文档库 最新最全的文档下载
当前位置:文档库 › 离散时间系统分析资料

离散时间系统分析资料

离散时间系统分析资料
离散时间系统分析资料

课程设计报告课程设计题目:离散时间系统分析

学号:201420130327

学生姓名:刘新强

专业:通信工程

班级:1421302

指导教师:涂其远

2015年12 月15 日

目录

第0章: Matlab简介

第1章: 离散时间系统的设计

1.课程设计的目的与要求

2.课题内容分析

3.实验原理

4.具体设计方案

第2章: 离散时间系统的仿真

1.画出零极点图,判断系统的稳定性

2.求出单位样值响应,并画出图形

3.求出系统的幅频响应和相频响应,并画出图形第3章: 总结

第0章: Matlab简介

MATLAB[1] 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;

2) 具有完备的图形处理功能,实现计算结果和编程的可视化;

3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

5)简单易用,Matlab是一个高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。

第1章: 离散时间系统的设计

一、课程设计的目的与要求

1.教学目的

通过本课程设计巩固并扩展信号与系统课程的基本概念、基本理论、分析方法和实现方法,培养学生正确的设计思想,理论联系实际的科学态度,严肃认真、实事求是的科学态度和勇于探索的创新精神。培养学生综合运用所学信号与系统及数字信号处理的知识,分析和解决工程技术问题的能力增强软件编程实现能力和解决实际问题的能力。

2.教学要求

从课程设计的目的出发,通过设计工作的各个环节,达到以下教学要求:通过课程设计,提高学生综合运用所学知识来解决实际问题、查阅文献资料、及进行科学实验或技术设计的能力,为毕业设计(论文)打基础。每个学生在课程设计选题中选做一个专题,学会用MATLAB 语言编写信号与系统及数字信号处理的仿真程序;认真分析每个题目的具体要求;上机前初步编好程序,上机时认真调试程序;课程设计结束时提交符合格式要求的课程设计报告。

二、课题内容分析

本次试验要求有以下三个方面:

1、自行设计某离散时间系统函数,至少是二阶的系统,画出零极点图,判断系统的稳定性。

2、求出单位样值响应,并画出图形。

3、求出系统的幅频响应和相频响应,并画出图形。

在此次课程设计中,多次要运用到MATLAB软件解方程以及绘制图形,所以在进行设计之前需要充分掌握用该软件解方程和绘制图形的能力。

三、实验原理

系统函数H(z)的零、极点的分布完全决定了系统的特性,根据系统函数可求得零、极点。因此,系统函数的零极点分布对我们进行离散系统特性的分析具有非常重要的意义。通过对系统函数零极点的分析,我们可以分析离散系统以下几个方面的特性:

(1)离散系统的稳定性

(2)求得单位样值响应

(3) 离散系统的频率特性(幅频响应和相频响应)

一、要通过系统函数零极点来分析系统特性,首先就要求出系统函数的零极点,然后绘制零极点图。MATLAB 为我们快速、高效地分析离散系统特性提供了强有力的工具下面就介绍如何利用 MATLAB实现这一过程。设离散系统的系统函数为:

H(z)=(b1*z^2+b2*z+b3)/(a1*z^2+a2*z+a3)

系统函数的零点和极点可以用MATLAB 的tf2zp()函数来实现,调用函数tf2zp()的命令格式为

H(z)=(b1*z^2+b2*z+b3)/(a1*z^2+a2*z+a3)

b=[b1 b2 b3]; %分子系数,按降幂排列

a=[a1 a2 a3]; %分母系数,按降幂排列

[z,p,k]=tf2zp(b,a); %z为零点,p为极点,k为该除式系数

Matlab中提供了画零极点的函数zplane(),调用格式为:

zplane(z,p); %作零极点图

根据零极点图来判断该系统的稳定性,当极点全部落在单位圆内可知,系统稳定;极点刚好在单位圆上,临界稳定;落在圆外,系统不稳定。

二、单位样值响应函数

impz( )能绘出向量 a 和 b 定义的离散系统在指定时间范围内单位响应的时域波形,并能求出系统单位响应在指定时间范围内的数值解。调用格式为: impz(b,a,n) 该调用格式将绘出由向量 a和b 定义的离散系统在0-n ( n 必须为整数)离散时间范围内单位响应的时域波形。对上例,若运行如下命令 imp z(b ,a ,60),则绘出系统在0-60取样点范围内单位响应的离散时间波形。

三、用 MATLAB 实现离散系统的频率特性分析

离散系统的幅频特性曲线和相频特性曲线直观地反映了系统对不同频率的输入序列的处理情况。因此,我们只要知道离散系统的频率响应 H(e^j*w)便可分析离散系统的整个频率特性,通过系统函数H(z)的分析得到系统的频率响应H(e^j*w)。设某离散系统的系统函数为H(z),则该系统的频率响应为

H(e j*w)=| H(e j*w)|*e j*φ(w)=H(z)|z=j*w

MATLAB 为用户提供了专门用于求离散系统频率响应的函数 freqz( ),调用此函数格式:[H,wl=freqz(b,a,N)

该调用格式将计算离散系统在a ke(k)范围内N个频率等分点的频率响应 H(e j*w ) 的值。因此,我们可以先调用freqz()函数计算出离散系统频率响应的值,然后再利用 MATLAB的abs()和 angle()函数及 plot 命令,即可绘制出系统在0-π

或0-2π范围内的幅频特性和相频特性曲线。

四、具体设计方案

(一)利用 MATLAB 绘制离散系统零极点图

设离散系统的系统函数为:

H(z)=(b1*z^2+b2*z+b3)/(a1*z^2+a2*z+a3)

Matlab代码:

H(z)=(b1*z^2+b2*z+b3)/(a1*z^2+a2*z+a3)

b=[b1,b2,b3,…];%分子系数,按降幂排列

a=[a1,a2,a3,…];%分母系数,按降幂排列

[z,p,k]=tf2zp(b,a); %z为零点,p为极点,k为该除式系数

zplane(z,p); %作零极点图

(二)求出单位样值响应,并画出图形

接着上面的代码写:

h=impz(b,a,N); %求出单位样值响应

stem(h); %画出图形

(三)求出系统的幅频响应和相频响应,并画出图形

接着上面的代码写:

figure;

[H,w]=freqz(b,a);%求频谱

hx=angle(H); %相位谱

hf=abs(H); %幅度谱

subplot(2,1,1)

plot(w,abs(H));

xlabel('w');

ylabel('|H(e^jw)|') title('幅频响应') subplot(2,1,2);

plot(angle(H));%相位谱title('相频响应'); xlabel('w');

ylabel('hx(w)');

第2章: 离散时间系统的仿真

设离散系统的系统函数为:

H(z)=(5*z^2+4*z+3)/(3*z^2+2*z+1)

一、画出零极点图,判断系统的稳定性

b=[5 4 3]; %分子系数,按降幂排列

a=[3 2 1]; %分母系数,按降幂排列

[z,p,k]=tf2zp(b,a); %求零点极点z为零点p为极点k为该除式系数zplane(b,a); %画零极点图

title('零极点图');

xlabel('Rez');

ylabel('jImz');

绘出图形如下:

从图中可以看出零极点都落在单位圆内,故该系统是稳定的。

二、求出单位样值响应,并画出图形

接着上面的代码写:

figure;

h=impz(b,a,0:20); %求单位样值响应

stem(h); %画出单位样值响应

title('单位样值响应');

xlabel('n');

ylabel('h(n)');

绘出图形如下:

h(n)在n趋近于无穷时为零,也即h(n)单调递减。也验证了H(z)为稳定的系统函数。

三、求出系统的幅频响应和相频响应,并画出图形

接着上面的代码写:

figure;

[H,w]=freqz(b,a); %求频谱

hx=angle(H); %相位谱

hf=abs(H); %幅度谱

subplot(2,1,1)

plot(w,abs(H));

xlabel('w');

ylabel('|H(e^jw)|')

title('幅频响应')

subplot(2,1,2);

plot(angle(H)); %相位谱

title('相频响应');

xlabel('w');

ylabel('hx(w)');

绘出图形如下:

总结

在为期一周的信号与系统课程设计中,我学到很多有用的知识,也积累了不少宝贵的经验。

首先,通过网络和老师发的电子稿《matlab指导书》,我慢慢的了解MATLAB,刚开始时几乎什么都不懂。然后开始根据老师发的《课程设计指导书》和老师的指点以及通过查阅一些图书资料和网上资料,慢慢的开始进行编写代码,碰到不懂的地方,我先通过查找资料自己先理解一下,实在搞不懂就请教老师,老师也很耐心的讲解,也跟同学们讨论,这样一步一步的解决各种问题,最后圆满的完成了本次课程设计。

在此次课程设计过程中,老师以及同学们的帮助有很大作用,当然也离不开网络的作用,互联网可以很好的查找资料。在此次实验过程中,感觉到了matlab 功能的强大,编写这软件的人真的很厉害。如今各行各业几乎都可以用到,非常有利于计算。

在这次课程设计后,知道了理论与实际相结合才可以解决问题,照搬课本上的,有时并行不通。也许在这个过程中会遇到很多困难,但困难并不可怕,可怕的是没有勇气去解决。

总之,我在本次课程设计中学到了很多关于MATLAB的知识,掌握这种工程性软件非常有必要。

附程序:

b=input('分母系数;b=[b1,b2,b3,...]=');

a=input('分子系数;a=[a1,a2,a3,...]=');

[z,p,k]=tf2zp(b,a); %求零点、极点

zplane(b,a); %画零极点图

title('零极点图');

xlabel('Rez');

ylabel('jImz');

figure;

h=impz(b,a,0:20); %求单位样值响应画出单位样值响应stem(h);

title('单位样值响应');

xlabel('n');

ylabel('h(n)');

figure;

[H,w]=freqz(b,a);%求频谱

hx=angle(H); %相位谱

hf=abs(H); %幅度谱

subplot(2,1,1)

plot(w,abs(H));

xlabel('w');

ylabel('|H(e^jw)|')

title('幅频响应')

subplot(2,1,2);

plot(angle(H));%相位谱

title('相频响应');

xlabel('w');

ylabel('hx(w)');

东华理工大学

课程设计评分表

学生姓名:刘新强班级:1424302 学号:201420130327 课程设计题目:离散时间系统分析

最优控制

最优控制综述 摘要:最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。而最优控制通常针对控制系统而言,目的在于使一个机组、一台设备或一个生产过程实现局部最优。本文重点阐述了最优系统常用的变分法、极小值原理和动态规划三种方法的基本理论及其在典型系统设计中的应用。 关键词:变分法、极小值原理、动态规划 1 引言 最优控制是分析控制系统常用的方法,是现代控制理论的核心之一。它尤其与航空航天的制导、导航和控制技术密不可分。最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。 这类问题广泛存在于技术领域或社会问题中。例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中的老化指数、抚养指数和劳动力指数为最优等,都是一些经典的最优控制问题。 最优控制问题是要在满足约束条件下寻求最优控制函数,使目标泛函取极值。求解动态最优化问题的方法主要有古典变分法,极小值原理及动态规划法等。 2 研究最优控制的前提条件 2.1状态方程 对连续时间系统: x t=f x t,u t,t 对离散时间系统:x(k+1)=f x k,u k,k k=0,1,……,(N-1)

离散时间系统特性分析

实验五实验报告 实验名称:离散时间系统特性分析

一、实验目的: 1 。深入理解单位样值响应,离散系统的频率响应的概念; 2。 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率 响应的方法。 二、实验原理: 对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误差在相对小一个范围里,可以忽略不计。 另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。 本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。 具体的方法是: 1 在给定系统方程的条件下,选取激励信号为δ(n),系统的起始状态为零 状态,通过迭代法,求得系统的单位样值响应h(n)(n=0,…,N )。 2 利用公式 其中Ω的取值范围为0~2π 。计算系统的频率响应。 三、实验内容 1 已知系统的差分方程为 利用迭代法求得系统的单位样值响应,取N =10。 2 利用公式 其中

#include #include #define N 10 #define M 20 #define pi 3.1415926 struct pinlv{ double fu; double xiang;}; double h[N+1],x[N+1]; struct pinlv PL(double w) { double a=0, b=0,fu,xiang; int k; struct pinlv FX; for(k=0;k<=N;k++){ a=a+h[k]*cos(-k*w); b=b+h[k]*sin(-k*w);} fu=sqrt(a*a+b*b); xiang=atan(b/a); if((a<0)&(b>0)) xiang=xiang+pi; if((a<0)&(b<0)) xiang=xiang-pi; FX.fu=fu; FX.xiang=xiang; return(FX); } main() { int i,j; double w0; struct pinlv FX[M+1]; FILE *fp1,*fp2; fp1=fopen("H:\\单位样值响应.txt","w"); fp2=fopen("H:\\频率特性.txt","w"); h[-1]=0;h[-2]=0; for(i=-1;i<=N;i++) x[i]=0; x[0]=1; for(i=0;i<=N;i++) h[i]=1.3*h[i-1]-0.4*h[i-2]+x[i-1]; printf("系统的单位样值响应为\n"); fprintf(fp1,"系统的单位样值响应(从x[0]开始)为\n"); fprintf(fp1,"激励x[i] 响应y[i]\n"); for(i=0;i<=N;i++)

环境系统分析小结

环境系统分析小结 环工卓越班章雷1302031005 摘要:系统分析是对研究对象进行有目的、有步骤的探索和研究过程,它运用科学的方法和工具,确定一个系统所应具备的功能和相应的环境条件,以确定实现系统目标的最佳方案。 关键词:环境系统分析;环境生态;环境质量模型. 环境系统分析是以环境质量的变化规律、污染物对人体和生态的影响、环境自净能力以及有关环境工程技术原理为依据,运用系统工程学的理论和方法,研究如何建立起一个合理的环境污染预防控制系统的数学模型,并研究如何利用它来分析各种污染控制过程可调因素(或各种可替换方案)对环境目标或费用、能耗等的影响,以及寻求最优决策方案。 环境系统分析的理论基础和专门技术基础。理论基础:环境科学、环境经济学、环境工程学和系统工程学的基本理论(如运筹学)。专门技术基础:数学建模、计算科学、环境影响评估方法、生命周期评估、系统化的图与网络分析方法。 《环境系统分析》是我国高等学校环境工程、环境科学专业的一门专业基础课,课程任务和教学目标包括:1.使

学生了解污染物在水体和大气中的迁移、扩散和变化规律,建立相应的环境系统模型;2.使学生掌握建立环境数学模型的一般知识;3.使学生了解湖泊、水库水体富营养化的原因和水体富营养化的控制技术;4.使学生掌握区域性环境污染控制系统规划的基本原理和方法;5.使学生建立采用最优化技术求解水污染控制系统规划问题的概念,并有能力解决一般性问题。本门课程一共有十一个章节,主要内容有:环境系统分析概论、数学模型概述、环境质量基本模型、水体水质模型、流域非点源模型、大气质量模型、环境质量评价方法与模型以及环境规划,还有环境决策分析。其中,水体水质模型主要指内陆水体模型,包括湖泊水库水质模型和河流水质模型;环境规划包括水环境规划和大气环境规划。 通过对这门课程的学习,我们对环境系统的分析方法有了一定的了解,它的最大特征是追求环境系统的最优化。 环境系统分析的最优化方法的选用主要有对确定性问题,可采用线性规划、动态规划、非线性规划、整体规划等。对非确定性问题,可用马尔可夫过程,排队论,对策论等方法进行最优化。有的系统优化问题还应用网络理论、图论和模糊数学等进行最优化。 根据本书前言部分介绍这门课程的学科基础包括数学、运筹学、环境科学与环境工程学等,内容较为丰富,通过选

离散时间系统最优控制离散时间系统最优控制

第五章离散时间系统最优控制

?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须将时间离散化后作为离散系统处理。 引言 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。注意与离散事件动态系统(DEDS)的区别。 ? CVDS 与DEDS 是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取器萃取器萃取器萃取器V u (0)u (1)u (k -1)u (N -1) V V V V V V 含物质A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。 1 2 k N x (0) z (0)z (1) z (k-1) z (N -1) x (1) x (2) x (k -1) x (k ) x (N ) x (N -1) 多级萃取过程

(2) 离散系统最优控制问题的提法 给定离散系统状态方程(5-1-6)和初始状态 (5-1-7) 其中分别为状态向量和控制向量,f 为连续可微的n 维 函数向量。考虑性能指标 1 ,,1,0],),(),([)1( N k k k u k x f k x 0 )0(x x m n R k u R k x )(,)( 1 N 其中Φ、L 连续可微。 ?离散系统的最优控制问题就是确定最优控制序列u *(0),u *(1),…,u *(N -1),使性能指标J 达到极小(或极大)值。 ? 将最优控制序列u *(0),u *(1),…,u *(N -1)依次代入状态方程,并利用初始条件,可以解出最优状态序列x *(1),x *(2),…,x *(N ),也称为最优轨线。 (5-1-8) ] ),(),([]),([k k k u k x L N N x J

实验三___离散时间系统的时域分析

实验三 离散时间系统的时域分析 1.实验目的 (1)理解离散时间信号的系统及其特性。 (2)对简单的离散时间系统进行分析,研究其时域特性。 (3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。 2.实验原理 离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示: (1)线性系统 线性系统就是满足叠加原理的系统。如果对于一个离散系统输入信号为时,输出信号分别为,即:。 而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。 (2)时不变系统 如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即: 若,则。 通常我们研究的是线性时不变离散系统。 3.实验内容及其步骤 (1)复习离散时间系统的主要性质,掌握其原理和意义。 (2)一个简单的非线性离散时间系统的仿真 系统方程为: x = cos(2*pi*0.05*n); x1[n] = x[n+1] x2[n] = x[n] x3[n] = x[n-1] y = x2.*x2-x1.*x3; 或者:y=x*x- x[n+1]* x[n-1] 是非线性。 参考:% Generate a sinusoidal input signal clf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x]; % x3[n] = x[n-1]

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

离散系统与连续时间系统的根本差别是:离散系统(图)有采样开

离散系统与连续时间系统的根本差别是:离散系统(图3)有采样开关存在,而连续系统则无。连续信号经过采样开关变成离散信号(图4),采样开关起这理想脉冲发生器的作用,通过它将连续信号调制成脉冲序列。 图3 离散系统方块图 图4 离散型时间函数 调制之后的信号中,包含与脉冲频率相关的高频频谱(图5),相邻两频谱不相重叠的条件是: max 2f f s 其中: s f ---采样开关的采样频率 m ax f ---连续信号频谱中的最高频率 这就是采样定理,通常选择采样频率时取四倍连续信号的最大频率。实验中,信号源产生频率可调的周期性信号,计算机通过A/D 板将信号采集入内存,通过软件示波器显示出来,调整采样频率,可以得到不同的采样结果,以波形图直观显示出来。由此,可考察波形失真程度。 三、实验使用的仪器设备及实验装置 1. 装有LabVIEW 软件和PCI-1200数据采集卡的计算机一台 2. 频率计或信号发生器一台 3. 外接端子板、数据采集板、计算机、组态软件 基于LabVIEW 的信号测试系统主要包括信号发生器、DAQ 数据采集卡和计算机软件三部分组成。A/D 数据采集采用NI 公司PCMCIA 接口的PCI-1200型多功能数据采集卡;L abVIEW 7.1软件。 将PCI-1200数据采集卡插到计算机主板上的一个空闲的PCI 插槽中,接好各种附件,其驱动程序就是NI-DAQ 。附件包括一条50芯的数据线,一个型号为CB-50LP 的转接板,转接板直接与外部信号连接。 图5 信号频谱图

四、具体实验步骤 (一)通过LabVIEW进行模拟信号的数据采集 1. 安装数据采集卡,根据数据采集卡接线指示(图6)连接线路,并检查测试。 2. 熟悉LabVIEW软件中与数据采集相关的控件与设置项。 3. 编制DAQ程序,并调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,观察并记录波形变化。 5. 设置信号种类为方波或锯齿波,重复上述实验。 (二)采样定理验证实验 1. 按图8连接线路,并检查测试。 2. 熟悉GeniDAQ软件中与数据采集相关的控件与设置项。 3. 编制、调试数据采集组态。 4. 应用该组态软件进行波形数据采集并存储,信号种类设置为正弦波,分别设置 信号发生器频率为50,100Hz,采集频率设置为50、100、150、200、300、500Hz,观察并记录波形变化,体验采样定理的正确性。 五、实验准备及预习要求 1.认真阅读实验指导书,在老师答疑和同学讨论的基础上,完成实验准备任务: 1).了解数据采集及其硬件(A/D变换器和数据采集卡)选择的基本知识; 2).熟悉G语言编程环境和虚拟仪器的含义; 1.理解采样定理的意义;

离散时间信号与系统分析

离散时间信号与系统分析

离散时间信号与系统分析 5-1 下列系统中,表示激励,表示响应。试判断每个激励与响应的关系是否线性的,是否具有非移变性。 (1)(2) 解: (1)线性性 则 所以系统是线性的。 移变性 则 所以系统是移变系统。 (2)线性性 , 则 所以系统是线性的。 移变性 ()x n ()y n 2()()cos()510n y n x n ππ =+()()n m y n x m =-∞ =∑112()()cos( )510n y n x n ππ =+222()()cos() 510n y n x n ππ =+1122112211222()()[()()]cos( )()()510 n k x n k x n k x n k x n k y n k y n ππ +→++=+2()()cos( )510 n y n x n ππ=+2()'()()cos()()510 n x n m y n x n m y n m ππ -→=-+≠-11 ()() n m y n x n =-∞ = ∑22 ()() n m y n x n =-∞ = ∑11 22 11 2 2[()()]()() n m k x n k x n k y n k y n =-∞ +=+∑

设 则 所以系统是非移变的。 5-2求下列信号的卷积。 (1) (2) 解: (1)由卷积的性质可知 (2) 5-3 已知差分方程,激励,初始值,,试用零输入、零状态法求全响应。 ()() n m y n x n =-∞ = ∑()'()()()()() n n k n k m p m x n k y n x n k m k p x p x m y n k --=-∞ =-∞ =-∞ -→= --===-∑∑∑而故[()(4)][()(4)]u n u n u n u n --*--sin()()2() 2n n u n u n π*[()(4)][()(4)] [()(1)(2)(3)][()(1)(2)(3)] ()2(1)3(2)4(3)3(4)2(5)(6) u n u n u n u n n n n n n n n n n n n n n n n δδδδδδδδδδδδδδδ--*--=+-+-+-*+-+-+-=+-+-+-+-+-+-221111 5510510 Z[sin()()*2()]2122n i i n z z u n u n z z z z i z i π+-+=?=-++---+121111 5510510sin()()2()Z [] 2221111 [2()()()]()5510510 n n n n i i n u n u n Z Z i Z i i i i i u n π -+-+*=-+--+=?-++-+-()3(1)2(2)()y n y n y n f n +-+-=()2()n f n u n =(0)0y =(1)2y =()y n

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

离散控制系统分析方法

实验二离散控制系统分析方法 一、实验目的 利用MATLAB对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z平面的单位圆内部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z平面的单位圆内,则称该系统是一个最小相位系统。由于Matlab提供了函数可以直接求出控制系统的零极点,所以使用Matlab判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。

例1.z z z H 5.05 .1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5]; den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd); subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0:0.1:1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、 实验内容 1、MATLAB 在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s ,被

离散LSI系统分析

信号与系统分析实验报告 实验项目名称:离散线性时不变系统分析; 连续时间系统分析 所属课程名称:信号与系统实验教程 实验类型:验证型 指导教师: 实验日期:2013.06.04 班级: 学号: 姓名:

离散线性时不变系统分析 一、实验目的 1. 掌握离散线性时不变系统的单位序列响应、单位阶跃响应和任意激励下响应的MATLAB 求解方法。 2. 掌握离散线性时不变系统的频域分析方法; 3. 掌握离散线性时不变系统的复频域分析方法; 4. 掌握离散线性时不变系统的零极点分布与系统特性的关系。 二、实验原理及方法 1. 离散线性时不变系统的时域分析 描述一个N 阶线性时不变离散时间系统的数学模型是线性常系统差分方程,N 阶线性时不变离散系统的差分方程一般形式为 ) ()(0 i n x b k n y a M i i N k k -=-∑∑== (2.1) 也可用系统函数来表示 12001212120 () ()()() ()1M i M i i M N N k N k k b z b b z b z b z Y z b z H z X z a z a z a z a z a z ----=----=++++== == ++++∑∑ (2.2) 系统函数()H z 反映了系统响应和激励间的关系。一旦上式中k a ,i b 的数据确定了,系统的性质也就确定了。特别注意0a 必须进行归一化处理,即01a =。 对于复杂信号激励下的线性系统,可以将激励信号在时域中分解为单位序列或单位阶跃 序列的线性叠加,把这些单元激励信号分别加于系统求其响应,然后把这些响应叠加, 即可得到复杂信号作用于系统的零状态响应。因此,求解系统的单位序列响应和单位阶跃响应尤为重要。由图2-1可以看出一个离散LSI 系统响应与激励的关系。 ()()() z X z H z =()()*() n x n h n 图2-1 离散LSI 系统响应与激励的关系 (1) 单位序列响应(单位响应) 单位响应()h n 是指离散线性时不变系统在单位序列()n δ激励下的零状态响应,因此 ()h n 满足线性常系数差分方程(2.1)及零初始状态,即 ()() N M k i k i a h n k b n i δ==-=-∑∑, (1)(2)0h h -=-== (2.3) 按照定义,它也可表示为 ()()()h n h n n δ=* (2.4) 对于离散线性时不变系统,若其输入信号为()x n ,单位响应为()h n ,则其零状态响应

§7.4动态规划与离散系统最优控制

§ 7.4 动态规划与离散系统最优控制 1. 动态规划基本原理 最优性原则应有如此性质: 即无论(整个过程的)初始状态和初始决策如何,其余(后段)各决策对于由第一个决策(后)所形成的状态作为(后段)初始状态来说,必须也是一个最优策略。 A B C D E 最优性原则 图7.5

用式表示 1() ()min{(,())(())},1,2,,n n n n n u x J x R x u x J u x n N -=+= 阶段变量n (分析次序) 状态变量x 决策变量()n u x 决策组11{,, ,}n n u u u - 损失(效益)函数:(,)n R x u 对x 用决策n u 所付代价(效益) 后部最优策略函数()n J x 由x 至终最小损失(最大效益)

A 到D 的最短路线 解 3阶段的决策过程, 在CD 段(首), (分析)阶段变量1n =; 7.6 图A 2C 1 B D 2 B 3 B 1 C 3 C 4 5 55 6 3 3) b (A 2 C 1B D 2 B 3 B 1 C 3 C 4 4 5 55 55 66677 7 3 3 (a) 3 =n 1 =n 2 =n

111111*********()(,)3,();()(,)5,();()(,)3,(). J C R C D u C D J C R C D u C D J C R C D u C D ========= 在BC 段(首), (分析)阶段变量2n =; 21111,2,3 ()min{(,)()} min{73,65,53}8i i i J B R B C J C ==+=+++=,213()u B C =; 22211,2,3 ()min{(,)()} min{63,55,73}9i i i J B R B C J C ==+=+++=,221()u B C =; 23311,2,3 ()min{(,)()} min{53,65,73}8 i i i J B R B C J C ==+=+++=,231()u B C =;

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

最优控制习题答案

最优控制习题答案 1.设系统方程及初始条件为? ??=+-=)()() (2)()(1211t x t x t u t x t x &&,???==0)0(1)(21x t x 。约束 5.1)(≤t u 。若系统终态)(f t x 自由,利用连续系统极大值原理求)(*t u 性能指标,)3(2x J =取最小值。 解: 2.设一阶离散时间系统为)()()1(k u k x k x +=+,初值2)0(=x ,性 能指标为∑=+=20 2 2 )(21)2(k k u x J ,试用离散系统最小值原理求解最优控 制序列:)2(),1(),0(u u u ,使J 取极小值。 解: 3.软着落、空对空导弹的拦截问题、防空拦截问题。 解答: 4.设离散系统状态方程为)(2.00)(101.01)1(k u k x k x ?? ? ???+??????=+,已知边界条件?? ? ???=01)0(x ,??????=00)1(x 。试用离散系统最小值原理求最优控制序 列,使性能指标∑==1 02 )(03.0k k u J 取极小值,并求出最优的曲线序列。 解:属于控制无约束,N 不变,终端固定的离散最优控制问题,构造离 散 哈 密 尔 顿 函 数 )](2.0)()[1()](1.0)()[1()(03.0)(222112k u k x k k x k x k k u k H ++++++=λλ 其中)1(),1(21++k k λλ为给定拉个朗日乘子序列,由伴随方程:

)1()()(111+=??= k k x H k λλ,)1()1(1.0) ()(2122+++=??=k k k x H k λλλ得出 ?? ?+==+==) 2()2(1.0)1(),2()1() 1()1(1.0)0(),1()0(2121121211λλλλλλλλλλ, 由 极 值 条 件 ??? ????>=??=++=??0 06.0)(0)1(2.0)(06.0) (22 2k u H k k u k u H λ极小)1(310)(2+-=k k u λ可使min )(=k H ,令k=0和k=1的?? ??? -=-=) 2(310 )1(*)1(310)0(*22λλu u ,)(k u 带入状态方程并令k=0和1得到: 5.求 泛 函 dt x x x x J ?++=1 02 221211],[&&满足边界条件 π===-=)3(,0)0(,0)3(,3)0(2211x x x x 和约束条件36221=+t x 的 极值曲线。 解:应用拉格朗日乘子法,新目标函数为: dt t x t x x J )36)((1[2 21 1 022211-++++=?λ&&,令哈密尔顿函数为: )36(12 212221-++++=t x x x H λ&&,可以得到无约束条件新的泛函1 J 的欧拉方程为0)1(2)(22 211 1111=++-=??-??x x x dt d x x H dt d x H &&&&λ (1)

信号、系统及系统响应,离散系统的时域分析实验报告

实验报告 实验二 信号、系统及系统响应,离散系统的时域分析 一、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变换关系,加深对时域采样定理的理 解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信 号、离散信号及系统响应进行频域分析。 (5) 熟悉并掌握离散系统的差分方程表示法; (6) 加深对冲激响应和卷积分析方法的理解。 二、实验原理与方法 1、信号、系统及系统响应 采样是连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 我们知道,对一个连续信号xa(t)进行理想采样的过程可用(2-1)表示。 ^ ()()() (21) a a x t x t p t =- 其中^ ()a x t 为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()() (22) n p t t nT δ∞ =-∞= --∑ ^ ()a x t 的傅里叶变换^ ()a X j Ω为 ^ 1()[()] (23) a a s m X j X j m T ∞ =-∞ Ω=Ω-Ω-∑ (2-3)式表明^ ()a X j Ω为()a X j Ω的周期延拓,其延拓周期为采样角频率

(2/)s T πΩ=。其采样前后信号的频谱只有满足采样定理时,才不会发生频率混叠失真。 将(2-2)带入(2-1)式并进行傅里叶变换: ^ ()[()()]j t a a n X j x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ Ω=-∑? [()()]j t a n x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ = -∑? ()(24) j nT a n x nT e ∞ -Ω=-∞ = -∑ 式中()a x nT 就是采样后得到的序列()x n ,即 ()()a x n x nT = ()x n 的傅里叶变换()j X e ω为 ()()(25) j j n n X e x n e ω ω∞ -=-∞ = -∑ 比较(2-5)和(2-4)可知 在数字计算机上观察分析各种序列的频域特性, 通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。 对长度为N 的有限长序列x(n), 有 一个时域离散线性非移变系统的输入/输出关系为 上述卷积运算也可以在频域实现 2、离散系统时域分析 ^ ()() (26) j a T X j X e ωω=ΩΩ=-1 ()()(27) 2,0,1,,1k N j n j k n k X e x m e k k M M ωωπ ω--==-= =???-∑()()()()() (28) m y n x n h n x m h n m ∞ =-∞ =*= --∑()()() (29) j j j Y e X e H e ωωω=-式中

连续离散系统频域分析

课程实验报告 学年学期2015-2016学年第二学期 课程名称信号与系统 实验名称连续和离散系统的频域分析实验室北校区5号楼计算机房 专业年级电气141 学生姓名宋天绍 学生学号2014011595 提交时间 成绩 任课教师吴凤娇 水利与建筑工程学院

实验二:连续和离散系统的频域分析 一:实验目的 1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义 2:了解连续和离散时间系统的单位脉冲响应 3:掌握连续时间系统的频率特性 二:实验原理 1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞ --∞ =? 逆变换:1()()2j t f t F e d ωωωπ ∞ -∞ = ? 2. 频域分析 t j t j e d d e t e ωωωπ ωωωπ??∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。 ?∞∞-H E =ωωωπωd e t r t j zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;π ωωd )(E 各频率分量的复数振幅 激励单位冲激响应时的零状态响应→ )(t δ)(t h 单位阶跃响应时的零状态响应激励→)(t u )(t g 3 各函数说明: (1)impulse 冲激响应函数:[Y,X,T]=impulse(num,den); ) 1()2()1() 1()2()1()()()(1 1++++++++==--n a s a s a m b s b s b s A s B s H n n m m num 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)]; Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2 +++= s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y,X,T]=impulse(num,den); (2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:3 52 )(2+++= s s s s H ,den=[1 5 3];num=[1 2]; [Y,X,T]= step (num,den); (3)impz 数字滤波器的冲激响应 [h,t]=impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本 h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数

2021年实验4 离散时间信号和系统分析之欧阳学文创编

一、实验目的 欧阳光明(2021.03.07) 1.复习离散时间信号和系统的基本概念及其运算的实现; 2.通过仿真实验,建立对典型的离散时间信号和系统的直观认识。 二、实验内容 1.在n=[-15,15]之间产生离散时间信号 MATLAB代码: 单位阶跃函数序列(定义函数): function[x,n]=step_seq(n0,n1.n2) %产生x(n)=u(n-n0) n=[n1:n2]; x=[(n-n0)>=0]; 产生离散时间信号: n=[-15:15]; s=(step_seq(-4,-15,15)-step_seq(5,-15,15).*n*3; stem(n,s); xlabel('n'); ylabel('x(n)'); grid; 图像: 2.产生复信号

并画出它们的实部和虚部及幅值和相角。信号一MATLAB代码: n=[0:32]; x=exp(j*pi/8*n); figure(1); stem(n,real(x)); xlabel('n'); ylabel('x real'); figure(2); stem(n,imag(x)); xlabel('n'); ylabel('x imag'); figure(3); stem(n,abs(x)); xlabel('n'); ylabel('x magnitude'); figure(4); stem(n,angle(x)); xlabel('n'); ylabel('x phase'); (1)实部: (2)虚部: (3)模:

信号二MATLAB代码:n=[-10:10]; x=exp((-0.1+0.3*j)*n); figure(1); stem(n,real(x)); xlabel('n'); ylabel('x real'); figure(2); stem(n,imag(x)); xlabel('n'); ylabel('x imag'); figure(3); stem(n,abs(x)); xlabel('n'); ylabel('x magnitude'); figure(4); stem(n,angle(x)); xlabel('n'); ylabel('x phase'); (1)实部: (2)虚部: (3)模:

相关文档
相关文档 最新文档