文档库 最新最全的文档下载
当前位置:文档库 › 电磁学第二版习题答案第一章

电磁学第二版习题答案第一章

电磁学第二版习题答案第一章
电磁学第二版习题答案第一章

电磁学第二版习题答案2

电磁学第二版习题答案2

电磁学 第二版 习题解答 电磁学 第二版 习题解答 (2) 第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54) 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大? 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即

20()04dF Q q q dq r πε--== 得 122 Q q q == 即取 122 Q q q == 时力F 为极值,而 22 2 02 204Q q d F dq r πε== < 故当122 Q q q ==时,F 取最大值。 1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零? 解答: 要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。电荷Q 所受的两个电场力方向相反,但大小相等,即 22 00204()4qQ qQ L x x πεπε-=- 得 22 20x Lx L +-= 舍去0x <的解,得 21)x L =- L x L -q Q 2

电磁学答案第1章

第一部分 习题 第一章 静电场基本规律 1.2.1在真空中有两个点电荷,设其中一个所带电量是另一个的四倍,它们个距2510-?米时,相互排斥力为牛顿。问它们相距0.1米时,排斥力是多少两点电荷的电量各为多少 解:设两点电荷中一个所带电量为q ,则另一个为4q : (1) 根据库仑定律:r r q q K F ?22 1 =? 得:21 2221r r F F = (牛顿)) () (4.01010560.12 12 2222112=??==--r r F F (2) 21 2 24r q K F = ∴ 21 9 4221 211109410560.14)()(????±=± =-K r F q =±×710- (库仑) 4q=±×810- (库仑) 1.2.2两个同号点电荷所带电量之和为 Q ,问它们带电量各为多少时,相互作用力最大 解: 设其中一个所带电量为q ,则一个所带电量为 Q-q 。 根据库仑定律知,相互作用力的大小: 2 ) (r q Q q K F -= 求 F 对q 的极值 使0='F 即:0)2(=-q Q r K ∴ Q q 2 1 =。 1.2.3两个点电荷所带电量分别为2q 和q ,相距L ,将第三个点电荷放在何处时,它所受合力为零 解:设第三个点电荷放在如图所示位置是,其受到的合力为零。 图 1.2.3

即: 41πε 2 0x q q = 041 πε )(220x L q q - =2 1x 2)(2x L - 即:0222=-+L xL x 解此方程得: )()21(0距离的是到q q X L x ±-= (1) 当为所求答案。时,0)12(>-=x L x (2) 当不合题意,舍去。时,0)12(<--=x L x 1.2.4在直角坐标系中,在(0,),(0,)的两个位置上分别放有电量为1010q -=(库)的点电荷,在(,0)的位置上放有一电量为810Q -=(库)的点电荷,求Q 所受力的大小和方向(坐标的单位是米) 解:根据库仑定律知: 121 1?r r Q q K F =? )?sin ?(cos 1121 1j i r Q q K αα-=  2 28 1092.01.010 10109+???= --???? ? ?????+-++2 1222122)2.01.0(?1.0)2.01.0(?2.0j i =j i ?100.8?1061.187--?-? 如图所示,其中 2 1 21211 1) (cos y x x += α 2121 211 1) (sin y x y += α 同理:)?sin ?(cos 2222 12j i r Q q K F αα+?=  ? 2281092.01.01010109+???=--×???? ? ?????+-++2 1222122)2.01.0(?1.0)2.01.0(?2.0j i

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势 为零,则球内距离球心为r 的P 点处的电场强度的大小与电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ=. (C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2、一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O + 2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面 向外为正)为 (A) πr 2B . 、 (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 4、一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的 霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5、两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以 自由运动,则载流I 2的导线开始运动的趋势就是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] y z x I 1 I 2

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

电磁学习题答案1-3章

第一章 习题一 1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。 2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。 3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C ) (A)一定很大 (B)一定很小 (C)可能大也可能小 4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。 解法一:2 2 02 02141 41 a R q πεr q πεE E += = = 21E E E +=,θE θE θE E cos 2cos cos 121=+= 2 2 2 2 042 a R R a R q πε++= ( ) 2 /322 02a R R πεq += E 有极值的条件是: () 0222 /52 2220=+-= a R R a πεq dR dE 即 022 2=-R a ,解得极值点的位置为:a R 2 2= ∵ ( ) 2 /722 2 202 2 3223a R a R πεqR dR E d +-= ,而 03984 02 /222 <- == a πεq dR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 2 2= 且 () 2 02 /3220m a x 332/2 / 2a πεq a a a πεq E = += 解法二:θa q πεr q πεE E 2 2 02 021sin 4141= = =,21E E E += +q +q

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题 1-1设两个小球所带净电荷为q,距离为l,由库仑定律: 由题目,设小球质量m,铜的摩尔质量M,则有: 算得 1-2 取一小段电荷,其对应的圆心角为dθ: 这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T: 解得 1-3(1)设地月距离R,电场力和万有引力抵消: 解得: (2)地球分到,月球分到,电场力和万有引力抵消: 解得:

1-4 设向上位移为x,则有: 结合牛顿第二定律以及略去高次项有: 1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间: 先由库仑定律写出静电力标量式: 有几何关系: 联立解得 由库仑定律矢量式得: 解得 1-6(1)对一个正电荷,受力平衡:

解得,显然不可能同时满足负电荷的平衡 (2)对一个负电荷,合外力提供向心力: 解得 1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势 能: 对势能求导得到受力: 小量近似,略去高阶量: 当q>0时,;当q<0时, (2)由上知 1-8设q位移x,势能: 对势能求导得到受力: 小量展开有:,知

1-9(1)对q受力平衡,设其横坐标的值为l0:,解得 设它在平衡位置移动一个小位移x,有: 小量展开化简有: 受力指向平衡位置,微小谐振周期 (2) 1-10 1-11 先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ. 有: 显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等. 利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0. 1-12(1)

电磁学题库(附答案)剖析

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为 R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E 300200+= .试求穿过各面的电通量. E q L q P

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

电磁学第二章例题

物理与电子工程学院 注:教案按授课章数填写,每一章均应填写一份。重复班授课可不另填写教案。教学内容须另加附页。

(3)在导体外,紧靠导体表面的点的场强方向与导体表面垂直,场强大小与导体表面对应点的电荷面密度成正比。 A 、场强方向(表面附近的点) 由电场线与等势面垂直出发,可知导体表面附近的场强与表面垂直。而场强大小与面密度的关系,由高斯定理推出。 B 、场强大小 如图,在导体表面外紧靠导体表面取一点P ,过P 点作导体表面 的外法线方向单位矢n ?,则P 点场强可表示为n E E n P ?= (n E 为P E 在n ?方向的投影,n E 可正可负)。过P 点取一小圆形面元1S ?,以1S ?为底作一圆柱形高斯面,圆柱面的另一底2S ?在导体内部。由高斯定理有: 11/) 0(?1 1 2 1 εσφS S E s d E E s d n E s d E s d E s d E s d E s d E n S S n S S S S ?=?=⊥=?= ?= ?+?+?= ?=?????????? ?????? 导体表面附近导体内侧 (导体的电荷只能分布在导体表面,若面密度为σ,则面内电荷为 为均匀的很小,视,且因σσ11S S ??) ∴ ?? ?<>=?? ?<<>>= 反向,,同向,,即,,n E n E n E E E E n n n ?0?0?0 00 00 σσεσ σσεσ

可见:导体表面附近的场强与表面上对应点的电荷面密度成正比,且无论场和电荷分布怎样变化,这个关系始终成立。 C 、0 εσ = E n ?中的E 是场中全部电荷贡献的合场强,并非只是高斯面内电荷S ?σ的贡献。这一点是由高斯定理得来的。P45-46 D 、一般不谈导体表面上的点的场强。 导体内部0=E ,表面外附近0 εσ=E n ?;没提表面上的。 在电磁学中的点、面均为一种物理模型,有了面模型这一概念,场强在带电面上就有突变(P23小字),如果不用面模型,突变就会消失。但不用面模型,讨论问题太复杂了,所以我们只谈“表面附近”而不谈表面上。 补充例:习题2.1.1(不讲) Rd θ 解:利用上面的结果,球面上某面元所受的力:n dS F d ?20 2 εσ= ,利用对称性知,带有同号电荷的球面所受的力是沿x 轴方向: 右半球所受的力:

电磁场与电磁波课后习题及答案七章习题解答

《电磁场与电磁波》习题解答 第七章 正弦电磁波 7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成 j() e n r t m βω?-=e E E 。 解 E m 为常矢量。在直角坐标中 cos cos cos n x y z x y z x y z αβγ=++=++e e e e r e e e 故 (cos cos cos )() cos cos cos n x y z x y z x y z x y z αβγαβγ ?=++?++=++e r e e e e e e 则 j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z z j x y z t m e j e j βωβαβγωβαβγωββ?-++-++-==?=?+?+?==e E E E E e E e E e E E E 而 22 j[(cos cos cos )]22 2{e }x y z t m t t βαβγωω++-??==-??E E E 故 22 2222()(0 j j t μεβμεωμεω??-=+=+=?E E E E E E 可见,已知的() n j e r t m e βω?-=E E 满足波动方程 22 20 t με??-=?E E 故E 表示沿e n 方向传播的平面波。 7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。 解 表征沿+z 方向传播的椭圆极化波的电场可表示为 12 ()j z x x y y E jE e β-=+=+E e e E E 式中取 121 [()()]21 [()()]2j z x x y y x y j z x x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e 显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。 7.3 在自由空间中,已知电场3(,)10sin()V/m y z t t z ωβ=-E e ,试求磁场强度 (,)z t H 。 解 以余弦为基准,重新写出已知的电场表示式 3(,)10cos()V/m 2y z t t z π ωβ=--E e 这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90? -。与之相伴的磁场为

电磁学试题(含答案)

一、单选题 1、如果通过闭合面S的电通量 e 为零,则可以肯定 A、面S内没有电荷 B 、面S内没有净电荷 C、面S上每一点的场强都等于零 D 、面S上每一点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线方向电势逐渐降低B、沿电场线方向电势逐渐升高 C、沿电场线方向场强逐渐减小 D、沿电场线方向场强逐渐增大 3、载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向v 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B、有逆时针方向的感应电 C、没有感应电流 D、条件不足,无法判断 4、两个平行的无限大均匀带电平面,其面电荷密度分别为和, 则 P 点处的场强为 A、 B 、 C 、2 D、 0 P 2000 5、一束粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 12 A、曲线 1 B、曲线 23 C、曲线 3 D、无法判断 6、一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止B、顺时针转动C、逆时针转动D、条件不足,无法判断 7q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 、点电荷 A 、0 B 、q q D 、 q C、 6 0400 8、长直导线通有电流I 3 A ,另有一个矩形线圈与其共面,如图所I 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动B、线圈向右运动 C、线圈向上运动 D、线圈向下运动 9、关于真空中静电场的高斯定理 E dS q i,下述说法正确的是: S0 A.该定理只对有某种对称性的静电场才成立; B.q i是空间所有电荷的代数和; C. 积分式中的 E 一定是电荷q i激发的;

电磁学课后习题答案

第五章静电场 5 -9若电荷Q均匀地分布在长为L的细棒上.求证:(1) 在棒的延长线,且离棒中心为r处的电场强度为 2 2 4 π 1 L r Q ε E - = (2) 在棒的垂直平分线上,离棒为r处的电场强度为 2 2 04 π2 1 L r r Q ε E + = 若棒为无限长(即L→∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x,其电荷为d q=Q d x/L,它在点P 的电场强度为 r r q ε e E 2 d π4 1 d ' = 整个带电体在点P的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E沿x轴方向的分量因对称性叠加为零,因此,点P的电场强度就是 ??= = L y E α E j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202 ,利用几何关系 r ′=r -x 统一积分变 量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁学课后习题答案

第五章 静 电 场 5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2 204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为 2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较. 分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为 r r q εe E 2 0d π41d '= 整个带电体在点P 的电场强度 ?=E E d 接着针对具体问题来处理这个矢量积分. (1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同, ?=L E i E d (2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 ??==L y E αE j j E d sin d

证 (1) 延长线上一点P 的电场强度?'=L r πεE 202, 利用几何关系 r ′=r -x 统一积分变量,则 ()220 022 204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=??????+--=-=? 电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为 E r εq αE L d π4d sin 2 ? '= 利用几何关系 sin α=r /r ′,2 2 x r r +=' 统一积分变量,则 () 2 2 03 /2222 2041π2d π41L r r εQ r x L x rQ εE L/-L/+= +=? 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 r ελL r L Q r εE l 02 20π2 /41/π21lim = +=∞ → 此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量. 分析 方法1:由电场强度通量的定义,对半球面S 求积分,即? ?=S S d s E Φ 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

电磁学_第二版__习题答案

电磁学 第二版 习题解答 电磁学 第二版 习题解答 .................................................................................. 错误!未定义书签。 第一章 .......................................................................................................... 错误!未定义书签。 第二章 .......................................................................................................... 错误!未定义书签。 第三章 .......................................................................................................... 错误!未定义书签。 第四章 .......................................................................................................... 错误!未定义书签。 第五章 .......................................................................................................... 错误!未定义书签。 第六章 .......................................................................................................... 错误!未定义书签。 第七章 .......................................................................................................... 错误!未定义书签。 : 第一章 1.2.2 两个同号点电荷所带电荷量之和为Q 。在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大 解答: 设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为 2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为 2 0() 4q Q q F r πε-= 令力F 对电荷量q 的一队导数为零,即 20()04dF Q q q dq r πε--== 得

电磁学试题(含答案)

一、单选题 1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定 A 、面S 内没有电荷 B 、面S 内没有净电荷 C 、面S 上每一点的场强都等于零 D 、面S 上每一点的场强都不等于零 2、 下列说法中正确的是 A 、沿电场线方向电势逐渐降低 B 、沿电场线方向电势逐渐升高 C 、沿电场线方向场强逐渐减小 D 、沿电场线方向场强逐渐增大 3、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B 、有逆时针方向的感应电 C 、没有感应电流 D 、条件不足,无法判断 4、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-, 则P 点处的场强为 A 、02εσ B 、0εσ C 、0 2εσ D 、0 5、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 A 、曲线1 B 、曲线2 C 、曲线3 D 、无法判断 6、 一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止 B 、顺时针转动 C 、逆时针转动 D 、条件不足,无法判断 7、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 A 、0 B 、0εq C 、04εq D 、0 6εq 8、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动 9、 关于真空中静电场的高斯定理0 εi S q S d E ∑=?? ,下述说法正确的是: A. 该定理只对有某种对称性的静电场才成立; B. i q ∑是空间所有电荷的代数和; C. 积分式中的E 一定是电荷i q ∑激发的; σ - P 3 I

电磁学和光学习题(带答案)解析

静 电 场 院别 班级 姓名 学号 一、选择题 [ D ] 1、下列哪一种说法正确? A 、电荷在电场中某点受到的电场力很大,该点的电场强度一定很大。 B 、一点电荷附近的任一点,如果没有把检验电荷放进去,则这点的电场强 度为零。 C 、把质量m 的点电荷q 放在一电场中,由静止状态释放,电荷一定沿电 力线运动。 D 、电力线上任意一点的切线方向,代表点电荷q 在该点处获得的加速度方 向。 [ C ] 2、图示为一轴对称性静电场的E ~r 关系曲线,请指出该电场是由哪种 带电体产生的(E 表示电场强度的大小, r 表示离对称轴的距离) A 、“无限长”均匀带电直线 B 、半径为R 的“无限长”均匀带电圆柱体 C 、半径为R 的“无限长”均匀带电圆柱面 D 、半径为R 的有限长均匀带电圆柱面 [ A ] 3、在点电荷激发的电场中,如以点电荷为心作一 个球面,关于球面上的电场,以下说法正确的是 A 、球面上的电场强度矢量E 处处不等; B 、球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; C 、球面上的电场强度矢量E 的方向一定指向球心; D 、球面上的电场强度矢量 E 的方向一定沿半径垂直球面向外. [ D ] 4、如图所示,在C 点放置电荷1q ,A 点放置电荷2q ,S 是包围1q 的封闭 曲面,P 点是曲面上的任意一点,今把2q 从A 点移到B 点,则: A 、通过S 面的电通量改变,但P 点的电场强度不变 B 、通过S 面的电通量和P 点的电场强度都改变

C 、通过S 面的电通量P 点电场强度都不变 D 、通过S 面的电通量不变,但P 点的电场强度改变 [ D ] 5、如果对某一闭合曲面的电通量为 S E d ??S =0,以下说法正确的是 A 、S 面上的E 必定为零 B 、S 面内的电荷必定为零 C 、空间电荷的代数和为零 D 、S 面内电荷的代数和为零 [ D ] 6、一孤立点电荷q 位于一立方体中心,则通过立方体每个表面的电通 量为:A 、016εq B 、08εq C 、 04εq D 、 0 6εq [ C ]7、静电场中高斯面上各点的电场强度是由 决定的。 A 、分布在高斯面上的电荷 B 、分布在高斯面外的电荷 C 、空间所有的电荷 D、高斯面内电荷的代数和 二、填空题 1、均匀带电球面半径为R ,带电量为Q 。则在球面内距球心为r 的任一场点的电场强度大小为 0 , 球面外距球心为r 的任一场点的电场强度大小为 204r Q πε 。 2、两个平行“无限大”均匀带电平面,其电荷面密度分别为σ+和 σ2-,如图所示,设向右为正,则三个区域的电场强度分别为: E A = 02εσ , E B = 023εσ ,E C = 0 2εσ- 。 3、均匀带电球面,半径为R ,带电量为q ,球面内P 1和球面外 一点P 2处的电场强度大小,E 1=_____0____, E 2=______2204R q πε_____。 4、在场强为E 的均匀电场中取一半球面,其半径为R ,电场强度的方向与半球面的对称轴平行。则通过这个半球面的电通量为 2R E π* ,若用半径为R

电磁学经典练习题及答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选 项正确. 1 ?如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近 验电器上部的金属板时,金属箔张开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①?④四个选项中选取一个正确的答案. [ ] 图3-1 A.图① E.图② C.图③ D.图④ 2.下列关于静电场的说法中正确的是[ ] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 E.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3 .在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则 [ ] A.a点的电势一定高于b点的电势 E.带电粒子的电势能一定减少 C.电场强度一定等于ΔE∕dq D.a、b两点间的电势差大小一定等于ΔE∕q 4. 将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光 滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[ ] A.它们的相互作用力不断减少 E.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5. 如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上 的某点为圆心做匀速圆周运动,以下说法正确的是[ ]

图3-2 A.它们所需要的向心力不相等 E.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6 ?如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的C点,Oc = h ,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[ ] A.b点场强 B.c点场强 C.b点电势 D.c点电势 7. 如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m, 与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,贝U在Q的排斥下运动到B点停下,A、B相距为s,下列说法正确的是[ ] Q尸 宀鱼舖. ... R A H 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8. 如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q, 整个装置处于水平向右的匀强电场中,电场强度为E. [ ] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动

相关文档
相关文档 最新文档