文档库 最新最全的文档下载
当前位置:文档库 › 常见概率分布期望方差以及分布图汇总

常见概率分布期望方差以及分布图汇总

常见概率分布期望方差以及分布图汇总
常见概率分布期望方差以及分布图汇总

常见的“概率分布表 + 分布图”汇总(内容源自书本,同时本人额外加了许多内容进去。此表可直接打印)整理人:算法君说明,我们学过的各种概率分布公式较多且形式多样,各分布的数学期望及方差是常用的数据,为方便做题目,也方便记忆故作此表,并在此共享给大家希望给大家提供一定方便!

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

常见分布的期望和方差

常见分布得期望与方差 ?概率与数理统计重点摘要 1、正态分布得计算:。 2、随机变量函数得概率密度:就是服从某种分布得随机变量,求得概率密度:。(参见P66~72) 3、分布函数具有以下基本性质: ⑴、就是变量x,y得非降函数; ⑵、,对于任意固定得x,y有:; ⑶、关于x右连续,关于y右连续; ⑷、对于任意得,有下述不等式成立: 4、一个重要得分布函数:得概率密度为: 5、二维随机变量得边缘分布: 边缘概率密度: 边缘分布函数:二维正态分布得边缘分布为一维正态分布、 6、随机变量得独立性:若则称随机变量X,Y相互独立、简称X与Y独立。 7、两个独立随机变量之与得概率密度:其中Z=X+Y

8、两个独立正态随机变量得线性组合仍服从正态分布,即。 9、期望得性质:……(3)、;(4)、若X,Y 相互独立,则。 10、方差: 。 若X,Y 不相关,则,否则, 11、协方差:,若X,Y 独立,则,此时称:X 与Y 不相关。 12、相关系数:,,当且仅当X 与Y存在线性关系时,且 13、k 阶原点矩:,k 阶中心矩:。 14、切比雪夫不等式:{} {}2 2 () () (),()1D X D X P X E X P X E X εεε ε -≥≤ -<≤- 或、贝努利大数定律:。 15、独立同分布序列得切比雪夫大数定律:因,所以。 16、独立同分布序列得中心极限定理: (1)、当n 充分大时,独立同分布得随机变量之与得分布近似于正态分布。 (2)、对于得平均值,有,,即独立同分布得随机变量得均值当n 充分大时,近似服从正态分布、 (3)、由上可知:{}{}lim ()()()()n n n P a Z b b a P a Z b b a →∞ <≤=Φ-Φ?<≤≈Φ-Φ。 17、棣莫弗-拉普拉斯中心极限定理:设m就是n次独立重复试验中事件A 发生得次数,p 就是事件A 发生得概率,则对任意, , 其中。 (1)、当n 充分大时,m 近似服从正态分布,。 (2)、当n充分大时,近似服从正态分布,。 18、参数得矩估计与似然估计:(参见P 200) 19 20、关于正态总值均值及方差得假设检验,参见P243与P 248。

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

概率分布以及期望及方差.docx

概率分布以及期望和方差 上课时间 : 上课教师: 上课重点 : 掌握两点分布、超几何分布、二项分布、正态分布的概率分布 及其期望和方差 上课规划:解题技巧和方法 一两点分布 知识内容 ⑴两点分布 如果随机变量X 的分布列为 X10 P p q 其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布. X 10 P 0.80.2 两点分布又称 0 1分布,由于只有两个可能结果的随机试验叫做伯努利试 验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np . 典例分析 ,针尖向上; 1、在抛掷一枚图钉的随机试验中,令X1,如果针尖向上的 ,针尖向下 . 概率为 p ,试写出随机变量 X 的概率分布. 2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的

,当取到白球时, 白球个数”,即 X ,当取到红球时, ,求随机变量 X 的概率分布. 3、若随机变量 X 的概率分布如下: X 1 P 2 3 8C 9C C 试求出 C ,并写出 X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 ) 1, (当第一次向上一面的点 数等于第二次向上一面 的点数 ) 试写出随机变量 的分布列. 4、篮球运动员比赛投篮,命中得 1 分,不中得 0 分,已知运动员甲投篮命 中率的概率为 P . ⑴ 记投篮 1次得分 X ,求方差 D ( X ) 的最大值; ⑵ 当⑴中 D ( X ) 取最大值时,甲投 3 次篮,求所得总分 Y 的分布列及 Y 的期望与方差. 二 超几何分布

常见分布的期望和方差

5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

第十章 统计与概率10-9离散型随机变量的期望、方差与正态分布(理

第10章 第9节 一、选择题 1.(2010·新课标全国理)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( ) A .100 B .200 C .300 D .400 [答案] B [解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B. 2.设随机变量ξ的分布列如下: 其中a ,b ,c 成等差数列,若E (ξ)=1 3,则D (ξ)=( ) A.49 B .-19 C.23 D.59 [答案] D [解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×????-1-132+13????0-132+12????1-132=5 9 . 3.某区于2010年元月对全区高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N (450,1302),若ξ在(0,280)内取值的概率为0.107,则该区1400名考生中总分为620分以上的学生大约有(结果四舍五入)( ) A .100人 B .125人 C .150人

[答案] C [解析] 由条件知,P (ξ>620)=P (ξ<280)=0.107,1400×0.107≈150. 4.(2010·山东济南模拟)下列判断错误的是( ) A .在1000个有机会中奖的号码(编号为000~999)中,有关部门按照随机抽取的方式确定后两位数字是09号码为中奖号码,这是用系统抽样方法确定中奖号码的; B .某单位有160名职工,其中业务人员120名,管理人员24名,后勤人员16名.要从中抽取容量为20的要本,用分层抽样的方法抽取样本; C .在正常条件下电子管的使用寿命、零件的尺寸,在一定条件下生长的小麦的株高、穗长、单位面积的产量等一般都服从正态分布; D .抛掷一枚硬币出现“正面向上”的概率为0.5,则某人抛掷10次硬币,一定有5次出现“正面向上”. [答案] D 5.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6 7 ( ) A .3 B .4 C .5 D .2 [答案] A [解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2 C 72=(7-x )(6-x )42, P (ξ=1)=x ·(7-x )C 72=x (7-x ) 21, P (ξ=2)=C x 2C 72=x (x -1) 42, ∴0× (7-x )(6-x )42+1×x (7-x )21+2×x (x -1)42=6 7 , ∴x =3. 6.一台机器生产某种产品,如果生产一件甲等品可获利50元,生产一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产甲等品、乙等品和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品,平均预期可获利( ) A .39元 B .37元

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()()X F x P X x μ σ-=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞=??具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞ +∞-∞==? ? 边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞ -∞+∞-∞-∞=+∞==+∞=???? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差 知识点 一、离散型随机变量的数学期望 1.定义 一般地,如果离散型随机变量的分布列为 则称n n i i p x p x p x p x X E +++++=ΛΛ2211)(为随机变量X 的数学期望或均值。 2.意义:反映离散型随机变量取值的平均水平。 3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义 一般地,如果离散型随机变量的分布列为 则称∑=-= n i i i p X E x X D 1 2 )) (()(为随机变量的方差。 2.意义:反映离散型随机变量偏离均值的程度。 3.性质:)()(2 X D a b aX D =+ 三、二项分布的均值与方差 如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值 【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=() A.0.2 C.-0.2 D.0.4 【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为() A.0.6 B.1 C.3.5 D.2 【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________. 【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数. (1)求X的分布列; (2)若要求P(X≤n)≥0.5,确定n的最小值; (3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?

高中高考总结复习概率、随机变量分布列、期望方差.doc

2017 高考复习 ---概率、随机变量分布列、期望方差 1.某高校进行自主招生面试时的程序如下:共设 3 道题,每道题答对给 10 分、答错倒扣 5 分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为,则该学生 在面试时得分的期望值为分. 2.随机变量ξ服从二项分 布ξ~B( n, p),且 Eξ =300, Dξ =200,则 P 等于. 3.设随机变量 X~ B( 6,),则 P( X=3) = . 4.口袋中装有大小质地都相同、编号为1, 2, 3,4, 5, 6 的球各一只.现从中一次性随 机地取出两个球,设取出的两球中较小的编号为X,则随机变量X 的数学期望是.5.随机变量ξ的分布列如下: ξ﹣1 0 1 P a b c 其中 a,b, c 成等差数列,若.则 Dξ的值是. 6.已知某随机变量ξ的概率分布列如表,其中x> 0, y>0,随机变量ξ的方差 Dξ=,则 x+y= . ξ 1 2 3 P X y x 7.袋中有 4 只红球 3 只黑球,从袋中任取 4 只球,取到 1 只红球得 1 分,取到 1 只黑球得3 分,设得分为随机变量ξ,则 P(ξ≤ 7) = . 8.一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个球,则其中含红球个数的数学期望是. 9.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲 袋装有 4 个红球、 2 个白球,乙袋装有 1 个红球、 5 个白球.现分别从甲、乙两袋中各随机 抽取 1 个球,记抽取到红球的个数为ξ,则随机变量ξ的数学期望 Eξ= . 10.有一种游戏规则如下:口袋里有 5 个红球和 5 个黄球,一次摸出 5 个,若颜色相同则得 100 分,若 4 个球颜色相同,另一个不同,则得50 分,其他情况不得分.小张摸一次得 分的期望是分. 11.为参加 2012 年伦敦奥运会,某旅游公司为三个旅游团提供了a, b,c, d 四条旅游线路,每个旅游团可任选其中一条线路,则选择 a 线路旅游团数ξ的数学期望 Eξ= .12.随机变量 X 的分布列如下:若,则 DX 的值是. X ﹣ 1 0 1 P a c

常见分布的期望和方差78835

常见分布的期望和方差 5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

概率论分布列期望方差习题及答案

圆梦教育离散型随机变量的分布列、期望、方差专题 姓名:__________班级:__________学号:__________ 1.红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为,,,假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率; (Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望. 2.已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的. (1) 第一小组做了三次实验,求实验成功的平均次数; (2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望; (3)两个小组分别进行2次试验,求至少有2次实验成功的概率. 3.一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为,出现“×”的概率为.若第次出现“○”,则a=1;出现“×”,则a=.令S=a+a+…+a. (1)当时,求S2的概率;(2)当,时,求S=2且S≥0(i=1,2,3,4)的概率.

4.在一个有奖问答的电视节目中,参赛选手顺序回答三个问题,答对各个问题所获奖金(单位:元)对应如下表: 当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答的概率分别为,正确回答一个问题后,选择继续回答下一个问题的概率均为,且各个问题回答正确与否互不影响. (Ⅰ)按照答题规则,求该选手回答正确但所得奖金为零的概率; (Ⅱ)设该选手所获奖金总数为,求的分布列与数学期望. 5.某装置由两套系统M,N组成,只要有一套系统工作正常,该装置就可以正常工作。每套系统都由三种电子模块T1,T2,T3组成(如图所示已知T1,T2,T3正常工作的概率都是,且T1,T2,T3能否正常工作相互独立.(注:对每一套系统或每一种电子模块而言,只要有电流通过就能正常工作.) (I )分别求系统M,N正常工作的概率; (II)设该装I中两套系统正常工作的套数为,求的分布列和期望.

概率分布期望方差(大全)

1.编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X. (1)求随机变量X 的分布列; (2)求随机变量X 的数学期望和方差. 解 (1)P (X=0)= 33 A 2= 3 1 ; P (X=1)= 33 13A C = 21;P (X=3)=33 A 1 =61; ∴随机变量X 的分布列为 (2)E (X )=1×21+3×6 1 =1. D (X )=(1-0)2 · 31+(1-1)2·21+(3-1)2 ·6 1=1. 2 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示甲、乙两人摸球后获得的奖金总额.求: (1)X 的分布列; (2)X 的均值. 解 (1)X 的所有可能取值为0,10,20,50,60. P (X=0)=3 109?? ? ??=0001729; P (X=10)=101×2 109??? ??+10 9×12C × 101×109=0001243; P(X=20)= 101×12C × 10 1×109=000118; P(X=50)=109 ×210 1=00019; P(X=60)= 3 101 = 000 11 . 故X 的分布列为

(2)E (X )=0× 0001729+10×0001243+20×000 118+50×00019+60×00011 =3.3(元). 3(本小题满分13分) 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生 产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y 的含 (1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y 满足x ≥175,且y ≥75时,该产品为优 等品。用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产 品中优等品数ξ的分布列极其均值(即数学期望)。 解:(1) 98 7,573514 =?=,即乙厂生产的产品数量为35件。 (2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的 优等品2,5 故乙厂生产有大约2 35145 ? =(件)优等品, (3)ξ的取值为0, 1,2。 211 23323222 555331 (0),(1),(2)10510 C C C C P P P C C C ξξξ?========= 所以ξ的分布列为

13 正态分布的概率密度、分布函数、数学期望与方差

13 正态分布的概率密度、分布函数、数学期望与方差 一、设随机变量X 服从正态分布)2,1(2 N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P . 解:(1))4.22 1 3.1()8.416.2()8.56.1(<-≤ -=<-≤-=<≤-X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ (2))78.12 1 78.2(1)56.4(1)56.4(<-< --=<-=≥X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---= .0402.09973.09625.02=-- 二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2 N .规定直径在2.1100±(mm ) 之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p . 而)26 .0100 2()6.02.16.01006.02.1( )2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-?= 故0456.09544.01=-=p . 三、测量到某一目标的距离时发生的误差X (m)具有概率密度 3200 )20(22401)(-- = x e x f π 求在三次测量中至少有一次误差的绝对值不超过30m 的概率. 解:三次测量中每次误差绝对值都超过30米可表为 }30{}30{}30{>?>?>=ξξξD 第三次第二次第一次 因为)40,20(~2 N ξ,所以由事件的相互独立性,有 31 ,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有 86975.013025.01)(1}30{=-=-=

729 243 18 9 (2 ) E ( X ) =0 X +10 X -243+20 X 18+50 X — +60 X 1 000 1 000 1 000 1 000 1 =3.3(兀). 1 000 ' ' 3 (本小题满分13分) 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生 产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含 (1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足x》175 ,且y》75时,该产品为优等 品。用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数?的分布列极其均值(即数学期望)。 & 98 解:(1)7,5 7=35,即乙厂生产的产品数量为35件。 14 (2)易见只有编号为 2 , 5的产品为优等品,所以乙厂生产的产品中

相关文档
相关文档 最新文档