO2

It has been proven that the presence of catalysts enhances the rate of photodecomposition.The role of TiO2in oxidation was studied.It was shown that the photodegradation rate of azo dyes under UV irradiation considerably depends on the chemical structure in the presence of TiO2.Monoazo dyes were more easily decomposed than trisazo dyes,disazo dyes were not included in the experiment(Reutergardh and Iang-pashuk,1997).UV irradiation and TiO2catalysis were used for the decomposition of Acid Blue40.The initial step of photocatalytic decomposition was found to be hydroxyl radical attack to the carbon–nitrogen bond of the side chain of anthraquinone(Liakou et al.,1997a).The same system was applied for the study of the decomposition of Acid Blue 40,Basic Yellow15,Direct Blue87,Direct Blue160and Reactive Red120.The data demonstrated that the oxidation mechanism was determined by both the pH and the chemical structure of the dyes(Liakou et al.,1997b).The efficacy of TiO2and cadmium sulfide(CdS)photocatalysts was com-pared in the photocatalytic decomposition of the Reactive Black5.The initial pH had a different impact on CdS and TiO2photocatalysis,the first-order rate constant increased with increasing concentration of the semiconductor and with increasing light intensity and temperature.It was found that the toxicity of wastewater decreased with the presence of TiO2and increased with the presence of CdS(Shu et al., 1994).The azo dye Acid Orange7was successfully decom-posed on titanium oxide particles in visible light in the presence of oxygen.Naphthoquinone and benzene sulfonic acid were identified as main decomposition products (Vinodgopal et al.,1996).Other dyes were also decolorized by TiO2and by irradiation in wastewater and it was found that the temperature did not influence markedly the decomposi-tion rate of dyes(Shu and Huang,1995).

3.4.Other oxidizing systems

The photodecomposition of five dyes(Reactive Red2, Reactive Blue4,Reactive Black8,Basic Red13and Basic Yellow2)under UV irradiation in the presence of trivalent iron-oxalato complexes was also reported(Nansheng et al., 1997a).It has been established that the rate of photodegra-dation is highly dependent on the chemical structure of the dye.The decomposition followed first-order kinetics.The acidic pH enhanced decomposition.The same dyes were subjected to photodegradation,using a trivalent iron-hy-

E.Forgacs et al./Environment International30(2004)953–971 960

droxy catalyst and sunlight.The pseudo first-order decom-position rate was lower than under UV irradiation(Nan-sheng et al.,1997b).The photodegradation kinetics for five synthetic dyes,using Fe3+-hydroxy and Fe3+-oxalate com-plexes indicate that the rate constants were higher for Fe3+-hydroxy complexes except for Reactive Red2.This finding suggests that the Fe3+-hydroxy system is more suitable for activation of the photodegradation of reactive dyes than is the Fe3+-oxalate system.Optimal conditions for the chem-ical oxidation-decolorization process were determined with the help of modified Nernst model by using the NaOCl as oxidant by(Chang et al.,1996).Electrooxidation of Acid Blue113using a RuO2/Ti electrode was reported to be successful(Mohan et al.,2001).It has been demonstrated that the azo dye Remazol Black B can be decomposed in an aqueous solution saturated with oxygen using a high-fre-quency ultrasonic generator(Vinodgopal et al.,1998).

4.Microbiological decomposition of synthetic dyes

The application of microorganisms for the biodegrada-tion of synthetic dyes is an attractive and simole method by operation.However,the biological mechanisms can be https://www.wendangku.net/doc/8810598712.html,rge number of species has been tested(Table 1)for decoloration and mineralization of various dyes. Unfortunately,the majority of these compounds are chem-ically stable and resistant to microbiological attack.The isolation of new strains or the adaptation of existing ones to the decomposition of dyes will probably increase the effi-cacy of bioremediation of dyes in the near future.

The use of microorganisms for the removal of synthetic dyes from industrial effluents offers considerable advantages. The process is relatively inexpensive,the running costs are low and the end products of complete mineralization are not toxic.The various aspects of the microbiological decompo-sition of synthetic dyes have been previously reviewed by Stolz(2001).Besides the traditional wastewater cleaning technologies,other methods have been employed in the microbial decolorization of dyes.For instance,an activated sludge process was developed for the removal of Methyl violet and Rhodamine B from dyestuff effluents,using microorganisms that were derived from cattle dung(Kanekar and Sarnaik,1991).Also in biofilms,efficient biodegradation of Acid Orange7has been demonstrated(Harmer and Bishop,1992;Zhang et al.,1995).Azo dyes did not inhibit the capacity of biofilms in the removal of organics from wastewater(Fu et al.,1994).A multistage rotating biological contactor was used for the biodegradation of azo dyes,where an azo dye assimilating bacterium was immobilized in the system(Ogawa and Yatome,1990).

4.1.Mixed cultures(microorganism consortiums)

The utilization of microbiotic consortiums offers consid-erable advantages over the use of pure cultures in the degradation of synthetic dyes.The individual strains may attack the dye molecule at different positions or may use decomposition products produced by another strain for further decomposition.However,it should be stressed that the composition of mixed cultures may change during the decomposition process,which interferes with the control of technologies using mixed cultures.Moreover,the efficacy of decomposition considerably depends on the chemical character of the synthetic dye and on the biodegradation capacity of the microorganism consortium.The benefits and drawbacks of the use of microbial consortiums for the decomposition and decolorization of various dyes have been previously reviewed by Banat et al.(1996).Optimal con-ditions for the microbial decolorization of dyes show marked diversity both in anaerobic and aerobic as well as mixed anaerobic/aerobic processes.However,it has been observed in a number of cases that the efficacy of aerobic treatment was inferior to that of anaerobic decolorization process.

4.1.1.Anaerobic decolorization of synthetic dyes

The efficacy of various anaerobic treatment applications for the degradation of a wide variety of synthetic dyes has been many times demonstrated(Delee et al.,1998).Experi-ments indicated that chemical reduction by sulphide is partially responsible for the anaerobic conversions of Acid Orange7.Mathematical evaluation of the experimental results pointed out that autocatalysis played an important role where1-amino-2-naphthol accelerated the chemical reduction of azo bond.(Zee van der et al.,2000).The decolorization of reactive water-soluble azo dyes was achieved under anaerobic conditions using glucose as a carbon source(Carliell et al.,1996).The supplement tapioca starch gave also enhanced the color removal efficacy from synthetic blue wastewater(Chinkewitvanich et al.,2000).Mordant Orange1and Azodisalicylate were reduced and decolorized under anaerobic conditions using methanogenic granular sludge(Razo-Flores et al.,1997). Reactive Red141was also decolorized under anaerobic conditions in a conventional sewage treatment technology. The chemical identification of the products of dye degra-dation showed that decolorization was via reduction mech-anism(Carliell et al.,1994).The synthetic dye Tartrazine was found to be readily decolorized in an anaerobic baffled reactor(Bell et al.,2000;Plumb et al.,2001).Disperse Blue79was also reduced in anoxic sediment–water system,the primary decomposition products being N,N-disubstituted1,4azobenzene and3-bromo-6-nitro-1,2-dia-minobenzene(Weber and Adams,1995).Great differences were observed among the decomposition rates of various dyes in anoxic settled bottom sediments.Half-life varied between a few days(Solvent Red1)and some months (Solvent Yellow33)(Baughman and Weber,1994).The reactive azo dye Reactive Red141was decomposed under anaerobic conditions.The azo bonds were reduced and cleaved by the microbial community resulting in the

E.Forgacs et al./Environment International30(2004)953–971961

liberation of2-aminonaphtalene-1,5disulfonic acid(Car-liell et al.,1995).

Much effort have been devoted to the study of the influence of various modern technologies on the decompo-sition rate of dyes and the effect of the presence of other compounds in the media.It has been recently established that the development of high-rate systems,in which hy-draulic retention times are uncoupled from solids retention times,facilitate the removal of dyes from textile processing wastewaters(Lier van et al.,2001).Another study proved the feasibility of the application of anaerobic granular sludge for the total decolorization of20azo dyes(Zee van der et al.,2001a).It was further demonstrated that the application of the redox mediator anthraquinone-2,6-disul-fonic acid highly accelerates the decomposition of azo dyes (Zee van der et al.,2001b).The effect of the presence of salts(nitrate and sulfate)on the decomposition rate of the azo dye Reactive Red141under anaerobic conditions has been studied.The results indicated that nitrate delays the onset of decomposition while sulfate did not influenced the biodegradation process(Carliell et al.,1998).

4.1.2.Anaerobic/aerobic decomposition of synthetic dyes

Although anaerobic reduction of azo dyes is generally more satisfactory than aerobic degradation,the intermediate products(carcinogenic aromatic amines)have to be degrad-ed by an aerobic process.Diverse technologies have been developed for the successive anaerobic/aerobic treatment of dye wastewaters.It has been observed that the removal of dyes from wastewaters in an anaerobic–oxic system in-volved both decomposition by bacteria and adsorption onto the sludge.Decolorization rates were20%,72%,and78% for Acid Yellow17,Basic Blue3,and Basic Red2, respectively(An et al.,1996).This combined method has been successfully employed for the decomposition of bisazo vinylsulphonyl,anthraquinone vinylsulphonyl and anthra-quinone monochlootriazine reactive dyes(Panswad and Luangdilok,2000)and the considerable impact of the molecular structure on the decolorization rate has been demonstrated(Luangdilok and Panswad,2000).Dye waste-waters were also treated using a sequential anaerobic/aero-bic filter system.Results showed that,the Basic Red was removed very efficiently in the anaerobic filter,however,no removal of the Acid Yellow17occurred.(Basibuyuk and Forster,1997).Another two-stage anaerobic/aerobic system successfully decomposed sulfonated azo dyes(Acid Orange 10,Acid Red14,Acid Red18)(FitzGerald and Bishop, 1995).It was further established that an anaerobic/aerobic treatment is suitable for the cleavage of the azo bond in various azo dyes(Seshadri et al.,1994).Moreover,it was found that biofilms degraded aerobically the azo dye Acid Orange8.The azo bond of Acid Orange8,Acid Orange10 and Acid Red14was cleaved only under anaerobic con-ditions(Jiang and Bishop,1994).The efficacy of the removal of reactive diazo Remazol Black B dye by aerobic and anoxic plus anaerobic/aerobic sequencing batch reactor (SBR)activated sludge processes has been assessed.The results indicated that longer anoxic+anaerobic period pro-moted decolorization(Panswad et al.,2001).The azo dye Procion Red H-E7B has been efficiently decolorized in a combined anaerobic–aerobic process(O’Neill et al.,1999) and the beneficial effect of existence of carbohydrate at higher concentration on the decolorization has been proven (O’Neill et al.,2000).

4.2.Pure cultures of white-rot fungus

White-rot fungi produce a wide variety of extracellular enzymes(laccase,lignin peroxidase,phenol oxidase,Mn-dependent peroxidase and Mn-independent peroxidase) that decompose the highly stable natural(lignin,hemicel-lulose,cellulose,etc.).Because of their high biodegrada-tion capacity they are of considerable biotechnological interest,and their application in the decolorization process of wastewaters has been extensively investigated(Young and Yu,1997).Earlier results on decolorization of waste-waters by fungi have been reviewed(Fu and Viraraghavan, 2001).

4.2.1.Pure cultures of Phanerochaete chrysosporium

Because of its high enzyme production,the white rot fungus,P.chrysosporium has been frequently employed for the biodegradation of synthetic dyes.It was applied to the decoloration of Orange II,Tropaeolin0,Congo Red and Azure B under aerobic conditions.The results indicated that the fungus can be used for the removal of these dyes from wastewater(Cripps et al.,1990).Decolorization was achieved in6–9days.Two strains of P.chrysosporium and an isolate of white-rot fungus were used for the decomposition of the azo dyes Amaranth,Orange G and the heterocyclic dye Azure B.The rate of decoloration of dyes depended on the composition of medium and on the dye-microorganism pair.It has been assumed that various extracellular peroxidases(lignin peroxidase and Mn-depen-dent peroxidase)or laccase are involved in the decoloriza-tion process.The data further indicated that the high decomposition rate of dyes can be achieved only by careful selection of the fungi and cultural conditions(Chao and Lee, 1994).The decomposition of Indigo Carmine by the fungus has also been studied and the involvement of ligninolytic enzymes in the process has been demonstrated(Podgornik et al.,2001).The biodegradation of Amaranth,New Coc-cine,Orange G and Tartrazine by P.chrysosporium and Pleurotus sajor-caju was compared.It was suggested that Mn-peroxidase,h-glucosidase and laccase can be involved in the decolorization process(Chagas and Durrant,2001).It has been found that the addition of activators for the production of lignolytic enzymes by P.chrysosporium (Tween80,veratryl alcohol,manganese(IV)oxide)in-creased the decomposition rate of the dye Poly R-478 (Couto et al.,2000a;Couto et al.,2000b).It has been confirmed that the lignin peroxidase of P.chrysosporium

E.Forgacs et al./Environment International30(2004)953–971 962

removes not only dyes but also phenol and chlorophenol from wastewaters(Manamekalai and Swaminathan,2000).

4.2.2.Pure cultures of other white-rot fungus

Other white-rot fungi have been used for the decoloration of different dyes.Thus,Trametes versicolor decomposed anthraquinone,azo and indigo-based dyes(Wang and Yu, 1998),Pycnoporus cinnabarinus rapidly decoloration Rema-zol Brilliant Blue in packed-bed bioreactor(Schliephaje and Lonergan,1996),and Trametes hirsuta was able to decom-pose triarylmethane,indigoid and anthraquinone dyes(Aba-dulla et al.,2000).The degradation capacity of103strains of white-rot fungi has been measured.It has been established that the higher degradation rate was achieved by Irpex lacteus and Pleurotus ostreatus(Novotny et al.,2001).The biodeg-radation capacity of wood-rotting basidiomycete fungi was also determined using14structurally different synthetic dyes. The results indicated that the decomposition rate highly depends on both the chemical structure of the dye and the character of the fungi(Knapp et al.,1995).It has been determined that the presence of azoreductase in the microor-ganism and the permeation of the dye molecule are prereq-uisites of the microbial decolorization of dyes(Yatome et al., 1991a).The decoloration of the phthalocyanine dyes,Reac-tive Blue15and38,by Bjerkandera adusta was studied in detail.It was found that the main metabolites were sulfoph-thalimides(Heinfling-Weidtmann et al.,2001).The potential of some white-rot fungi to decolorize indigo dye has been compared.The decomposition rate was the highest for Phellinus gilvus followed by those achieved P.sajor-caju, Pycnoporus sanguineus and P.chrysosporium(Balan and Monteiro,2001).It has been reported that Phlebia tremellosa decomposes synthetic dyes but complete mineralisation did not occur(Kirby et al.,2000).The decoloration capacity of another set of white-rot fungi has been assessed using industrial dyes as model compounds.The results indicated that Trametes hispida produced lignolytic enzymes at higher rate than was achieved Pleurotus ostreatus in solid state cultures on whole oats(Rodriguez et al.,1999).

The assays carried out on another set of white rot fungi indicated that Coriolus versicolor showed the highest de-composition capacity(Knapp and Newby,1999).An inter-esting combined method has been described for the decolorisation of Acid Violet7.Pellets have been prepared form the mycelium of T.versicolor and activated carbon powder and their decoloration rate has been shown to be higher than those of the individual components(pure mycelium or activated carbon)(Zhang and Yu,2000).

4.3.Other pure cultures

Although the capacity of white rot fungi to remove synthetic dyes from waters has been frequently demonstrat-ed the search for other dye-decomposing microorganisms proceeds.Pure cultures other than white rot fungi have also found application in the decolorization of synthetic dyes.The potential of fungi from marine habitats to degrade synthetic dyes(Azure B,Brilliant Green,Congo Red, Crystal Violet,Poly-R,Poly-B,Remazol Blue R)has been revealed(Raghukumar,2000).Reactive azo dyes have been effectively removed from water by the fungus Aspergillus foetidus.However,the measurements indicated that the dyes were not decomposed,they were only adsorbed in the fungal biomass(Sumathi and Manju,2000).

The ability of a Kurthia sp.to decolorize Magenta, Crystal Violet,Malachite Green,Pararosaniline and Bril-liant Green has been reported(Sani and Banerjee,1999). Pure culture of Bacillus subtilis can degrade p-amino-azobenzene under anoxic conditions,producing aniline and p-phenylenediamine as main decomposition products (Zissi and Lyberatos,1996).The biodegradation of anthra-quinone dyes by B.subtilis in industrial wastewater was also observed.The first step of biodegradation was the reduction of dyes to the leuko form(Itoh et al.,1993).It was reported that B.subtilis could decompose the triphe-nylmethane dye Crystal Violet at low concentrations below 7.10à6mol/l,while Escherichia coli was ineffective.The main decomposition product was identified as4,4V-bis(di-methylamino)benzophenone(Yatome et al.,1991b).The capacity of Pseudomonas strains for the decolorization of various dyes has also been studied in detail(Yu et al., 2001).The azo dyes(Acid Violet7,Acid Red151and Reactive Black5)were degraded at higher extent(>90%) than Indigo Carmin,Acid Red183(chromium complex) and antraquinones(Reactive Blue2and Acid Green27).It has been demonstrated that P.mendocina could effectively decolorize Methyl Violet in textile wastewater,with the use of a fixed-film reactor(Kanekar and Sarnaik,1995; Kanekar et al.,1996).Decolorization of wastewaters con-taining reactive azo dyes was achieved by a culture of the bacteria P.luteola.Bacteria reduced the azo bond in Red G and biodegraded the other dyes(Hu,1994).The capacity of Klebsiella pneunomoniae to decolorize Methyl Red under aerobic conditions was compared with that of Acetobacter liquefaciens in another study and the higher activity of K.pneunomoniae has been demonstrated(Wong and Yuen,1996).It has been found that the sulfate reducing bacteria Desulfovibrio desulfuricans can also decolorize Reactive Orange96and Reactive Red120 under anaerobic conditions(Yoo et al.,2000).

Food-borne bacteria are also capable for the reduction of dyes.The reduction of seven redox dyes by13food spoilage bacterial strains was determined.The results clearly show that the rate of reduction markedly varies among dye/ organism pairs,proving the different reduction capacity of bacteria and the different sensitivity of dyes to reductases (Learoyd et al.,1992).

The biodegradation of azo dyes by the algae(Chlorella pyrenoidosa,C.vulgaris and Oscillatoria tenuis)has been also assessed.According to the data,the azo reductase of the algae is responsible for degrading azo dyes into aromatic amines by breaking the azo linkage.In addition,the algae

E.Forgacs et al./Environment International30(2004)953–971963

can play a direct role in degradation of azo dyes (Liu and Liu,1992).

The application of microorganisms for the biodegrada-tion of synthetic dyes is an attractive and simple method.Unfortunately,the majority of dyes are chemically stable and resistant to microbiological attack.The isolation of new strains or the adaptation of existing ones to the decompo-sition of dyes will probably increase the efficacy of micro-biological degradation of dyes in the near future.

5.Enzymatic decomposition of synthetic dyes

The character of enzymes and enzyme systems in micro-organisms that are suitable for the decomposition of dyes has been extensively investigated.Effort has been devoted to the separation,isolation and testing of these enzymes.Exact knowledge of the enzymatic processes governing the decomposition of dyes is important in the environmental protection both from theoretical and practical points of view.Lignin peroxidase isoenzymes were isolated from P .chrysosporium and purified by chromatofocusing.The ac-tivity of isoenzymes towards decoloring triphenylmethane dyes,heterocyclic dyes,azo dyes and polymer dyes was compared with that of a crude enzyme preparation.Opti-mum pH values for the decolorization of dyes by various isozymes were markedly different.According to the results,the decomposition capacity of crude enzyme preparation

and purified isoenzymes showed marked differences while variations in the structure of dyes exerted slight influence (Ollikka et al.,1993).Horseradish peroxidase has been successfully employed for the decomposition and the pre-cipitation of azo dyes.The degradation rate was dependent on the pH (Bhunia et al.,2001).Another study revealed that the enzymes of white rot fungus degraded Crystal Violet via N -demethylation (Bumpus et al.,1991).Interestingly,lignin peroxidase from B.adusta showed very low degradation capacity towards azo dyes and phthalocyanine dyes.How-ever,veratryl alcohol considerably increased the decompo-sition rate (Heinfling et al.,1998).Similar investigations proved that pure laccase was also unable to decolorize Remazol Brilliant Blue R but the decoloration rate was facilitated by the presence of a mediator (violuric acid)(Soares et al.,2001).

The employment of enzyme preparations shows consid-erable benefits over the direct use of https://www.wendangku.net/doc/8810598712.html,mercial enzyme preparations can be easily standard-ized,facilitating accurate dosage.The application is simple and can be rapidly modified according to the character of the dye or dyes to be removed.

6.Future trends

The overwhelming majority of the current publications in the field of the removal of synthetic dyes from waters has

Table 2

Improvement of decolorization activity of organisms by interspecific transfer of genetic elements Organisms Function

References

Donor

Acceptor Prokaryotes

Clostridium perfringens Escherichia coli Azoreductase Rafii and Coleman (1999)Bacillus sp.

E.coli Azoreductase Suzuki et al.(2001)Rhodococcus sp.

E.coli Azoreductase Chang and Lin (2001)Caulobacter subvibrioides E.coli Azoreductase Govind et al.(1993)Xenophilus azovorans E.coli Azoreductase Blumel et al.(2002)Pseudomonas luteola E.coli

Azoreductase Chang et al.(2000)E.coli

Sphingomonas xenophaga

Flavin reductase Russ et al.(2000)

Agrobacterium rhizogenes Mentha puligeum Tolerance to R-478Strycharz and Shetty (2002)Eukaryotes

Geotrichum candidum

Aspergillus oryzae Peroxidase Sugano et al.(2000)Ceriporiopsis subvermispora A.nidulans Peroxidase Larrondo et al.(2001)C.subvermisopra A.oryzae

Peroxidase Larrondo et al.(2001)Coprinus cinereus Saccharomyces cerevisiae Laccase Cherry et al.(1999)C.cinereus

A.oryzae

Laccase Schneider et al.(1999)Coriolus versicolor

Nicotiana tabacum Peroxidase Iimura et al.(2002)Phanerochaete chrysosporium A.nidulans Peroxidase Larrondo et al.(2001)P .chrysosporium

A.oryzae

Peroxidase Larrondo et al.(2001)Pycnoporus cinnabarinus Pychia pastoris Laccase Otterbein et al.(2000)P .cinnabarinus A.niger Laccase Record et al.(2002)Pleurotus sajor-caju P .pastoris Laccase Soden et al.(2002)Trametes versicolor S.cerevisiae Laccase Larsson et al.(2001)T.versicolor P .pastoris Laccase O’Callaghan et al.(2002)T.versicolor

P .pastoris Laccase Hong et al.(2002)Armoracia rusticana

S.cerevisiae

Peroxidase

Morawski et al.(2001)

E.Forgacs et al./Environment International 30(2004)953–971

964

been dealing with the various aspects of the application of microbiological methods and techniques,with the search for new microorganisms providing higher decomposition rates and with the elucidation of the principal biochemical and biophysical processes underlying the decolorization of dyes. This trend unambiguously proves the decisive role of microbiological processes in the future technologies used for the removal of dyes from waters.

The widespread application of combined techniques using microbiological decomposition and chemical or phys-ical treatments to enhance the efficacy of the microbiolog-ical decomposition can be expected in future.

Some new results indicate that gene manipulation;the creation of recombinant strains with higher biodegradation capacity will be applied in the future(Table2).The cloning and expression in E.coli of an’azoreductase’gene from Clostridium perfringens(Rafii and Coleman,1999),from a Bacillus sp.(Suzuki et al.,2001),from Pseudomonas luteola(Hu,1994)have been reported.Furthermore,the feasibility of the use of a recombinant E.coli strain, harboring azo-dye-decolorizing determinants from Rhodo-coccus sp.(Chang and Lin,2001),and recombinant Sphin-gomonas sp.(Russ et al.,2000)for the decolorization of dye wastewater has been demonstrated.The exoenzymes of white-rot fungi have also been objects of genetic engineer-ing.The laccase of various filamentous fungi was success-fully transmitted into yeast.These manipulations enhanced the capacity of microorganisms to decolorize synthetic dyes. The expression of oxidases from higher plants augmented the catabolic potential of microbes(Haudenschild et al., 2000;Morawski et al.,2001)and in turn microbial genes straightened the tolerance of higher plant to Poly R-487 (Strycharz and Shetty,2002;Iimura et al.,2002).Polymeric dye-tolerant plants may be useful in phytoremediation because they could provide a rhizosphere that was suitable for colonization by microbes that are efficient degraders of aromatic structures.The plant derived compounds can induce production of fungal redox enzymes(Curreli et al., 2001).Reductive cleavage of the azo bond dissipates the electron deficiency of the aromatic nuclei so that the aromatic amino compounds generated may be subject to subsequent oxidation and mineralization.The C-hydroxyl-ation of aromatic rings by mammalian monoxygenases facilitates subsequent microbial degradation.Human cyto-chrome P450enzymes are now routinely expressed as recombinant proteins in many different systems(Gillam, 1998;Sakaki and Inouye,2000).The capacity of such recombinants to catabolize dyes has been tested(Stiborova et al.,2002).It is clear that complexity of association involved in the complete degradation should be increased with increasing complexity of the chemical structure of synthetic dyes.The genetically engineered microorganisms can accomplish degradation of synthetic dyes,which persist under normal natural conditions.In natural habitats,com-plex microbial/macrobial communities carry out biodegra-dation.Within them,a single organism may interact through interspecific transfer of metabolites.This co-metabolic po-tential may be complementary so that extensive biodegra-dation or even mineralization of xenobiotics can occur (Rieger et al.,2002).In this respect,deterioration of dyestuff effluents in constructed wetlands with multisite catabolic potential is a promising possibility.Mobilizing specific genes,encoding nonspecific multifunctional degradative sequences,may decisively increase the degradative potential of natural synthropic community against synthetic dyes.The use of recombinants that harbor dye-decolorizing determi-nants from other species can essentially enhance the capac-ity of waste remediation technologies.

References

Abadulla E,Tzanov T,Costa S,Robra KH,Cavaco-Paulo A,Gubitz GM.

Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta.Appl Environ Microbiol2000;66:3357–62. Ahmed MN,Ram RN.Removal of basic dye from wastewater using silica as adsorbent.Environ Pollut1992;77:79–87.

Aksu Z,Donmez G.A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye.Chemosphere2003;50: 1075–83.

Alcalde M,Bulter T,Arnold FH.Colorimetric assays for biodegradation of polycyclic aromatic hydrocarbons by fungal laccases.J Biomol Screen 2002;7:547–53.

Al Duri B,McKay G,El Geundi MS,Abdul Wahab MZ.Three-resistance transport model for dye adsorption onto bagasse pith.J Environ Eng (ASCE)1990;116:487–502.

An H,Qian Y,Gu X,Tang WZ.Biological treatment of dye waste-waters using an anaerobic–oxic system.Chemosphere1996;33: 2533–42.

An SY,Min SK,Cha IH,Choi YL,Cho YS,Kim CH,et al.Decolorization of triphenylmethane and azo dyes by Citrobacter sp.Biotechnol Lett 2002;24:1037–40.

Azmi W,Sani RK,Banerjee UC.Biodegradation of triphenylmethane dyes.

Enzyme Microb Technol1998;22:185–91.

Balan DSL,Monteiro RTR.Decolorization of textile indigo dye by ligno-lytic fungi.J Biotechnol2001;89:141–5.

Ball AS,Colton J.Decolorisation of the polymeric dye poly R by Strep-tomyces viridosporus,T7A.J Basic Microbiol1996;36:13–8.

Banat IM,Nigam P,Singh D,Marchant R.Microbial decolorization of textile-dye-containing effluents.Bioresour Technol1996;58:217–27. Bandara J,Nadtochenko J,Kiwi J,Pulgarin C.Dynamics of oxidant addition as a parameter in the modelling of dye mineralization(Orange II)via advanced oxidation technologies.Water Sci Technol1997;35:87–93. Basibuyuk M,Forster CF.The use of sequential anaerobic/aerobic process-es for the biotreatment of a simulated dyeing wastewater.Environ Technol1997;18:843–8.

Baughman GL,Weber EJ.Transformation of dyes and related compounds in anoxic sediment:kinetics and products.Environ Sci Technol 1994;28:267–76.

Bell J,Plumb JJ,Buckley CA,Stuckey DC.Treatment and decolorization of dyes in an anaerobic baffled reactor.J Environ Eng(ASCE)2000;

126:1026–32.

Bhat RV,Mathur P.Changing scenario of food colours in India.Curr Sci 1998;74:198–202.

Bhatt M,Patel M,Rawal B,Novotny C,Molitoris HP,Sasek V.Biological decolorization of the synthetic dye RBBR in contaminated soil.World J Microbiol Biotechnol2000;16:195–8.

Bhunia A,Durani S,Wangikar PP.Horseradish peroxidase catalyzed deg-radation of industrially important dyes.Biotechnol Bioeng2001;72: 562–7.

E.Forgacs et al./Environment International30(2004)953–971965

Blumel S,Knackmuss HJ,Stolz A.Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azo-vorans KF46F.Appl Environ Microbiol2002;68:3948–55. Borchert M,Libra JA.Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors.Biotechnol Bioeng2001;75:313–21.

Bumpus JA,Mileski G,Brock B,Ashbaugh W,Aust SD.Biological oxi-dations of organic compounds by enzymes from a white rot fungus.

Innovative Hazard Waste Treat Technol Ser1991;3:47–54.

Bustard M,McMullan G,McHale AP.Biosorption of textile dyes by bio-mass derived from Kluyveromyces marxianus IMB3.Bioprocess Eng 1998;19:427–30.

Calin C,Miron M.Future of the textile finishing industry in the year2000.

Ind Text(Bucharest)1995;46:140–7[in Romanian].

Campos R,Kandelbauer A,Robra KH,Cavaco-Paulo A,Gubitz GM.

Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii.J Biotechnol2001;89:131–9.

Carliell CM,Barclay SJ,Naidoo N,Buckley CA,Mulholland DA,Senior S.Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes.Water SA1994;20:341–4.

Carliell CM,Barclay SJ,Naidoo N,Buckley CA,Mulholland DA,Senior

E.Microbial decolourisation of a reactive azo dye under anaerobic

conditions.Water SA1995;21:61–9.

Carliell CM,Barclay SJ,Buckley CA.Treatment of exhausted reactive dyebath effluent using anaerobic digestion:laboratory and full-scale trials.Water SA1996;22:225–33.

Carliell CM,Barclay SJ,Shaw C,Wheatley AD,Buckley CA.The effect of salts used in textile dyeing on microbial decolourisation of a reactive dye.Environ Technol1998;19:1133–7.

Cervantes FJ,Duong-Dac T,Ivanova AE,Roest K,Akkermans ADL, Lettinga G,et al.Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors.Biotechnol Lett2003;25:39–45.

Cha CJ,Doerge DR,Cerniglia CE.Biotransformation of malachite green by the fungus Cunninghamella elegans.Appl Environ Microbiol2001;

67:4358–60.

Chagas EP,Durrant LR.Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajor-caju.Enzyme Microb Technol 2001;29:473–7.

Chang JS,Kuo TS.Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3.Bioresour Technol2000;75:107–11.

Chang JS,Lin CY.Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodo-coccus sp.Biotechnol Lett2001;23:631–6.

Chang CN,Lin JG,Chao AC,Liu CS.Modified Nernst model for on-line control of the chemical oxidation decoloring process.Water Sci Technol 1996;34:151–7.

Chang JS,Kuo TS,Chao YP,Ho JY,Lin PJ.Azo dye decolorization with a mutant Escherichia coli strain.Biotechnol Lett2000;22:807–12. Chang JS,Chou C,Lin YC,Lin PJ,Ho JY,Hu TL.Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola.Water Res 2001;35:2841–50.

Chao WL,Lee SL.Decoloration of azo dyes by three white-rot fungi: influence of carbon source.World J Microbiol Biotechnol1994;10: 556–9.

Chen BY.Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola:toxicity and kinetics.Process Biochem2002;

38:437–46.

Chen KC,Huang WT,Wu JY,Houng JY.Microbial decolorization of azo dyes by Proteus mirabilis.J Ind Microbiol Biotech1999;23:686–90. Chen KC,Wu JY,Huang CC,Liang YM,Hwang SCJ.Decolorization of azo dye using PV A-immobilized microorganisms.J Biotechnol2003;

101:241–52.

Cherry JR,Lamsa MH,Schneider P,Vind J,Svendsen A,Jones A,et al.

Directed evolution of a fungal peroxidase.Nat Biotechnol1999;17: 379–84.

Chinkewitvanich S,Tuntoolvest M,Panswad T.Anaerobic decolorization

of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substrate.Water Res2000;34:2223–32.

Chiu SW,Wang ZM,Chiu WT,Lin FC,Moore D.An integrated study of individualism in Lentinula edodes in nature and its implication for cultivation strategy.Mycol Res1999;103:651–60.

Choi YS,Cho JH.Color removal from dye wastewater using vermiculite.

Environ Technol1996;17:1169–80.

Conneely A,Smyth WF,McMullan G.Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium.

FEMS Microbiol Lett1999;179:333–7.

Cook SMF,Linden https://www.wendangku.net/doc/8810598712.html,e of rhodamine WT to facilitate dilution and analysis of atrazine samples in short-term transport studies.J Environ Qual1997;26:1438–41.

Coughlin MF,Kinkle BK,Bishop PL.Degradation of azo dyes containing aminonaphthol by Sphingomonas sp.strain1CX.J Ind Microbiol Bio-tech1999;23:341–6.

Couto SR,Rivela I,Munoz MR,Sanroman A.Stimulation of lignolytic enzyme production and the ability to decolourise Poly R-448in semi-solid-state cultures of Phanerochaete chrysosporium.Bioresour Tech-nol2000a;74:159–64.

Couto SR,Rivela I,Sanroman A.In vivo decolourization of the polymeric dye poly R-478by corncob cultures of Phanerochaete chrysosporium.

Acta Biotechnol2000b;20:31–8.

Cripps C,Bumpus JA,Aust SD.Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium.Appl Environ Microbiol1990;

56:1114–8.

Curreli N,Sollai F,Massa L,Comandini O,Rufo A,Sanjust E,et al.

Effects of plant-derived naphthoquinones on the growth of Pleuro-tus sajor-caju and degradation of the compounds by fungal cultures.

J Basic Microbiol2001;41:253–9.

Danis U,Gurses A,Canpolat N.Removal of some azo dyes from wastewater using PAC as adsorbent.Fresenius Environ Bull1999;

8:358–65.

Davis RJ,Gainer JL,O’Neal G,Wu IW.Photocatalytic decolorization of wastewater dyes.Water Environ Res1994;66:50–3.

Delee W,O’Neill C,Hakes FR,Pinheiro HM.Anaerobic treatment of textile effluents:a review.J Chem Technol Biotechnol1998;73: 323–35.

Desphande SD.Ecofriendly dyeing of synthetic fibres.Ind J Fibre Text Res 2001;26:136–42.

Diniz PE,Lopes AT,Lino AR,Serralheiro ML.Anaerobic reduction of a sulfonated azo dye,Congo Red,by sulfate-reducing bacteria.Appl Biochem Biotechnol2002;97:147–63.

Dobbs RA,Shan Y,Wang L,Govind R.Sorption on wastewater solids: elimination of biological activity.Water Environ Res1995;67:327–9. Dong XJ,Du ZY,Chen Z.Decolorization of Direct Black22by Aspergillus ficuum.J Environ Sci(China)2001;13:472–5.

Donmez G.Bioaccumulation of the reactive textile dyes by Candida tro-picalis growing in molasses medium.Enzyme Microb Technol2002;30: 363–6.

Duggan O,Allen SJ.Study of the physical and chemical characteristics of a range of chemically treated lignite based carbons.Water Sci Technol 1997;35:21–7.

Eichlerova I,Homolka L,Nerud F.Decolorization of synthetic dyes by Pleurotus ostreatus isolates differing in ligninolytic properties.Folia Microbiol2002;47:691–5.

Field MS,Wilhelm RG,Quinlan JF,Aley TJ.An assessment of the poten-tial adverse properties of fluorescent tracer dyes used for groundwater tracing.Environ Monit Assess1995;38:75–97.

FitzGerald S,Bishop PL.Two stage anaerobic/aerobic treatment of sulfo-nated azo dyes.J Environ Sci Health Part A,Environ Sci Eng Toxic Hazard Substance Control A1995;30:1251–76.

Fu YZ,Viraraghavan T.Fungal decolorization of dye wastewaters:a re-view.Bioresour Technol2001;79:251–62.

Fu YZ,Viraraghavan T.Removal of Congo Red from an aqueous solution by fungus Aspergillus niger.Adv Environ Res2002;7: 239–47.

E.Forgacs et al./Environment International30(2004)953–971 966

Fu YC,Jiang H,Bishop P.An inhibition study of the effect of azo dyes on bioactivity of biofilms.Water Sci Technol1994;29:365–772. Gemeay AH,Mansour IA,El-Sharkawy RG,Zaki AB.Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine.J Mol Catal.,A Chem2003;193:109–20.

Gill PK,Arora DS,Chander M.Biodecolourization of azo and triphenyl-methane dyes by Dichomitus squalens and Phlebia spp.J Ind Microbiol Biotech2002;28:201–3.

Gillam EMJ.Human cytochrome P450enzymes expressed in bacteria: Reagents to probe molecular interactions in toxicology.Clin Exp Phar-macol Physiol1998;25:877–86.

Govind AM,Schmidt TM,White DC,Loper JC.Phylogenetic analysis of bacterial aerobic degrader of azo dyes.J Bacteriol1993;175:6062–6. Guaratini CCI,Zanoni MVB.Textile dyes.Quim Nova2000;23:71–8. Gupta GS,Shukla SP,Prasad G,Singh VN.China clay as an adsorbent for dye house wastewaters.Environ Technol1992;13:925–36.

Hao OJ,Kim H,Chiang PC.Decolorization of wastewater.Crit Rev En-viron Sci Technol2000;30:449–502.

Harmer C,Bishop P.Transformation of azo dye AO-7by wastewater biofilms.Water Sci Technol1992;26:627–36.

Hatvani N,Mecs I.Effect of the nutrient composition on dye decolorisation and extracellular enzyme production by Lentinus edodes on solid me-dium.Enzyme Microb Technol2002;30:381–6.

Haudenschild C,Schalk M,Karp F,Croteau R.Functional expression of regiospecific cytochrome P450limonene hydroxylases from mint(Men-ntha spp.)in Escherichia coli and Saccharomyces cerevisiae.Arch Biochem Biophys2000;379:127–36.

Heinfling A,Martinez MJ,Martinez AT,Bergbauer M,Szewczyk U.Trans-formation of industrial dyes by manganese peroxidases from Bjerkan-dera adusta and Pleurotus eryngii in a manganese-independent reaction.

Appl Environ Mircobiol1998;64:2788–93.

Heinfling-Weidtmann A,Reemtsma T,Storm T,Szewczyk U.Sulfophtali-mide as major metabolite formed from sulfonated phtalocyanine dyes by the white-rot fungus Bjerkandera adusta.FEMS Microbiol Lett 2001;203:179–83.

Hitchcock DR,Law SE,Wu J,Williams PL.Determining toxicity trends in the ozonation of synthetic dye wastewaters using the nematode Caeno-rhabditis elegans.Arch Environ Contam Toxicol1998;34:259–64. Hong F,Meinander NQ,Jonsson LJ.Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris.Biotechnol Bio-eng2002;79:438–49.

Horng JY,Huang SO.Removal of organic dye(direct blue)from synthetic wastewater by adsorptive bubble separation techniques.Environ Sci Technol1993;27:1169–75.

Hsu TC,Chiang CS.Activated sludge treatment of dispersed dye factory wastewater.J Environ Sci Health Part A,Environ Sci Eng Toxic Hazard Substance Control A1997;32:1921–32.

Hu TL.Decolourization of reactive azo dyes by transformation with Pseu-domonas luteola.Bioresour Technol1994;49:47–51.

Hu TL.Degradation of azo dye RP2B by Pseudomonas luteola.Water Sci Technol1998;38:299–306.

Hu TL.Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola.Water Sci Technol 2001;43:261–9.

Huang GL,Sun HW,Cong LL.Study on the physiology and degradation of dye with immobilized algae.Art Cells Blood Subst Immobil Biotechnol 2000;28(4):347–63.

Hunger K.The organic pigments and their effects on toxicology and en-vironment.Pitt Vernici Eur1995;71:30–2[in English and Italian]. Iimura Y,Ikeda S,Sonoki T,Hayakawa T,Kajita S,Kimbara K,et al.

Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation.Appl Microbiol Biotechnol2002;59:246–51.

Ince NH,Gonenc DT.Treatability of a textile azo dye by UV/H2O2.En-viron Technol1997;18:175–9.

Itoh K,Yatome C,Ogawa T.Biodegradation of anthraquinone dyes by Bacillus subtilis.Bull Environ Contam Toxicol1993;50:522–7.Itoh K,Kitade Y,Yatome C.A pathway for biodegradation of an anthra-quinone dye,CI Disperse Red15,by a yeast strain Pichia anomala.

Bull Environ Contam Toxicol1996;56:413–8.

Itoh K,Kitade Y,Kobayashi S,Nakanishi M,Yatome C.Demethylation of acridine orange by Arthrobacter glbiformis.Bull Environ Contam Toxicol1998a;60:781–5.

Itoh K,Kitade Y,Yatome C.Oxidative biodegradation of an anthraquinone dye,Pigment Violet12,by Coriolus versicolor.Bull Environ Contam Toxicol1998b;60:786–90.

Itoh K,Kitade Y,Nakanishi M,Yatome C.Decolorization of methyl red by

a mixed culture of Bacillus sp.and Pseudomonas stutzeri.J Environ Sci

Health Part A,Environ Sci Eng Toxic Hazard Substance Control A 2002;37:415–21.

Ivanov K,Gruber E,Schempp W,Kirov D.Possibilities of using zeolite as filler and carrier for dyestuffs in paper.Das Papier1996;50:456–60[in German].

Jiang H,Bishop PL.Aerobic biodegradation of azo dyes in biofilms.Water Sci Technol1994;29:525–30.

Juang RS,Wu FC,Tseng RL.The ability of activated clay for the adsorp-tion of dyes from aqueous solutions.Environ Technol1997;18:525–31. Kabadasil I,Tu¨nay O,Orhon D.Wastewater control and management in a leather tanning district.Water Sci Technol1999;40/1:261–7.

Kakuta T,Aoki F,Okada T,Shindo H,Yoshizawa K,Koizumi T,et al.

Purification and properties of two different azoreductases from a yeast Candida curvata AN723.Sen-I Gakkaishi1998;54:18–25.

Kanekar P,Sarnaik S.An activated sludge process to reduce the pollution load of a dye-industry waste.Environ Pollut1991;70:27–33. Kanekar P,Sarnaik S.Microbial process for treatment.Sci Eng Toxic Hazard Substance Control A1995;31:1035–41.

Kanekar P,Kumbhojkar MS,Ghate V,Sarnaik S.Wolffia arrhiza(L.) Wimmer and Spirodella polyrrhiza(L.)Schleiden as test plant systems for toxicity assay of microbially treated dyestuff waste water.J Environ Biol1993;14:129–35.

Kanekar P,Sarnaik S,Kelkar A.Microbial technology for management of phenol bearing dyestuff wastewater.Water Sci Technol1996;33:47–51. Kapdan I,Kargi F,McMullan G,Marchant https://www.wendangku.net/doc/8810598712.html,parison of white-rot fungi cultures for decolorization of textile dyestuffs.Bioprocess Eng 2000;22:347–51.

Kapdas IK,Kargi F.Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor.

Enzyme Microb Technol2002;30:195–9.

Kasinath A,Novotny C,Svobodova K,Patel KC,Sasek V.Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor.Enzyme Microb Technol2003;32:167–73.

Keck A,Rau J,Reemtsma T,Mattes R,Stolz A,Klein J.Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6.Appl En-viron Microbiol2002;68:4341–9.

Keharia H,Madamwar D.Transformation of textile dyes by white-rot fungus Trametes versicolor.Appl Biochem Biotechnol2002;102:99–108. Kim DJ,An HY,Yoon JH,Park YH,Kawai F,Jung CM,et al.Identifica-tion of Clostridium perfringens AB&J and its uptake of bromophenol blue.J Microbiol Biotechnol2002a;12:544–52.

Kim JD,Yoon JH,Park YH,Kawai F,Kim HT,Lee DW,et al.Identifi-cation of Stenotrophomonas maltophilia LK-24and its degradability of crystal violet.J Microbiol Biotechnol2002b;12:437–43.

Kirby N,Marchant R,McMullan G.Decolourisation of synthetic textile dyes by Phlebia tremellosa.FEMS Microbiol Lett2000;188:93–6. Kiwi J.Role of oxygen at the TiO2interface during photodegradation of biologically difficult-to-degrade anthraquinone-sulfonate dyes.Environ Toxicol Chem1994;13:1569–75.

Kiwi J,Pulgarin C,Peringer P,Gra¨tzel M.Beneficial effects of homoge-neous photo-Fenton pretreatment upon the biodegradation of anthraqui-none sulfonate in waste water treatment.Appl Catal.,B Environ1993;3: 85–9.

Knapp JS,Newby PS.The decolourisation of a chemical industry effluent by white rot fungi.Water Res1999;33:575–7.

E.Forgacs et al./Environment International30(2004)953–971967

Knapp JS,Newby PS,Reece LP.Decolorization of dyes by wood-rotting basidiomycete fungi.Enzyme Microb Technol1995;17:664–8. Knittel D,Schollmeyer E.Prevention of water pollution in dyeing process-es of synthetic textiles.Eur Water Pollut Control1996;6:6–10. Koneva ND,Kruglov YV.The dynamics of the size and structure of the soil bacterial complex in the presence of azobenzene.Microbiology2001;

70:480–3.

Koprivanac N,Bosanac G,Grabaric Z,Papic S.Treatment of wastewaters from dye industry.Environ Technol Lett1993;14:385–90.

Koyuncu I,Afsar H.Decomposition of dyes in the textile wastewater with ozone.J Environ Sci Health Part A,Environ Sci Eng Toxic Hazard Substance Control A1996;31:1035–41.

Kross BC,Nicholson HF,Ogilvie LK.Methods development study for measuring pesticide exposure to golf course workers using video imag-ing techniques.Appl Occup Environ Hyg1996;11:1346–51.

Kuo WG.Decolorizing dye wastewater with Fenton’s reagent.Water Res 1992;26:881–6.

Larrondo LF,Lobos S,Stewart P,Cullen D,Vicuna R.Isoenzyme multi-plicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium.

Appl Env Microbiol2001;67:2070–5.

Larsson S,Cassland P,Jonsson LJ.Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.Appl Environ Microbiol2001;67:1163–70.

Laszlo JA.Regeneration of azo-dye-saturated cellulosic anion exchange resin by Burkholderia cepacia anaerobic dye reduction.Environ Sci Technol2000;34:167–72.

Learoyd SA,Kroll RG,Thurston CF.An investigation of dye reduction by food-borne bacteria.J Appl Bacteriol1992;72:479–85.

Lee CK,Low KS,Chew SL.Removal of anionic dyes by water hyacinth roots.Adv Environ Res1999;3:343–51.

Lee TH,Aoki H,Sugano Y,Shoda M.Effect of molasses on the production and activity of dye-decolorizing peroxidase from Geotrichum candidum Dec1.J Biosci Bioeng2000;89:545–9.

Leidig E,Prusse U,V orlop KD,Winter J.Biotransformation of Poly R-478 by continuous cultures of PV AL-encapsulated Trametes versicolor un-der non-sterile conditions.Bioprocess Eng1999;21:5–12.

Lenin L,Forchiassin F,Ramos AM.Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii.Mycologia2002;

94(3):377–83.

Liakou S,Pavlou S,Lyberatos G.Ozonation of azo dyes.Water Sci Technol 1997a;35:279–86.

Liakou S,Kornaros M,Lyberatos G.Pretreatment of azo dyes using ozone.

Water Sci Technol1997b;36:155–63.

Lier van JB,Zee van der FP,Tan NCG,Rebac S,Kleerebezem R.Advan-ces in high-rate anaerobic treatment:staging of reactor systems.Water Sci Technol2001;44:15–25.

Lin JP,Lian W,Xia LM,Cen PL.Production of laccase by Coriolus versi-color and its application in decolorization of dyestuffs:II.Decoloriza-tion of dyes by laccase containing fermentation broth with or without self-immobilized mycelia.J Environ Sci(China)2003;15:5–8.

Liu JQ,Liu HT.Degradation of azo dyes by algae.Environ Pollut1992;

75:273–8.

Lorenzo M,Moldes D,Couto SR,Sanroman A.Improving laccase production by employing different lignocellulosic wastes in sub-merged cultures of Trametes versicolor.Bioresour Technol2002;82: 109–13.

Low KS,Lee CK,Wong AM.Carbonized spent bleaching earth as a sorbent for some organic dyes.J Environ Sci Health Part A,Environ Sci Eng Toxic Hazard Substance Control A1995;31:673–85. Luangdilok W,Panswad T.Effect of chemical structures of reactive dyes on color removal by an anaerobic–aerobic process.Water Sci Technol 2000;42:377–82.

Lunn G,Sansone EB.Decontamination of aqueous solutions of biological stains.Biotech Histochem1991;66:307–15.

Lunn G,Klausmeyer PJ,Sansone EB.Removal of biological stains from

aqueous solution using a flow-through decontamination procedure.Bio-tech Histochem1994;69:45–54.

Maceiras R,Rodriguez-Couto S,Sanroman A.Influence of several activa-tors on the extracellular laccase activity and in vivo decolourization of poly R-478by semi-solid-state cultures of Trametes versicolor.Acta Biotechnol2001;21:255–64.

Manamekalai R,Swaminathan T.Removal of hazardous compounds by lignin peroxidase from Phanerochaete chrysosporium.Bioprocess Eng 2000;22:29–33.

Marmier-Dussoubs D,Mazet M,Pronost J.Removal of dyestuffs by wood charcoal.Environ Technol1991;12:625–34.

Martins MAM,Cardoso MH,Queiroz MJ,Ramalho MT,Campos AMO.

Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures.Chemosphere1999;38:2455–60.

Maximo C,Amorim MTP,Costa-Ferreira M.Biotransformation of indus-trial reactive azo dyes by Geotrichum https://www.wendangku.net/doc/8810598712.html,MI1019.Enzyme Microb Technol2003;32:145–51.

Mazmanci MA,Unyayar A,Ekiz HI.Decolorization of Methylene Blue by white rot fungus Coriolus versicolor.Fresenius Environ Bull2002;11: 254–8.

Mazumder R,Logan JR,Mikell AT,Hooper SW.Characteristics and pu-rification of an oxygen insensitive azoreductase from Caulobacter sub-vibrioides strain C7-D.J Ind Microbiol Biotech1999;23:476–83. Meehan C,Banat IM,McMullan G,Nigam P,Smyth F,Marchant R.

Decolorization of Remazol Black-B using a thermotolerant yeast,Kluy-veromyces marxianus IMB3.Environ Int2000;26:75–9.

Meehan C,Bjourson AJ,McMullan G.Paenibacillus azoreducens sp.nov.,

a synthetic azo dye decolorizing bacterium from industrial wastewater.

Int J Syst Evol Biol2001;51:1681–5.

Mielgo I,Moreira MT,Feijoo G,Lema JM.Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrys-osporium.Water Res2002;36:1896–901.

Minussi R.C,de Moraes SG,Pastore GM,Duran N.Biodecolorization screening of synthetic dyes by four white-rot fungi in a solid medium: possible role of siderophores.Lett Appl Microbiol2001;33:21–5. Mittal AK,Gupta SK.Biosorption of cationic dyes by dead macro fungus Fomitopsis carnea:batch studies.Water Sci Technol1996;34:81–7. Mittal AK,Venkobachar C.Sorption and desorption of dyes by sulfonated coal.J Environ Eng(ASCE)1993;119:366–8.

Mohan N,Balasubramanian N,Subramanian V.Electrochemical treatment of simulated textile effluent.Chem Eng Technol2001;24:749–53. Morawski B,Quan S,Arnold FH.Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cere-visiae.Biotechnol Bioeng2001;76:99–107.

Morgan-Sagastume JM,Jimenez B,Noyola A.Tracer studies in a labora-tory and pilot scale UASB reactor.Environ Technol1997;18:817–26. Nagai M,Sato T,Watanabe H,Saito K,Kawata M,Enei H.Purification and characterization of an extracellular laccase from the edible mush-room Lentinula edodes,and decolorization of chemically different dyes.

Appl Microbiol Biotechnol2002;60:327–35.

Nakanishi M,Yatome C,Ishida N,Kitade Y.Putative ACP phosphodies-terase gene(acpD)encodes an azoreductase.J Biol Chem2001;276: 46394–9.

Namasivayam C,Arasi DJSE.Removal of congo red from wastewater by adsorption onto red mud.Chemosphere1997;34:401–17. Namasivayam C,Senthilkumar S.Recycling of industrial solid wastes:’waste’FeIII/CrIII hydroxide as an adsorbent for the removal of toxic ions and dyes from wastewater.Adsorp Sci Technol1995;12:293–6. Namasivayam C,Yamuna RT.Removal of rhodamine-B by biogas waste slurry from aqueous solution.Water Air Soil Pollut1992;65:101–9. Namasivayam C,Kanchana N,Yamuna RT.Waste banana pith as adsorbent for the removal of rhodamine-B from aqueous solutions.Waste Manag 1993;13:89–95.

Namasivayam C,Jeyakumar R,Yamuna T.Dye removal from wastewater by adsorption on’waste’Fe(III)/Cr(III)hydroxide.Waste Manag1994;

14:643–8.

Namasivayam C,Muniasamy N,Gayatri K,Rani M,Rangananathan K.

E.Forgacs et al./Environment International30(2004)953–971 968

Removal of dyes from aqueous solutions by cellulosic waste orange peel.Bioresour Technol1996;57:37–43.

Nansheng D,Feng W,Fan L,Zan L.Photodegradation of dyes in aqueous solutions containing Fe(III)-oxalato complexes.Chemosphere1997a;

35:2697–706.

Nansheng D,Feng W,Shizhong T,Tao F.Photodegradation of dyes in aqueous solutions containing Fe(III)-hydroxy complex II.Solar photo-degradation kinetics.Chemosphere1997b;34:2725–35.

Novotny C,Rawal B,Bhatt M,Patel M,Sasek V,Molitoris HP.Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes.J Biotechnol2001;89:113–22.

Nyanhongo GS,Gomes J,Gubitz GM,Zvauya R,Read J,Steiner W.

Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta.Water Res2002;36:1449–56.

O’Callaghan J,O’Brien MM,McClean K,Dobson ADW.Optimisation of the expression of a Trametes versicolor laccase gene in Pichia pastoris.

J Ind Microbiol Biotech2002;29(2):55–9.

Ogawa T,Yatome C.Biodegradation of azo dyes in multistage rotating biological contactor immobilized by assimilating bacteria.Bull Environ Contam Toxicol1990;44:561–6.

Ogutveren UB,Gonen N,Koparal S.Removal of dye stuffs from waste water:electrocoagulation of acilan blau using soluble anode.J Environ Sci Health Part A,Environ Sci Eng1992;27:1237–47.

Ollikka P,Alhonma¨ki K,Leppa¨nen VM,Glumoff T,Raijola T,Suominen I.

Decolorization of azo,triphenyl methane,heterocyclic,and polymeric dyes by lignin peroxidase isoenzymes form Phanerochaete chrysospo-rium.Appl Environ Microbiol1993;59:4010–6.

O’Mahony T,Guibal E,Tobin JM.Reactive dye biosorption by Rhizopus arrhizus biomass.Enzyme Microb Technol2002;31:456–63.

O’Neill C,Hawkes FR,Esteves SRR,Hawkes DL,Wilcox SJ.Anaerobic and aerobic treatment of a simulated textile effluent.J Chem Technol Biotechnol1999;74:993–9.

O’Neill C,Hawkes FR,Hawkes DL,Esteves S,Wilcox SJ.Anaerobic–aerobic biotreatment of simulated textile effluent containing varied ra-tios of strach and azo dye.Water Res2000;34:2355–61.

Orhon D,So¨zen S,Go¨rgu¨n E,Cokgo¨r E,Artan N.Technological aspects of wastewater management in coastal tourist areas.Water Sci Technol 1999;39/8:177–84.

Oros G,Cserhati T,Forgacs E.Strength and selectivity of the fungicidal effect of diazobenzene dyes.Fresenius Environ Bull2001;10:319–22. Otterbein L,Record E,Chereau D,Herpoel I,Asther M,Moukha SM.

Isolation of a new laccase isoform from the white-rot fungi Pycnoporus cinnabarinus strain ss3.Can J Microbiol2000;46:759–63. Panswad T,Luangdilok W.Decolorization of reactive dyes with different molecular structures under different environmental conditions.Water Res2000;34:4177–84.

Panswad T,Techovanich A,Anotai https://www.wendangku.net/doc/8810598712.html,parison of dye wastewater treat-ment by normal and anoxic plus anaerobic/aerobic SBR activated sludge processes.Water Sci Technol2001;43:355–62.

Petek J,Glavic P.An integral approach to waste minimization in process industries.Resour Conserv Recycl1996;17:169–88.

Platzek T,Lang C,Grohmann G,Gi US,Baltes W.Formation of a carci-nogenic aromatic amine from an azo dye by human skin bacteria in vitro.Human Exp Toxicol1999;18:552–9.

Plumb JJ,Bell J,Stuckey DC.Microbial populations associated with treat-ment of an industrial dye effluent in an anaerobic baffled reactor.Appl Environ Microbiol2001;67:3226–35.

Podgornik H,Poljansek R,Perdih A.Transformation of indigo carmine by Phanerochaete chrysosporium ligninolytic enzymes.Enzyme Microb Technol2001;29:166–72.

Pointing SB,Bucher VVC,Vrijmoed LLP.Dye decolorization by sub-tropical basidiomycetous fungi and the effect of metals on decolorizing ability.World J Microbiol Biotechnol2000;16:199–205.

Rafii F,Coleman T.Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria.J Basic Microbiol1999;39: 29–36.Raghukumar C.Fungi from marine habitats:and application in bioremedi-ation.Mycol Res2000;104:1222–6.

Ramalho PA,Scholze H,Cardoso MH,Ramalho MT,Oliveira-Campos AM.Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides.Enzyme Microb Technol2002;31: 848–54.

Ramsay JA,Nguyen T.Decoloration of textile dyes by Trametes versicolor and its effect on dye toxicity.Biotechnol Lett2002;24:1756–60. Razo-Flores E,Luijten M,Donlon B,Lettinga G,Field J.Biodegradation of selected azo dyes under methanogenic conditions.Water Sci Technol 1997;36:65–72.

Record E,Punt PJ,Chamkha M,Labat M,van den Hondel CAMJJ,Asther M.Expression of the Pycnoporus cinnabarinus laccase gene in Asper-gillus niger and characterization of the recombinant enzyme.Eur J Biochem2002;269:602–9.

Reutergradh LB,Iangpashuk M.Photocatalytic decolorization of reactive azo dye:a comparison between TiO2and CdS photocatalysis.Chemo-sphere1997;35:585–96.

Rieger PG,Meier HM,Gerle M,V ogt U,Groth T,Knackmuss HJ.Xeno-biotics in the environment:present and future strategies to obviate the problem of biological persistence.J Biotechnol2002;94:101–23. Rodriguez E,Pickard MA,Vazquez-Duhalt R.Industrial dye decolorization by laccases from lignolytic fungi.Curr Microbiol1999;38:27–32. Roy D,Wang GT,Adrian DD.A simplified solution technique for carbon adsorption model.Water Res1993;27:1033–40.

Russ R,Rau J,Stolz A.The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria.Appl Environ Microbiol2000;66: 1429–34.

Sakaki T,Inouye K.Practical application of mammalian cytochrome P450.

J Biosci Bioeng2000;90:583–90.

Saleem M,Afzal M,Hameed A,Mahmood F.Adsorption studies of cat-ionic dyes on silica gel from aqueous solution.Sci Int(Lahore)1993;

5:323–30.

Salem M,Afzal M,Mahmood F,Hameed A.Thermodynamics of adsorp-tion of rhodamin B and nile blue sulfate on alumina from aqueous solutions.J Chem Soc Pak1994;16:83–6.

Sam M,Yesilada O.Decolorization of Orange II dye by white-rot fungi.

Folia Microbiol2001;46:143–5.

Sani RK,Banerjee UC.Decolorization of triphenylmethane dyes and tex-tile dye-stuff effluent by Kurthia sp.Enzyme Microb Technol1999;24: 433–7.

Sani RK,Azmi W,Banerjee https://www.wendangku.net/doc/8810598712.html,parison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysosporium.Folia Microbiol1998;43:85–8.

Sarnaik S,Kanekar P.Biodegradation of methyl violet by Pseudomo-nas mendocina MCM B-402.Appl Microbiol Biotechnol1999;52: 251–4.

Scarpi C,Ninci F,Centini M,Anselmi C.High-performance liquid chro-matography determination of direct and temporary dyes in natural hair colourings.J Chromatogr,A1998;796:319–25.

Schliephaje K,Lonergan https://www.wendangku.net/doc/8810598712.html,ccase variation during dye decolorisation in a200L packed-bad bioreactor.Biotechnol Lett1996;18:881–6. Schneider P,Caspersen MB,Mondorf K,Halkier T,Skov LK,Ostergaard PR,et al.Characterization of a Coprinus cinereus laccase.Enzyme Microb Technol1999;25:502–8.

Semde R,Pierre D,Geuskens G,Devleeschouwer M,Moes AJ.Study of some important factors involved in azo derivative reduction by Clos-tridium perfringens.Int J Pharm1998;161:45–54.

Seshadri S,Bishop PL,Agha AM.Anaerobic/aerobic treatment of selected azo dyes in wastewater.Waste Manag1994;14:127–37.

Shaul GM,Holdsworth TJ,Dempsey CR,Dostal KA.Fate of water sol-uble azo dyes in the activated sludge process.Chemosphere1991;22: 107–19.

Shin M,Nguyen T,Ramsay J.Evaluation of support materials for the surface immobilization and decoloration of amaranth by Trametes versi-color.Appl Microbiol Biotechnol2002;60:218–23.

Shu HY,Huang CR.Degradation of commercial azo dyes in water using

E.Forgacs et al./Environment International30(2004)953–971969

ozonation and UV enhanced ozonation process.Chemosphere1995;31: 3813–25.

Shu HY,Huang CR,Chang MC.Decolorization of monoazo dyes in wastewater by advanced oxidation process:a case study of acid red1 and acid yellow23.Chemosphere1994;29:2597–607.

Shukla SP,Gupta GS.Toxic effects of omega chrome red ME and its treatment by adsorption.Ecotoxicol Environ Saf1992;24:155–63. Slampova A,Smela D,V ondrackova A,Jancarova I,Kuban V.Deter-mination of synthetic colorants in foodstuffs.Chem Listy2001;95: 163–8.

Soares GMB,de Amorim MTP,Costa-Ferreira https://www.wendangku.net/doc/8810598712.html,e of laccase together with redox mediators to decolourize Remazol Brilliant Blue R.J Bio-technol2001;89:123–9.

Soden DM,O’Callaghan J,Dobson ADW.Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the hetero-logous Pichia pastoris host.Microbiol-SGM2002;148:4003–14. Sokolowska-Gajda J,Freeman HS,Reife A.Synthetic dyes based on en-vironmental considerations:2.Iron complexed formazan dyes.Dyes Pigm1996;30:1–20.

Sorensen BL,Wakeman RJ.Filtration characterization and specific surface area measurement of activated sludge by rhodamine B adsorption.Wa-ter Res1996;30:115–21.

Stiborova M,Martinek V,Rydlova H,Hodek P,Frei E.Sudan I is a potential carcinogen for humans:Evidence for its metabolic activation and detoxication by human recombinant cytochrome P4501A1and liver microsomes.Cancer Res2002;62:5678–84.

Stolz A.Basic and applied aspects in the microbial degradation of azo dyes.

Appl Microbiol Biotechnol2001;56:69–80.

Strycharz S,Shetty K.Effect of Agrobacterium rhizogenes on phenolic content of Mentha pulegium elite clonal line for phytoremediation applications.Process Biochem2002;38:287–93.

Sugano Y,Nakano R,Sasaki K,Shoda M.Efficient heterologous expres-sion in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP,of Geotrichum candidum Dec1.Appl Environ Microbiol2000;

66:1754–8.

Sugimori D,Banzawa R,Kurozumi M,Okura I.Removal of disperse dyes by the fungus Cunninghamella polymorpha.J Biosci Bioeng1999;87: 252–4.

Sumathi S,Manju BS.Uptake of reactive dyes by Aspergillus foetidus.

Enzyme Microb Technol2000;27:347–55.

Suzuki Y,Yoda T,Ruhul A,Sugiura W.Molecular cloning and character-ization of the gene coding azoreductase from Bacillus sp.OYl-2isolat-ed from soil.J Biol Chem2001;276:9059–65.

Swamy J,Ramsay JA.The evaluation of white rot fungi in the decoloration of textile dyes.Enzyme Microb Technol1999a;24:130–7.

Swamy J,Ramsay JA.Effects of Mn2+and NH4+:concentrations on laccase and manganese peroxidase production and Amaranth decolor-ation by Trametes versicolor.Appl Microbiol Biotechnol1999b;51: 391–6.

Takano M,Nishida A,Nakamura M.Screening of wood-rotting fungi for kraft pulp bleaching by the Poly R decolorization test and biobleaching of hardwood kraft pulp by Phanerochaete crassa WD1694.J Wood Sci 2001;47:63–8.

Tang WZ,An H.Photocatalytic degradation kinetics and mechanism of acid blue40by TiO2/UV in aqueous solution.Chemosphere1995a;31: 4171–83.

Tang WZ,An H.UV/TiO2photocatalytic oxidation of commercial dyes in aqueous solutions.Chemosphere1995b;31:4158–70.

Tang WZ,Chen RA.Decolorization kinetics and mechanisms of com-mercial dyes by H2O2/iron powder system.Chemosphere1996;32: 947–58.

Tang WZ,Zhang Z,An H,Quintana MO,Torres DF.TiO2/UV photode-gradation of azo dyes in aqueous solutions.Environ Technol1997;18: 1–12.

Tatarko M,Bumpus JA.Biodegradation of Congo Red by Phanerochaete chrysosporium.Water Res1998;32:1713–7.

Tekere M,Mswaka AY,Zvauya R,Read JS.Growth,dye degradation and

ligninolytic activity studies on Zimbabwean white rot fungi.Enzyme Microb Technol2001;28:420–6.

Tsuda S,Murakami M,Matsusaka N,Kano K,Taniguchi K,Sasaki YF.

DNA damage induced by red food dyes orally administered to pregnant and male mice.Toxicol Sci2001;61:92–9.

Tsui SM,Chu W.Photocatalytic degradation of dye pollutants in the pres-ence of acetone.Water Sci Technol2001;44:173–80.

Tunay O,Kabdasli I,Eremektar G,Orhon D.Color removal from textile wastewaters.Water Sci Technol1996;34:9–16.

Tu¨nay O,Kabdasli I,Ohron D,Cansever https://www.wendangku.net/doc/8810598712.html,e and minimalization of water in leather tanning processes.Water Sci Technol1999;40/ 1:237–44.

Zee van der FP,Bisschops IAE,Lettinga G,Field JA.Activated carbon as an electron acceptor and redox mediator during the anaerobic biotrans-formation of azo dyes.Environ Sci Technol2003;37:402–8. Vinodgopal K,Wynkoop DE,Kamat PV.Environmental photochemistry on semiconductor surfaces:photosensitized degradation of a textile azo dye,acid orange7,on TiO2particles using visible light.Environ Sci Technol1996;30:1660–6.

Vinodgopal K,Peller J,Makogon C,Kamat PV.Ultrasonic mineralization of a reactive textile azo dye,Remazol black B.Water Res1998;32: 3646–50.

Wagner RW,Lindsey JS.Boron-dipyrromethane dyes for incorporation in synthetic multi-pigment light-harvesting arrays.Pure Appl Chem1996;

68:1373–80.

Walker GM,Weatherley LR.Adsorption of acid dyes on to granular acti-vated carbon in fixed beds.Water Res1997;31:2093–101.

Walker GM,Weatherley LR.Kinetics of acid dye adsorption on GAC.

Water Res1999;33:1895–9.

Walker GM,Weatherley LR.Biodegradation and biosorption of acid an-thraquinone dye.Environ Pol2000;108:219–23.

Walthall WK,Stark JD.The acute and chronic toxicity of two xanthene dyes,fluorescein sodium salt and phloxine B,to Daphnia pulex.Envi-ron Pollut1999;104:207–15.

Wang XY,Yu J.Adsorption and degradation of synthetic dyes on the mycelium of Trametese versicolor.Water Sci Technol1998;38: 233–8.

Wang JM,Huang CP,Allen HE,Cha OK,Kim DW.Adsorption character-istics of dye onto sludge particulates.J Colloid Interface Sci1998;208: 518–28.

Weber EJ,Adams RL.Chemical and sediment-mediated reduction of the azo dye disperse blue79.Environ Sci Technol1995;29:1163–70. Wong PK,Yuen PY.Decolorization and biodegradation of methyl red by Klebsiella pneunomoniae.Water Res1996;30:1736–44.

Wong PK,Yuen PY.Decolourization and biodegradation of N,N V-dimeth-yl-p-phenylenediamine by Klebsiella pneumoniae RS-13and Aceto-bacter liquefaciens S-1.J Appl Microbiol1998;85:79–87.

Wrobel D,Boguta A,Ion RM.Mixtures of synthetic organic dyes in

a photoelectronic cell.J Photochem Photobiol,A Chem2001;138:

7–22.

Wu JN,Wang TW.Effects of some water-quality and operating parameters on the decolorization of reactive dye solutions by ozone.J Environ Sci Health,Part A2001;36:1335–47.

Wu JN,Eiteman MA,Law SE.Evaluation of membrane filtration and ozonation processes for treatment of reactive dye wastewater.J Environ Eng(ASCE)1998;124:272–7.

Yang YQ,Wyatt DT,Bahorsky M.Decolorization of dyes using UV/H2O2 photochemical oxidation.Text Chem Color1998;30:27–35. Yatome C,Hayashi H,0gawa T.Microbial reduction of azo dyes by several strains.J Environ Sci Health,Part A,Environ Sci Eng1991a;

26:471–84.

Yatome C,Ogawa T,Matsui M.Degradation of crystal violet by Bacillus subtilis.J Environ Sci Health,Part A,Environ Sci Eng1991b;26:75–87. Yoo ES,Libra J,Wiesmann U.Reduction of azo dyes by Desulfovibrio desulfuricans.Water Sci Technol2000;41:15–22.

Yoo ES,Libra J,Adrian L.Mechanism of decolorization of azo dyes in anaerobic mixed culture.J Environ Eng(ASCE)2001;127:844–9.

E.Forgacs et al./Environment International30(2004)953–971 970

Yoshida H,Takemori T.Adsorption of direct dye on cross-linked chitosan fiber.Water Sci Technol1997;35:29–37.

Young L,Yu J.Ligninase-catalysed decolorization of synthetic dyes.Water Res1997;31:1187–93.

Yu J,Wang XW,Yue PL.Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains.Water Res2001;35:3579–86. Zee van der FP,Lettinga G,Field JA.The role of(auto)catalysis in the mechanism of an anaerobic azo reduction.Water Sci Technol2000;

42:301–8.

Zee van der FP,Lettinga G,Field JA.Azo dye decolourisation by anaerobic sludge.Chemosphere2001a;44:1169–76.

Zee van der FP,Bouwman RHM,Strik DPBTB,Lettinga G,Field JA.

Application of redox mediators to accelerate the transformation of re-active azo dyes in anaerobic bioreactors.Biotechnol Bioeng2001b;75: 691–701.Zhang FM,Yu J.Decolourisation of acid violet7with complex pellets of white rot fungus and activated carbon.Bioprocess Eng2000;23: 295–301.

Zhang TC,Fu YC,Bishop PL.Transport and biodegradation of toxic organics in biofilms.J Hazard Mater1995;41:267–85.

Zheng ZX,Levin RE,Pinkham JL,Shetty K.Decolorization of polymeric dyes by a novel Penicillium isolate.Process Biochem1999;34:31–7. Zilly A,Souza CGM,Barbosa-Tessmann IP,Peralta RM.Decolorization of industrial dyes by a Brazilian strain of Pleurotus pulmonarius produc-ing laccase as the sole phenol-oxidizing enzyme.Folia Microbiol2002;

47:273–7.

Zissi U,Lyberatos G.Azo-dye biodegradation under anoxic conditions.

Water Sci Technol1996;34:495–500.

E.Forgacs et al./Environment International30(2004)953–971971

控制软件说明书

控制软件说明书 PC端软件FTM 安装及应用 系统运行环境: 操作系统中英文Windows 98/2000/ NT/XP/WIN7/ Vista, 最低配置 CPU:奔腾133Mhz 内存:128MB 显示卡:标准VGA,256色显示模式以上 硬盘:典型安装 10M 串行通讯口:标准RS232通讯接口或其兼容型号。 其它设备:鼠标器 开始系统 系统运行前,确保下列连线正常: 1:运行本软件的计算机的RS232线已正确连接至控制器。 2:相关控制器的信号线,电源线已连接正确; 系统运行步骤: 1:打开控制器电源,控制电源指示灯将亮起。 绿色,代表处于开机运行状态;橙色代表待机状态。 2. 运行本软件 找到控制软件文件夹,点击FWM.exe运行。出现程序操作界面:

根据安装软件版本不同,上图示例中的界面及其内容可能会存在某些差别,可咨询我们的相关的售后服务人员。 上图中用红色字体标出操作界面的各部分的功能说明: 1. 菜单区:一些相关的菜单功能选择执行区。 2. 操作区:每一个方格单元代表对应的控制屏幕,可以通过鼠标或键盘的点选,拖拉的方式选择相应控制单元。 3.功能区:包含常用的功能按钮。 4.用户标题区:用户可根据本身要求,更改界面上的标题显示 5.用户图片区:用户可根据本身要求,更改界面上的图片显示,比如公司或工程相关LOGO图片。 6.附加功能区:根据版本不同有不同的附加项目。 7.状态区:显示通讯口状态,操作权限状态,和当前的本机时间,日期等。 如何开始使用 1. 通讯设置 单击主菜单中“系统配置”――》“通讯配置” 选择正确的通讯端口号,系统才能正常工作。 可以设置打开程序时自动打开串口。 2.系统配置

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

用造句子大全

路上的垫脚石,踏着它,走向成功。 12、初三让我受益匪浅,她让我明白了珍惜时间才不会虚度此 生的真谛,她让我懂得了珍爱人生就要去拼搏去奋斗的道理。如醉 如痴,她让我用**吮吸着知识的甘露;豁然开朗,她让我用真诚去 探寻着做人的美好。 13、普里尼曾说过:“在希望与失望的决斗中,如果你用勇气 与坚决的双手紧握着,胜利必属于希望。”的确啊,生活正需要这 种坚持不懈,永不放弃的精神。 14、十月国庆节,我又去外婆家,此时凤仙花的花瓣都凋落了,取而代之的是,枝上都挂满一个个鼓鼓的对象,爸爸汇报我那是凤 仙花的果子,内里有一粒粒的种子。我用手轻轻一捏,果子溘然 “爆炸”了,内里的种子像弹片一样。 15、大地啊,你是多么平反而有多么伟大,你用你的博爱征服 了无数的人们,让他们心甘情愿的像你一样无私奉献。 16、蚕宝宝还是天生的“歌唱家”,我用耳朵听蚕宝宝们吃桑 叶的时候,真的能听见“沙沙”的声音,那有节奏的沙沙声,像一 首百听不厌的乐曲。 17、我们学习的目的,是为了使用,不是知识没有用,而是你 没有使用,说明你没有用。 18、月光下,我用繁冗拖沓的文字祭奠我的青春,纪念我死去 的友情和迟到的爱情。 19、轻负担,高效率,教给学生有用的东西。 20、知识并非对人人都是同样有用的,正象权力不能使卑劣的 人变得高尚;知识也不能成为衡量人们心灵美丑的标准。 21、赏识不是单向的施舍,是智慧与智慧的主动碰撞;赏识不

是别有用心的廉价恭维,是对一种相对价值的公正认可;赏识不是 谀词满口的鄙俗奉承,而是对事物固有魅力的真诚。 22、人生好像火柴,严禁使用是愚蠢的,滥用则是危险的。 23、我用心与你握别,愿生活给你带来无数希望的翠绿,把你 引向理想的天地。 24、我爱学校的教室,因为教室让我获得了丰富的知识;我爱 学校的操场,因为操场让我拥有了健康的身体;我爱学校的老师, 因为老师让我成为了优秀的学生;我爱学校,因为学校把我培养成 了一个有用的人才! 25、世界原本就不是属于你,因此你用不着抛弃,要抛弃的是 一切的执著。万物皆为我所用,但非我所属。 26、在不幸中,有用的朋友更为必要;在幸运中,高尚的朋友 更为必要。在不幸中,寻找朋友出于必需;在幸运中,寻找朋友出 于高尚。 27、金钱是一种有用的东西,但是,只有在你觉得知足的时候,它才会带给你快乐,否则的话,它除了给你烦恼。 28、不管作业有多少,都要按时完成,而且都要有质量的完成。切记,认真且有思考的完成一套卷,比走马观花的完成十套卷有用 的多。 29、童年中,岸上的那只老黄牛散漫的咀嚼夕阳,在村口母亲 的叫唤声中,蹒跚着步履将夕阳下的剪影拉长。时过境迁,梦境与 现实对视,我用一段韶光,苍老了一段年华。 30、低调做人,往往是赢取对手的资助、最后不断走向强盛、 伸展势力再反过来使对手屈服的一条有用的妙计。 31、不是学习没有用,而是因为我没用,因为我没用,所以我

智能窗户控制系统软件说明

智能窗户控制系统软件V1.0设计说明 目录 前言 (1) 第一章软件总体设计 (1) 1.1. 软件需求概括 (1) 1.2. 定义 (1) 1.3. 功能概述 (1) 1.4. 总体结构和模块接口设计 (2) 第二章控制系统的总体设计 (3) 2.1. 功能设计 (3) 第三章软件控制系统的设计与实现 (5) 3.1. RF解码过程程序设计介绍 (5) 3.2. RF对码过程设计 (6) 3.3. 通信程序设计 (8) 3.4. IIC程序设计介绍 (9) 3.5. 接近开关程序设计 (12) 3.6. 震动开关检测程序设计 (13) 3.7. 墙面按键程序设计 (15) 第四章智能窗户控制系统的设计 (17) 第五章实测与结果说明 (18) 第六章结论 (18)

前言 目的 编写详细设计说明书是软件开发过程必不可少的部分,其目的是为了使开发人员在完成概要设计说明书的基础上完成概要设计规定的各项模块的具体实现的设计工作。 第一章软件总体设计 1.1.软件需求概括 本软件采用传统的软件开发生命周期的方法,采用自顶向下,逐步细化,模块化编程的软件设计方法。 本软件主要有以下几方面的功能 (1)RF遥控解码 (2)键盘扫描 (3)通信 (4)安全检测 (5)电机驱动 1.2.定义 本项目定义为智能遥控窗户系统软件。它将实现人机互动的无缝对接,实现智能关窗,遥控开关窗户,防雨报警等功能。 1.3.功能概述 1.墙体面板按键控制窗户的开/关 2.RF遥控器控制窗户的开/关 3.具有限位,童锁等检测功能 4.实时检测大气中的温湿度,下雨关窗 5.具有防盗,防夹手等安全性能的检测

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

世界造句大全

世界造句大全 导读:本文是关于世界造句大全,如果觉得很不错,欢迎点评和分享! 1、感谢对手,是他们让你成长;感谢母亲,是她给了你看到世界的机会;感谢父亲,是他握住你的手让你前进;感谢朋友,是他们在狂风骤雨的路上陪你一起走;感谢自然,是他教会了你一种感谢的心态。 2、雁荡山的美,是一种幽静的美。走进山林,人仿佛一下子被幽静包裹着,林中一丝声音也没有,仿佛是一个与外面截然不同的世界,一个与世隔绝的地方。直到一只突然醒悟的鸟儿长鸣一声,才打破了无声的世界。 3、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正。 4、如果不坚持,到哪里都是放弃。如果这一刻不坚持,不管再到哪里,身后总有一步可退,可退一步不会海阔天空,只是躲进自己的世界而已,而那个世界也只会越来越小。 5、春天,田野也披上了绿装,竹笋也从地下探出头来,呼吸着新鲜空气,看一看这奇妙的世界,柳树姑娘吐出了嫩芽,一阵微风吹来,它挥动着细长的胳膊跳起了婀娜多姿的舞美丽极了,令人陶醉。 6、他心里好像有种说不出的滋味,好像全世界的蛇胆都在自己

肚子中翻腾,他受不了,想把这种苦吐掉,但是这东西刚倒嘴边,又硬生生地咽了回去,空留他一口苦涩。 7、谢谢你,微风,是你用你那曼妙的身姿,舞动树梢,树叶飘零,"沙沙"直响,让我明白了原来的世界万物都有它的生命,它的语言。要用心灵去感受这个世界。 8、人生在世不容易,千万不要把烦恼当菜吃。你的快乐,就是真个的世界。小徒弟问我,师父啊你悟道了什么呢。我告诉他,很多年以后,不许空手来给我上坟,起码要带几个苹果。 9、世界最无私、最伟大、最崇高的爱,莫过于母爱。在我的学习生活中,妈妈给了我无微不至的关爱,在妈妈的关爱中,我健康、快乐地成长着。 10、花儿们竞相怒放,红的像火,白的像雪、粉的像霞,五光十色。山上的桃花远远望去像云霞。花儿们给世界穿了一件花衣裳,美丽极了。 11、黄昏,像我在佛前点燃的一柱香,心静时的苦苦惆怅,将一个个梦境,爱的心痛,继续燃放。一种感伤从心底抽出,拉长,直到光束无法触摸的地方。让黄昏触摸到自己内心深处的伤,这痛,隐藏在黑色的世界。 12、爱心是一柄撑起在雨夜的小伞,使漂泊异乡的人得到亲情的荫庇;爱心是一道飞架在天边的彩虹,使满目阴霾的人见到世界的美丽;爱心是一杯泼洒在头顶的冰水,使高热发昏的人得能冷静地思索;爱心是一块衔含在嘴里的奶糖,使久饮黄连的人尝到生活的甘甜。

软件操作说明书

门禁考勤管理软件 使 用 说 明 书

软件使用基本步骤

一.系统介绍―――――――――――――――――――――――――――――2二.软件的安装――――――――――――――――――――――――――――2 三.基本信息设置―――――――――――――――――――――――――――2 1)部门班组设置―――――――――――――――――――――――――3 2)人员资料管理―――――――――――――――――――――――――3 3)数据库维护――――――――――――――――――――――――――3 4)用户管理―――――――――――――――――――――――――――3 四.门禁管理―――――――――――――――――――――――――――――4 1)通迅端口设置―――――――――――――――――――――――――42)控制器管理――――――――――――――――――――――――――43)控制器设置――――――――――――――――――――――――――64)卡片资料管理―――――――――――――――――――――――――11 5)卡片领用注册―――――――――――――――――――――――――126)实时监控―――――――――――――――――――――――――――13 五.数据采集与事件查询――――――――――――――――――――――――13 六.考勤管理―――――――――――――――――――――――――――――14 1)班次信息设置――――――――――――――――――――――――――14 2)考勤参数设置――――――――――――――――――――――――――15 3)考勤排班――――――――――――――――――――――――――――15 4)节假日登记―――――――――――――――――――――――――――16 5)调休日期登记――――――――――――――――――――――――――16 6)请假/待料登记―――――――――――――――――――――――――17 7)原始数据修改――――――――――――――――――――――――――17 8)考勤数据处理分析――――――――――――――――――――――――17 9)考勤数据汇总―――――――—――――――――――――――――――18 10)考勤明细表—―――――――――――――――――――――――――18 11)考勤汇总表――――――――――――――――――――――――――18 12)日打卡查询――――――――――――――――――――――――――18 13)补卡记录查询—――――――――――――――――――――――――19

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

博思软件操作步骤

开票端操作说明 双击桌面“博思开票”图标,单击“确定”,进入开票界面: 一、开票: 日常业务——开票——选择票据类型——增加——核对票号无误后——单击“请核对票据号”——输入“缴款人或缴款单位”——选择”收费项目”、“收入标准”——单击“收费金额”。 (如需增加收费项目,可单击“增一行”) (如需加入备注栏(仅限于收款收据)),则在右侧“备注”栏内输入即可) 确认无误后,单击“打印”——“打印” 二、代收缴款书: 日常业务——代收缴款书——生成——生成缴款书——关闭——缴款——输入“专用票据号”——保存——缴款书左上角出现“已缴款”三个红字即可。 三、上报核销: 日常业务——上报核销——选择或输入核销日期的截止日期——刷新——核销。 (注意:“欠缴金额”处无论为正或为负均不可核销,解决方法见后“常见问题”)

常见问题 一、如何作废“代收缴款书” 日常业务——代收缴款书——缴款——删除“专用票据号”和“缴款日期”——保存——作废。 二、上报核销时出现欠缴金额,无法完成核销,或提示多缴。 1、首先检查有没有选择好截止日期,选择好后有没有点击“刷新”。 2、其次检查有没有做代收缴款书。注意:最后一张缴款书的日期不得晚于选择上报核 销日期。 3、若上述方法仍无效,则可能是由于以前作废过票据而未作废缴款书。解决方法: 首先作废若干张缴款书(直到不能作废为止),然后重新做一张新的缴款书。再核销。 三、打开“博思开票”时,出现“windows socket error:由于目标机器积极拒绝,无法连接。 (10061),on API’connect’” 单击“确定”,将最下面一行的连接类型“SOCKET”更换为“DCOM”,再点“连接” 即可。 四、如何设置密码 双击桌面“博思开票”,单击登录界面的右下方“改口令”输入用户编号、新密码和确认密码,单击“确认”即可。 五、更换开票人名称或增加开票人 进入开票系统——系统维护——权限管理 1、更换开票人名称:单击“用户编码”——删除“用户名”——输入新的开票人名称 ——单击“保存用户”即可。 2、增加开票人:单击“新增用户”——输入“用户编码”和“用户名”——单击“保 存用户”——单击新增的用户编码——将右边的“权限列表如下”下面的“所有”前的小方框勾上——单击右侧“保存用户权限”。 六、重装电脑系统 1、由于博思开票软件安装在D盘,所以重装电脑系统前无需做任何备份。 2、重装系统后,打开我的电脑—D盘,将“博思软件”文件夹复制到桌面上(或U盘)。 3、将安装时预留的安装光盘放入主机,打开后找到“票据核销及管理_开票端(江西欠 缴不能上报版)”(或者进入D盘----开票软件备份目录勿删文件夹里也可找到)。双 击,按提示点击“下一步”,直到“完成”。 4、双击桌面任务栏右下角“博思开票服务器”,将其关闭(或右键点击“博思开票服 务器”——“关闭服务器”)。 (这一步若找不到“博思开票服务器”,也可以用重启电脑来代替) 5、将刚才复制到桌面(或U盘)的“博思软件”再复制粘贴回D盘,若提示“此文 件夹已包含名为博思软件的文件夹”,点击下面的“全部”。 6、双击桌面“博思开票”——输入用户编码(001)——确定。 7、确认原来的票据数据没有丢失后,将桌面(或U盘)的“博思软件”文件夹删除。

三年级用再也造句大全

三年级用再也造句大全 导读:本文是关于三年级用再也造句大全,如果觉得很不错,欢迎点评和分享! 1、叶子轻轻地摇动了几下,几颗小露珠就调皮地躲进了草丛,再也寻找不到它们了。 2、当你再也没有什么可以失去的时候,就是你开始得到的时候。 3、一个人泄露了秘密,哪怕一丝一毫,就再也得不到安宁了。 4、离开了学校,再也见不到亲爱的老师,再也见不到同学了。 5、他现在回到森林里来,想坐进他的箱子里去。不过箱子到哪儿去了呢?箱子被烧掉了。焰火的一颗火星落下来,点起了一把火。箱子已经化成灰烬了。他再也飞不起来了。也没有办法到他的新娘子那儿去。 6、缘分就是小时候最喜欢的那个玩具,一旦丢失了,也许再也找不回来。 7、小蛇不安的在我手掌中扭动,我想它也许根本就不需要我的怜惜,它怕被我温暖后再也无力游走。那样它就会失去自由。 8、除了能造福于人类的工作之外,世上再也没有什么事业能真正而永久的名声了。 9、我再也不会相信你了,再也不会为你买棒棒糖了! 10、眼睛是心灵的窗户,假如我们失去了这宝贵的“心灵之窗”,那么在你的脑海将是一片黑暗,再也没有那美丽的颜色和那世间的欢

笑声,在别人嬉戏时自己却只能在旁边听着那欢笑声,那种感觉是多么孤独、多么无助啊! 11、大家再也不要再为这件事发愁了,再也不用发牢骚了,老板已经答应我们的要求了。 12、在人的一生中,再也没有像青年时期那样强烈地渴望被理解的时期了。没有任何人会像青年那样沉陷于孤独之中,渴望被人接近与理解;没有任何人会像青年那样站在遥远的地方呼唤。 13、我们的眼泪打湿了我们的衣衫,我们手拉着手,看着太阳一点点落下去,看着旧光阴一点点落下去,我们晓得,许多多少东西,再也不会返来了。 14、凡属我离开他而独自体验的一切,再也不给我带来任何喜悦。我的一切德行只是为了使他高兴,然而,当我在他身边时,我感到自己的德行软弱无力。 15、夏天到了,雄北极熊再也不能到陆地上捕到食物了,不过好在北极熊天生就是游泳健将,而且身披一身御寒大衣,有时它们需要持续地游100公里去寻找食物。 16、如果你的思想再也溅不起浪花,这会比死亡更可怕。没有不可认识的东西,我们只能说还有尚未被认识的东西。 17、你失去了金钱,可以再挣;你失去了一生,便再也不能回头。 18、自那些茹毛饮血的祖先用笨拙的双手,把一块块兽肉烤出第一缕香烟时,火成了人类进步的动力,我们再也无法与之分开。

控制系统使用说明

控制系统使用说明 系统针对轴流风机而设计的控制系统, 系统分为上位监视及下位控制两部分 本操作为上位监控软件的使用说明: 1: 启动计算机: 按下计算机电源开关约2秒, 计算机启动指示灯点亮, 稍过大约20秒钟屏幕出现操作系统选择菜单, 通过键盘的“↑↓”键选择“windows NT 4.0”菜单,这时系统进入WINDOWS NT 4.0操作系统,进入系统的操作画面。 2:系统操作 系统共分:开机画面、停机画面、趋势画面、报警画面、主机流程画面、轴系监测画面、润滑油站画面、动力油站画面、运行工况画面、运行记录画面等十幅画面,下面就十幅画面的作用及操作进行说明 A、开机画面: 开机: 当风机开始运转前,需对各项条件进行检查,在本画面中主要对如下指标进行检查,红色为有效: 1、静叶关闭:静叶角度在14度

2、放空阀全开:放空阀指示为0% 3、润滑油压正常 4、润滑油温正常 5、动力油压正常 6、逆止阀全关 7、存储器复位:按下存储器复位按钮,即可复位,若复位不成 需查看停机画面。 8、试验开关复位:按下试验开关按钮即可,试验开关按钮在风 机启动后,将自动消失,同时试验开关也自动复位。 当以上条件达到时,按下“允许机组启动”按钮,这时机组允许启动指示变为红色,PLC机柜里的“1KA”继电器将导通。机组允许启动信号传到高压柜,等待电机启动。开始进行高压合闸操作,主电机运转,主电机运转稳定后,屏幕上主电机运行指示变红。这时静叶释放按钮变红,按下静叶释放按钮后,静叶从14度开到22度,静叶释放成功指示变红。 应继续观察风机已平稳运行后,按下自动操作按钮,启机过程结束。 B、停机画面: 停机是指极有可能对风机产生巨大危害的下列条件成立时,PLC 会让电机停止运转: 1、风机轴位移过大

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

心情造句子大全一年级

心情造句子大全一年级 1、每一天的心情从那里开始没关系,在哪里结束更重要。 2、人间最珍贵是友情;最浪漫的是爱情;最动人的是恋情;最想要的是真情;我最想见到的是你有好心情!祝你快乐。 3、她的心情仍然很好,口里滔滔不绝,满怀心花怒放。 4、在这值得高兴的日子里,唯有烟花,才能吐出我们那喜悦的心情;唯有烟花,才能烘托这喜庆的气氛。 5、生是一场旅行,在乎的不是目的地,是沿途的风景以及看风景的心情。 6、秋天,秋高气爽,让我们感觉到心情特别地舒畅。 7、弯月,反映这一份快乐心情,可怜九月初三夜,露似真珠月似弓;弯月,体现了一种世间长情,但愿人长久,千里共婵娟。 8、经过长久的努力,他终于获得国际肯定,悲喜交杂的心情一言难尽。 9、登上万里长城,眺望塞外风光,心情多么豪迈! 10、朋友是午睡初醒的那杯清茶,用无限的甘甜滋润每一份快乐心情。 11、花儿在灿烂地微笑,鸟儿在快乐地欢叫,我的心情啊,像吃了蜜一样甜。 12、恍忽间明白:明媚的春天之所以如此的美,是因为它让人的心情在此刻绽放。 13、街边流浪狗的难受心情是只可意会,不可言传的。

14、他心如鹿撞,心砰砰的跳,心里七上八下,心情如激荡的湖水一样不平静。 15、幸福是什么?幸福是积极地生活态度,是一份好心情,是温暖的关爱,是真诚的赞美,是快乐的分享,是无私的奉献。 16、东方的第一缕曙光刺破黑暗,光明随着时间铺满天地,即使冷意昂然的冬天,万物也是用喜悦的心情来期待着温暖。 17、你不能左右天气,但你可以改变心情;你不能改变容颜,但你可以展现笑容;你不能样样顺利,但你可以事事尽力。 18、我看着这蔚蓝的大海,不由地哼起了歌,心情像迎着海风飞驰的帆船一样轻快。 19、你以什么样的心态去面对生活,你就会收获什么样的心情! 20、今天是阴天,灰灰的天让人的心情也不舒服,大热天里竟破天荒感到冷。 21、阴天,总有种失落的感觉,心情也随之下沉。 22、你以为我是康师傅绿茶啊,天天都有好心情。 23、抬头仰望天空,美丽的云在空中飘动,会使我的心情像云一样轻松。 24、碧空,晴虹万里,阳光透过窗户,灿烂地折射在我的脸上。心情自然轻松愉快拉。 25、虽说自然阴晴无常,其实太阳永远高挂在天空;虽说心情亦会有悲有喜,但只要心中有阳光,微笑永远会展现在脸上。 26、玩具熊不管大风大雨,都会天天对着我笑,我不管有什么难

威利普LEDESC控制系统操作说明书

LED-ECS编辑控制系统V5.2 用 户 手 册 目录 第一章概述 (3) 1.1LED-ECS编辑控制系统介绍 (3) 1.2运行环境 (3) 第二章安装卸载 (3) 2.1安装 (3) 2.2卸载 (5) 第三章软件介绍 (5) 3.1界面介绍 (5) 3.2操作流程介绍 (13) 3.3基本概念介绍 (21) 第四章其他功能 (25) 4.1区域对齐工具栏 (25) 4.2节目对象复制、粘贴 (26) 4.3亮度调整 (26) 第五章发送 (27) 5.1发送数据 (27) 第六章常见问题解决 (28) 6.1计算机和控制卡通讯不上 (28) 6.2显示屏区域反色或亮度不够 (29)

6.3显示屏出现拖尾现象,显示屏的后面出现闪烁不稳定 (29) 6.4注意事项 (31) 6.5显示屏花屏 (31) 6.6错列现象 (32) 6.7杂点现象 (32) 第一章概述 1.1LED-ECS编辑控制系统介绍 LED-ECS编辑控制系统,是一款专门用于LED图文控制卡的配套软件。其具有功能齐全,界面直观,操作简单、方便等优点。自发布以来,受到了广大用户的一致好评。 1.2运行环境 ?操作系统 中英文Windows/2000/NT/XP ?硬件配置 CPU:奔腾600MHz以上 内存:128M 第二章安装卸载 2.1LED-ECS编辑控制系统》软件安装很简单,操作如下:双击“LED-ECS编辑控制系统”安装程序,即可弹出安装界面,如图2-1开始安装。如图所示 图2-1 单击“下一步”进入选择安装路径界面,如图2-2,如果对此不了解使用默认安装路径即可 图2-2 图2-3 单击“完成”,完成安装过程。 2.2软件卸载如图2-2 《LED-ECS编辑控制系统V5.2》提供了自动卸载功能,使您可以方便的删除《LED-ECS编辑控制系统V5.2》的所有文件、程序组件和快捷方式。用户可以在“LED-ECS编辑控制系统V5.2”组中选择“卸载LED-ECS编辑控制系统V5.2”卸载程序。也可以在“控制面板”中选择“添加/删除程序”快速卸载。卸载程序界面如图2-4,此时选择自动选项即可卸载所有文件、程序组和快捷方式。 图2-4 第三章、软件介绍

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

财政票据 网络版 电子化系统开票端操作手册

财政票据(网络版)电子化系统 开票端 操 作 说 明 福建博思软件股份有限公司

目录 1.概述 业务流程 流程说明:

1.单位到财政部门申请电子票据,由财政把单位的基本信息设置好并审核完后,财政部门给用票单位发放票据,单位进行领票确认并入库。 2.在规定时间内,单位要把开据的发票带到财政核销,然后由财政进行审核。 系统登录 登入系统界面如图: 登录日期:自动读取主服务器的日期。 所属区划:选择单位所属区划编码。【00安徽省非税收入征收管理局】 所属单位:输入单位编码。 用户编码:登录单位的用户编码【002】 用户密码:默认单位密码为【123456】 验证码:当输入错误时,会自动换一张验证码图片; 记录用户编码:勾选系统自动把用户编码保存在本地,第二次登录不需要重新输入。 填写完正确信息,点【确定】即可登入系统。 进入系统 进入系统界面如图: 当单位端票据出现变动的时候,如财政或上级直管下发票据时,才会出现此界面:

出现此界面后点击最下方的确认按钮,入库完成。 当单位端票据无变动时,直接进入界面: 2.基本编码人员管理 功能说明:对单位开票人员维护,修改开票人名称。 密码管理 修改开票人员密码,重置等操作。 收发信息 查看财政部门相关通知等。

3.日常业务 电脑开票 功能说明:是用于开票据类型为电子化的票据。 在电脑开票操作界面,点击工具栏中的【增加】按钮,系统会弹出核对票号提示框,如图: 注意:必须核对放入打印机中的票据类型、号码是否和电脑中显示的一致,如果不一致打印出来的票据为无效票据,核对完后,输入缴款人或缴款单位和收费项目等信息,全部输入完后,点【增加】按钮进行保存当前票据信息或点【打印】按钮进行保存当前票据信息并把当前的票据信息打印出来;点电脑开票操作界面工具栏中的【退出】则不保存。 在票据类型下拉单框中选择所要开票的票据类型,再点【增加】进行开票。

三年级用果然造句大全

小学三年级造句例句 三年级上册造句例句三 一、常见关联词: 1.因为...所以...、2.不但...而且...、3.一...就...、4.不是...而是...、5.尽管...但 (6) 从不…也不…、7.如果…就…、8.只要…就…、 9.既…又…、10.即使…也…、11.无论…总是…、12无论…都…、13.不论…还…、 14.不仅…而且…、15.不但…还…、16.虽然…但是…、 17.不是…而是…、18、一会儿…一会儿、19、…是…20、有的…有的…还有的、 23、…像…一样… 二、例句 1.…因为…所以… 因为我们共同努力,所以竞赛取得胜利。 因为我考了一百分,所以妈妈带我去欢乐谷玩。 因为我们付出了努力,所以我们取得了成功。 2.不但…而且… 张叔叔不但书法写得好,下象棋更是一流. 王师傅不但会开车,而且会修车。 苹果不但很大,而且很甜。 小红不但聪明,而且能干。 3、一…就… 你一进来,我就知道你想要说什么了! 他一紧张就结巴。 他一起床就去看书。 不是我偷了你的东西,而是小明嫁庄于我的。 不是凭你的实力就可以拿到奖学金,而是你爸爸用钱换来的。 不是一个人就可以战胜困难的,而是要我们大家团结协作才可以战胜困难。 5、尽管…但… 尽管这件事很难完成,但他还是做到了。 尽管我们尽了最大的努力,但这个方案还是失败了。 6、从不…也不… 我上学从不迟到,上课也不乱讲话。 他对待任何事都从不气馁,也不怀有侥幸心理。 7、如果…就… 如果我们共同努力,竞赛就能取得胜利。 如果我们齐心协力,就能把这件事情办好。 8、只要…就… 只要我们共同努力,竞赛就能取得胜利。 只要我一开口,他就会答应我的任何请求。 9、既…又… 劳动既是付出,又是回报,还能得到无限快乐! 阅读课外书既可增长知识与阅历,又能丰富我们的业余生活,还能从中体会他人的感受。 10、即使…也… 即使前面的路有多么艰险,也要向前冲。 即使你成功了,也不能骄傲。

控制软件操作说明书

创维液晶拼接控制系统 软件操作指南 【LCD-CONTROLLER12】 请在使用本产品前仔细阅读该用户指导书

温馨提示:: 温馨提示 ◆为了您和设备的安全,请您在使用设备前务必仔细阅读产品说明书。 ◆如果在使用过程中遇到疑问,请首先阅读本说明书。 正文中有设备操作的详细描述,请按书中介绍规范操作。 如仍有疑问,请联系我们,我们尽快给您满意的答复。 ◆本说明书如有版本变动,恕不另行通知,敬请见谅!

一、功能特点 二、技术参数 三、控制系统连接示意图 四、基本操作 五、故障排除 六、安全注意事项

一、功能特点创维创维--液晶液晶拼接拼接拼接控制器特点控制器特点 ★采用创维第四代V12数字阵列高速图像处理技术 视频带宽高达500MHZ,应用先进的数字高速图像处理算实时分割放大输入图像信号,在多倍分割放大处理的单屏画面上,彻底解决模/数之间转换带来的锯齿及马赛克现象,拼接画面清晰流畅,色彩鲜艳逼真。 ★具有开窗具有开窗、、漫游漫游、、叠加等功能 以屏为单元单位的前提下,真正实现图像的跨屏、开窗、画中画、缩放、叠加、漫游等个性化功能。 ★采用基于LVDS 差分传送技术差分传送技术,,增强抗干扰能力 采用并行高速总线连接技术,上位控制端发出命令后,系统能快速切换信号到命令指定的通道,实现快速响应。 采用基于LVDS 差分传送技术,提高系统抗干扰能力,外部干扰对信号的影响降到了最低,并且,抗干扰能力随频率提高而提升。★最新高速数字阵列矩阵通道切换技术 输入信号小于64路时,用户不需要再另外增加矩阵,便可以实现通道之间的任意换及显示。 ★断电前状态记忆功能 通过控制软件的提前设置,能在现场断电的情况下,重启系统后,能自动记忆设备关机前的工作模式状态。 ★全面支持全高清信号 处理器采用先进的去隔行和运动补偿算法,使得隔行信号在大屏幕拼接墙上显示更加清晰细腻,最大限度的消除了大屏幕显示的锯齿现象,图像实现了完全真正高清实时处理。纯硬件架构的视频处理模块设计,使得高清视频和高分辨率计算机信号能得到实时采样,确保了高清信号的最高视频质量,使客户看到的是高质量的完美画质。

工会经费收入专用收据(1)

工会经费收入专用收据(1) 福州博思软件开发有限公司 2010年6月 目录 第一部分初始安 装 ....................................................... (1) 1.1系统 安装 (1) 1.2系统登录 ............................................................ (4) 第二部分组成模块介 绍 ................................................... (4) 2.1模块组 成 (4) 2.1.1票据资料 .......................................................... (5) 2.1.2用户管 理 .......................................................... (5) 2.1.3 票据领用 (6) 2.1.4电脑开票 .......................................................... (6) 2.1.5手工开 票 .......................................................... (7) 2.1.6 手工批开票 (7) 2.1.7票据查询 .......................................................... (8) 第三部分软件操 作 ....................................................... (9) 3.2用户 管理 (10)

相关文档