文档库 最新最全的文档下载
当前位置:文档库 › 计算机控制技术即啤酒发酵罐温度控制系统

计算机控制技术即啤酒发酵罐温度控制系统

计算机控制技术即啤酒发酵罐温度控制系统
计算机控制技术即啤酒发酵罐温度控制系统

无锡太湖学院《计算机控制技术》

大作业报告

专业XXXXXXXXXX

学号XXXXXXX

姓名XXXXXX

日期20XXXXXX

1 大作业内容及任务

1.1问题阐述

麦汁发酵过程是啤酒生产中的一个重要环节,同时也是一个复杂的生物化学过程。目前的处理方法多是在麦汁发酵期间,根据酵母的活动能力,生长繁殖快慢,确定发酵给定的温度曲线如下图所示。要使酵母的繁殖和衰减、麦汁中糖度的消耗等达到最佳状态,必须严格控制各阶段的温度、压力、pH值、溶解氧等条件。今对压力、pH值、溶解氧等条件暂不关注,只考虑温度的控制问题,使其在给定的温度曲线的±0.5℃范围内。现设某啤酒厂有一个锥形啤酒发酵罐,锥体由上下两部分组成,下部分是圆柱体,上部分是圆锥体。发酵期间当罐内温度低于给定温度时,要求关闭冷却带阀门,使之自然发酵升温;反之,则接通冷却带阀门,自动将冷却酒精打入循环带使之降温,直至满足工艺要求。发酵期间锥形发酵罐控制上、中、下三部分的温度,温度曲线见下图。

图1 发酵温度工艺设定曲线

1.2设计目的

通过本次大作业设计,掌握计算机控制技术设计相关步骤。考查学生动手能力和对所学知识的掌握程度,以及学生的查阅和收集信息能力。使学生熟悉本设计的相关知识及培养解决设计过程中可能遇到问题的能力。

1.3设计要求

根据啤酒发酵过程,完成作业内容及任务、对作业的认知或解读、系统方案设计——系统结构模型框图、系统硬件元器件选型、硬件设计、数字控制器的设计、系统软件设计——程序流程图、抗干扰分析、心得体会和参考文献。

2对作业的认知或解读

2.1啤酒生产工艺简介

啤酒生产过程主要包括糖化、发酵以及过滤分装三个环节。

2.1.1糖化

糖化过程是把生产啤酒的主要原料与温水混合,利用麦芽的水解酶把淀粉、蛋白质等分解成可溶性低分子糖类、氨基酸、脉、肤等物质,形成啤酒发酵原液─麦汁。

2.1.2发酵

啤酒发酵是一个微生物代谢过程,简单的说是把糖化麦汁经酵母发酵分解成

C2H5OH, CO2, H2O的过程,同时还会产生种类繁多的中间代谢物双乙酞、脂肪酸、高级醇、酮等,这些代谢产物的含量虽然极少,但它们对啤酒的质量和口味的影响很大,它们的产生主要取决于发酵温度。一般认为,低温发酵可以降低双乙酞、脂类等代谢物的含量,提高啤酒的色泽和口味;高温发酵可以加快发酵速度,提高生产效率和经济效益。总之,如何掌握好啤酒发酵过程中的发酵温度,控制好温度的升降速率是决定啤酒生产质量的核心内容。啤酒发酵是个放热过程,如不加以控制,罐内的温度会随着发酵生产热的产生而逐渐上升,目前大多数对象是采用往冷却夹套内通入制冷酒精水混合物或液氨来吸收发酵过程中不断放出的热量,从而维持适宜的发酵温度。整个发酵过程分前酵和后酵两个阶段,发酵温度的工艺设定典型曲线如图1所示。不同品种、不同工艺所要求的温度控制曲线会有所不同。

(1)前酵

这个阶段又称为主发酵。麦汁接种酵母进入前酵,接种酵母几小时以后开始发酵,麦汁糖度下降,产生CO2并释放生化反应热,使整个罐内的温度逐渐上升。经过2~3天后进入发酵最为旺盛的高泡期再经过2~3天,糖度进一步降低,降糖速度变慢,酵母开始沉淀,当罐内发酵糖度达标后进行降温转入后酵阶段。普通啤酒在前酵阶段,一般要求控制在12℃左右,降温速率要求控制在0.3 0C /h。

(2)后酵

当罐内温度从前酵的12℃降到5℃左右时后酵阶段开始,这一阶段最重要的是进行双乙酞还原,此外,后酵阶段还完成了残糖发酵,充分沉淀蛋白质,降低氧含量,提高啤酒稳定性。一旦双乙酞指标合格,发酵罐进入第二个降温过程,以0.150C/h的降温速率把罐内发酵温度从5℃降到0~-1℃左右进行贮酒,以提高啤酒的风味和质量。经过一段时间的贮酒,整个发酵环节基本结束。

通常发酵液温度在不同的发酵阶段,对罐内发酵液的温度场要有相应的要求:在前酵阶段希望发酵罐内从罐顶到罐底有一正的温度梯度,即从控制上层温度为主,以利于发酵液对流和酵母在罐内的均匀混合;在后酵阶段,则要求发酵液由

卜到下有一定的负温度梯度,即控制以下层温度为主,便于酵母的沉淀和排除。

2.1.3啤酒的过滤和灌装

前、后酵结束以后,啤酒将通过过滤机和高温瞬时杀菌进行生物以及胶体稳定处理然后灌装。啤酒过滤是一种分离过程,其主要目的是把啤酒中仍然存在的酵母细胞和其它混浊物从啤酒中分离出去,否则这些物质会在以后的时间里从啤酒中析出,导致啤酒混浊,目前多采用硅藻土过滤方式。如果啤酒中仍含有微生物(杂菌),则微生物可以在啤酒中迅速繁殖,导致啤酒混浊,其排泄的代谢产物甚至使啤酒不能饮用。杀菌就是啤酒在灌装之前对其进行生物稳定性处理的最后一个环节。

至此,一个啤酒和生产周期结束。

3系统方案设计——系统结构模型框图啤酒发酵温度采用传统的手动操作控制,啤酒质量差,生产效率低,劳动强度大,酒损严重,不能灵活地修改工艺参数。为此我们以AT89S52单片机芯片为核心,研究和设计了数字化的啤酒发酵过程计算机控制系统,很好地解决上述问题。

3.1啤酒发酵过程温控对象的特点

发酵罐是啤酒生产的主要设备,图2为圆筒锥底发酵罐示意图,酵母在罐内发生反应而产生热量,使麦汁温度升高,因此在罐壁设置有上、中、下三段冷却套,相应的设立上、中、下三个测温点和三个调节阀,通过阀门调节冷却套内冷却液的流量来实现对酒体温度的控制。以阀门开度为控制量,酒体温度为被控量。该广义对象是一个三输入、三输出的多变量系统,机理分析和实验表明啤酒发酵罐的温控对象不同于一般的工业对象,主要有以下几个方面的特点:

图2 发酵罐工艺示意图

(1)时滞很大

在整个发酵过程中,由于生化反作用产生的生化反应热导致罐内发酵温度的升高,为了维持适宜的发酵温度,通常是往发酵罐冷却夹套内通入酒精水或液态氨,来带走多余的反应热。由于罐内没有搅拌装置和加热装置,冷媒发酵液间主要依靠热传导进行热量交换,发酵液内部存在一定的对流,影响到测温点,这就使得控制量的变化后,要经过一段时间,被控量才发生变化,因此这类系统会表现出很大的时滞效应。例如一个120m3啤酒发酵罐温度响应的滞后时间一般在5~30min之内变化。

(2)时变性

发酵罐的温控特性主要取决于发酵液内生化反应的剧烈程度。而啤酒发酵是从起酵、旺盛、衰减到停止不断变化的间歇生产过程,在不同的发酵阶段,酵母

活力不同,造成酒体温度特性变化,因此对象特性具有明显的时变性。

(3)大时间常数

发酵罐体积大,发酵液体通过罐壁与冷却水进行热交换的过程比较慢。

(4)强关联

因为罐内酒体的对流,所以在任一控制量的变化均会引起三个被控量的变化。

在分析对象特性的时候,由于受到认识上的限制,往往也不能确切掌握工业过程中各种物理、化学变化的本质特征,这也必然会导致获取的对象特性与实际特性存在难以确定的偏差。例如啤酒生产过程酵母特性、原料特性等许多因素的变化都会引起被控系统特性参数的变化和摄动,而这些因素在实际系统中都是很难在线或实时获取的。

4系统硬件元器件仪表选型

4.1温度传感器

工业装配式热电阻通常用来显示仪表和计算机配套,直接测量各种生产过程中-200℃~+500℃范围内液体、蒸汽和气体介质及固体表面的温度。我厂生产热电阻全部符合ICE国际标准和国家有关规定,有铂热电阻和铜热电阻两大类,铂电阻又分为云母骨架、陶瓷骨架、厚膜电阻和薄膜电阻等。铜电阻的骨架有聚碳酸酯制成。铂电阻分度号Pt100,铜电阻分度号Cu50。BA1、BA2、Pt100铂电阻和Cu100铜电阻可订做。在此,我们选择Pt100。

图3温度传感器图4温度变送器

4.2温度变送器

HAKK-WB系列温度变送器为24V供电、二线制的一体化变送器。产品采用进口集成电路,将热电阻的信号放大,并转换成4-20mA或0-10mA的输出电流,或0~5V的输出电压。其中铠装变送器可以直接测量汽体或液体的温度特别适用于低温范围测量,克服了冷凝水对测温所带来的影响特点。 Pt100温度变送器用于Pt100铂电阻信号需要远距离传送、现场有较强干扰源存在或信号需要接入DCS系统使用。铂电阻温度变送器采用独特的双层电路板结构,下层是信号调理电路,上层电路可定义传感器类型和测量范围。

4.3孔板流量计

HYG系列孔板流量计(又称节流装置、差压式流量计)是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量。孔板流量计节流装置包括环室孔板,喷嘴等。孔板流量计节流装置与差压变送器配套使用,可测量液体、蒸汽、气体的流量,孔板流量计广泛应用于石油、化工、冶金、电

力、轻工等部门。

充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后产生的压差就越大,所以

孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定律为基准的。

图5孔板流量计图6差压变送器

4.4差压变送器

3051X高精度差压变送器具备EJA原装表所有功能,还扩展了一些实用功能。旋转开关可PV值清零,顺时针增大,逆时针减小,可以1μA调整,也可大范围调整。3051X高精度差压变送器主要性能和参数:

(1)输出信号:4~20mA.DC,二线制。(2)供电电压:12V~45V.DC。(3)电源影响:<0.005%/V。(4)负载影响:电源稳定时无负载影响。(5)启动时间:<2秒,不需预热。(6)工作环境:-25℃~+70℃相对温度:0~100%。迁移后的上下限绝对值均不应超过最大量程范围的上限值。(7)负载特征:RL≤(u-12)/i,式中:u---供电电压,i---回路电流。(8)振动影响:任何方向200Hz振动±0.5%/g。(9)安装位置:膜片未垂直安装时,可能产生小于0.24Kpa的误差,但可通过调零消除。(10)防爆类型:隔爆型ExdllCT5,本安型ExiallCT6.

4.5流量积算仪

新虹润NHR-5610系列流量积算控制仪针对现场温度、流量等各种信号进行采集、显示、控制、远传、通讯、打印等处理,构成数字采集系统及控制系统。双屏LED数码显示,具有极宽的显示测量范围,可显示整五位的瞬时流量测量值、入口/出口温度测量值、流量(差压、频率)测量值等,及整11位的流量累积测

量值,0.2%级测量精度,0.1%级累积精度。具备36种信号输入功能,可配接各种差压信号(孔板装置)、线性信号(电磁流量计)及脉冲信号(涡街流量计)。

可带两路模拟量变送输出。支持RS485、RS232串行接口,采用标准MODBUS RTU通讯协议。仪表可带RS232C打印功能,具有手动、定时、报警打印功能。带DC24V馈电输出,为现场变送器配电。输入、输出、电源、通讯相互之间采用光电隔离技术。

图7流量积算仪图8电动调节阀

4.6电动调节阀

RC系列电动调节阀包括驱动器,接受驱动器信号(0-10V或4-20mA)来控制阀门进行调节,也可根据控制需要,组成智能化网络控制系统,优化控制实现远程监控。

4.7 UP-550程序调节器

液晶显示高性能程序调节器,UP550程序

调节器1/4DIN型是高级程序控制仪表,具有

30种程序模式、5种强大的调节功能。还具有

便于查看的大屏数字显示,用于交互式程序模

式与参数设定的LCD显示特性。标配有自动协

调功能、“SUPER”抑制过冲功能以及新增加的

“SUPER”hunting抑制功能。位置比例调节与

加热/冷却模式适合于多种应用。

图9程序调节器

5硬件设计

5.1微处理器系统

AT89S52单片机为主控制器件。AT89S52是ATMEL公司生产的低功耗、高性能CMOS8位单片机,它除正常工作外还可工作于低功耗的闲置和掉电模式,进一步减少了芯片的功耗。单片机首先根据已经测量的数值计算出温度偏差,然后进行PID控制并计算出相应的控制数据量,将控制数据量输出到D/A转换器。AT89S52还负责按键处理、液晶显示以及与上位机进行通信等工作。本系统采用8155A芯片来扩展键盘和液晶显示,用MAX232实现RS-232C标准接口通信电路。键盘主要负责温度控制范围和PID控制参数的输入;液晶显示器采用LMC128X64液晶显示模块,把温度控制结果显示在液晶屏上。

5.2数据采集电路的工作原理

温度传感器使用集成温度传感器LM35,它的灵敏度为10MV/℃,即温度为10℃时,输出电压为100mV。常温下测温精度为+/-0.5℃以内,消耗电流最大也只有70μA。本文采用±5V双电源供电方式,电路简单,不需要对LM35的输出进行调整。

将LM35的输出电压放大5倍(注:根据发酵温度的变化范围和温度传感器的灵敏度,将电压放大器的电压放大倍数整定为5倍),使放大器输出电压限制在不大于5V的范围(给定温度对应值要在5V范围之内),以便与单片机的电平相匹配。放大电路采用集成运放组成,如TLC2272等。

由于温度信号为缓慢变化的信号,对A/D转换速度要求不高,可选用价廉的集成A/D芯片ADC0809。ADC0809将经过5倍电压放大的电压模拟量转化成与其大小成正比的数字量,并送给单片机。

5.3蜂鸣器报警电路

系统时刻检测发酵温度值,出现异常时启动蜂鸣器报警。蜂鸣器报警电路由晶体管和蜂鸣器组成。由单片机I/O口输出信号控制晶体管的导通或截止,晶体管导通,则蜂鸣器报警。

5.4驱动电路

DAC0832输出的0-5V的电压经过放大器放大为0-10V的电压。由于DDZ-III 型电动角形阀的控制信号是4-20mA直流电流信号,因此需要将电压信号转换成相应的电流信号。V/I转换电路使用集成电路AD694。DDZ-III型电动角形阀以单相交流220V电源为动力,接受4-20mA直流信号,自动地控制阀门的开度,从

而达到对冷却酒精水流量的连续调节,实现发酵罐内温度的控制,使实际温度向着给定温度变化并最终达到给定温度。

5.5整体电路图

本系统主要由AT89S52单片机、温度采集与A/D转换电路、8155扩展电路、液晶显示接口、键盘接口、蜂鸣器报警电路、串口通信电路、DAC0832、电压放大和V/I转换等单元组成。控制系统硬件组成框图如图10所示。

图10控制系统硬件结构框图

6数字控制器的设计

6.1常规PID 控制器

常规的PID 调节方法,即比例、积分、微分控制规律。是在工业生产中应用最广泛、研究得最成熟的一种简单的自适应控制方式,即使在欧、美、日等工业发达的国家,采用现代的高级控制算法的回路数也仅占很小的比例,90%以上的控制回路基本上还是采用PID 控制算法。其原因主要有以下几个方面:

1.PID 控制不要求严格掌握被控对象的数学模型,而现代的控制算法是以精确的数学模型为基础的。

2.PID 控制算法结构简单、稳定性好、物理概念清晰等,容易被现场工程师所接受。

3.在近半个世纪的PID 算法发展过程中,广大工程技术人员已经积累了丰富的经验,摸索出了一系列整定PID 参数的方法。

对于PID 控制尽管取得了一系列的研究成果和应用经验,但人们对PID 的认识和改进还远没有完成。到目前为止对PID 的机理、适用范围、鲁棒性等问题还没有彻底的全面的分析研究。事实上,PID 并非万能的控制器,在存在多变量祸合、时变、大时滞、强干扰等复杂动态特性的系统中,PID 很难获得理想的控制效果,甚至产生不稳定。因此,有必要对PID 的控制机理进行全面的分析,并对在上述场合中的应用提出改进的办法。

PID 控制中的一个关键问题是PID 参数整定,传统的整定方法是在获得被控对象数学模型的基础上按照某种整定原则来进行PID 参数值的整定。而实际的工业生产过程往往具有非线性,时变不确定性,难以建立精确的数学模型,应用常规的PID 控制不能达到理想的控制效果。另外,在实际生产现场中,PID 参数整定与自整定的方法很多,但往往难以实施或不太理想,常规PID 控制器参数常常整定不良,性能欠佳,对运行工况的适应性差。因此,在PID 参数的整定及自整定方面还有待进一步深入研究。

从结构上看PID 控制器最简单,但并非最优,在克服较大扰动影响,提高系统动态品质等方面,光靠调整参数难以获得满意的控制效果。因此,还有必要在全面分析的基础上,对PID 控制器进行结构上的改进。

6.2 PID 算式加特殊处理

采用增量型PID 控制算式

012()()(1)(2)e e e u K q k q k q k ?=+-+-

式中

01(1)D p T T q K T T =++

12(1)D p T q K T =-+

2D p T q K T = ()()()e k r k y k =-

其中:r(k)为第K 个采样周期的实测温度值;

y(k)为第K 个采样周期的实测温度值;

T 为采样周期(T=2s )。

根据被控对象的特点,在PID 算式的基础上,进行以下特殊处理:

在保温段,r(k)不变,采用PI 控制算式;降温段采用PID 控制算式;为了减小被控对象纯滞后的影响,在给定温度曲线转折处作特殊处理,即由保温段转至降温段时提前开大调节阀,而在降温段转至保温段时提前关小调节阀,其目的是使温度转折时平滑过渡。

另外,需对控制量()u k ?和阀位输出进行限幅。实际操作时,必须对()u k ?加以限制,即满足

min max ()u u k u ?≤?≤?

当min ()u k u ?

当max ()u k u ?>?时,取max ()u k u ?=?;

因采用的调节阀控制信号为4~20mA(DC) ,且D/A 转换为12位,因此取

min 819u ?=;max 4095u ?=

采用增量式算法时,计算机输出的控制增量()u k ?对应得是本次执行机构位置(如阀门开度)的增量,对应阀门实际位置的控制量是通过累积历次控制增量形成的,常用的累积元件有步进电动机等。

增量式PID

在算法上有不少优点: 1.计算机发生故障时,影响范围小。由于它每次只输出控制增量,即对应执

行机构位置的变化量,输出变化范围不大(0~max u ±?),所以,当计算机发生故

障时,不会严重影响生产过程。

2.手动-自动切换时冲击小。由于它每次输出的最大幅度为max u ?,所以,当控制从手动切换到自控时,可做到无扰动,即可实现无扰动切换。

3.计算工作量小。算式中不需要累加。

7系统软件设计——程序流程图

7.1软件设计

本系统软件设计采用结构化和模块化设计方法,便于功能扩展,程序可采用汇编语言进行编程。程序模块主要包括:主程序、PID数据处理、按键处理、温度采样与A/D转换、数字滤波、越限报警等子程序。本文重点介绍主程序流程图和数据处理模块。

7.2主程序

7.2.1控制系统主程序

控制系统主程序的流程图如图11所示。本系统利用定时循环轮流对8个温度进行实时采样,为了能够实现温度的巡回测量,必须有相应的程序来选择温度输入通道。用户可以通过键盘设定温度的上限值和下限值、偏差e(k)绝对值的设定值M、PID控制的系数kp、ki和kd等参数。

图11控制系统主程序的流程图

7.2.2数据处理模块

本温控系统采用的数字PID算法由软件实现,增量PID控制算法的优点是编程简单,数据可以递推使用,占用存储空间少,运算快。但是对于温度这种响应缓慢、滞后性大的过程,不能用标准的PID算法进行控制。当扰动较大或者给定的温度值大幅度变化时,由于产生较大的偏差,加上温控本身的惯性及滞后,在积分作用下,系统往往产生较大的超调和长时间的振荡。因此,为克服这种不良的影响,采用积分分离法对增量PID算法进行改进。当偏差e(k)绝对值较大时,暂时取消积分作用;当偏差e(k)绝对值小于某一设定值M时,才将积分作用投入。

1)当|e(k)|

U(k)=kpe(k)+kiki=0!e(i)+kd[e(k)-e(k-1)] (1)

式中:e(k)=r(k)-y(k)为第k时刻所得偏差信号,rk是给定值,yk是实际输出值;kp为比例增益,ki为积分系数,kd为微分系数。则增量式PID控制算法为

Δu(k)=kp[e(k)-e(k-1)]+kie(k)+kd[e(k)-2e(k-1)+e(k-2)] (2)

2)当|e(k)|≥M时,用PD控制。由于偏差大,说明系统温度远离设定值,应快速降温,采用PD控制,可以提高系统的动态响应速度,避免产生过大的超调,减小动态误差。

数据处理程序流程图如图12所示。

图12数据处理程序路程图

8抗干扰分析

8.1硬件抗干扰分析

使用计算机控制系统来控制麦汁发酵的工作环境往往比较复杂、恶劣,尤其是系统周围的电磁环境,对系统的可靠性与安全性构成极大的威胁。计算机控制系统必须长期稳定可靠地运行,否则就会导致系统误差增大.严重时会使系统失灵,造成巨大损失。影响系统安全可靠运行的主要因素来自系统内部和外部的各种干扰。所谓干扰,就是有用信号以外的噪声或造成计算机控制系统不能正常工作的破坏因素。

8.2干扰源与干扰的耦合

干扰对于控制计算机系统产生的影响是不可忽视的。在对系统的状态参数进行测量的过程中,干扰信号会使侧最信号产生误差,依照此测量结果运算得出的控制命令也不可能是正确的;在按照给定的控制规律进行控制的过程中,干扰信号可能导致误操作。

8.2.1干扰来源

(1)电源干扰是指来自供电电源的干扰,主耍类型有:浪涌、尖峰、噪声和断电等。我国采用高电压(220v)高内阻电网,与采用低电压(例如l00V或110V)低内阻电网相比,电网受到的污染程度会比较严重。

(2)空间干扰主要指来自周围环境的干扰,主要类型有静电和电场的干扰、磁场的干扰、电磁辐射干扰等。此外自然界也产生干扰,如太阳辐射电磁波,空中雷电造成的过电压或过电流等。

(3)设备干扰是指设备内部或设备之间产生的干扰。电气设备漏电、接地系统不完善,或测量部件绝缘不好,均会使通道中串人共模电压或差模电压力;各个通道的若干线路同用一跟电缆或绑扎在一起,会通过电磁感应而相互产生干扰,特别是交流220V电源线,极易在低于15V的测量通道中构成共模干扰或差模干扰。

根据以上3中干扰的描述,在本系统中,会存在不可避免的来自交流电源的干扰,需要一定的防护措施来减小干扰;因啤酒发酵罐不会置放于裸露的场地,所以来自空间的干扰较为轻松;与其他两种干扰相比,较为严重的是来自设备的干扰,各种设备仪器的互相干扰可能会让情况愈发糟糕。

8.2.2干扰信号的耦合方式

干扰信号进人到计算机控制系统中的主要耦合方式可分为6种:直接耦合方式、静电耦合方式、电磁耦合方式、共阻抗耦合方式、电磁场辐射耦合方式和漏电耦合方式。现将它们的作用机理分别作简要说明。

(l)直接耦合方式电导性耦合最普遍的方式是干扰信号经过导线直接传钵到被干扰电路中而造成干扰。在计算机控制系统中,干扰噪声经过电源线耦合进入

系统电路是最常见的直接干扰现象。对这种耦合方式,可采用滤波去耦的方法有效地抑制。

(2)静电耦合方式(电容性耦合方式) 这是指电位变化在干扰源与干扰对象之间引起的静电感应,又称电容性耦合或电场耦合。计算机控制系统电路的元件之间、导线之间、导线与元件之间都存在着分布电容。如果某个导体上的信号电压(或噪声电压)通过分布电容使其他导体上的电位受到影响,这样的现象就称为静电耦合。

(3)电磁耦合方式(电感性耦合方式) 载流电路周围空间会产生磁场,位于其中的闭合电路将受交变磁场的影响而产生感应电势并形成感应电流。在设备内部,线圈或变压器的漏磁就是一个很大的干扰源;在设备外部,当二根导线在较长的距离内敷设或架设时,将会产生电磁耦合干扰。

(4)共阻抗耦合方式 当两个电路的电流流经一个公共阻抗时,一个电路在该阻抗上所产生的电压降会影响到另一个电路,该种耦合方式称作共阻抗耦合。这个电压会干扰与公共阻抗相连的其他电路的工作。

共阻抗耦合的主要形式有以下儿种

l )电源内阻抗的耦合干扰。当用

一个电源同时对多个电路供电时,电源

内阻R 0和线路电阻R 就成为这些电路

的公共阻抗,任一电路因电流变化而在

公共阻抗上产生的电压就成了对其他

电路的干扰源,如图(2-52)所示。

2)公共地线耦合干扰。由于地线

本身具有一定的阻抗,当其中有电流通

过时,在地线上必产生电

压,该电压就成为对有关

电路的干扰电压。图

(2-53)为通过公共地线

耦合干扰

的示意图,图中R 1、R 2、

R 3为地线电阻,A1、A2

为前置电压放大器,A3为功率放大器,A3的电流I 3较大,通过地线电阻R3时

产生的电压为V 3=I 3R 3,V3就会对A1、A2产生干扰。

3)输出阻抗耦合干扰。当信号输出电路接有多路负载时,任何一路负载电压的变化都会通过线路公共阻抗(包括信号输出电路的输出阻抗和输出接线阻抗)耦合而影响其他各路的输出,产生干扰。图(2-54)表示一个信号输出电路同时向三路负载提供信号的示意图。图中Z s 为信号输出电路的输出阻抗,Z O 为输出接

线阻抗,Z L 为负载阻抗。

(5)电磁场辐射耦合方式当高频

电流流过导体时,在该导体周围产生

电力线和磁力线,它们随着导体各个

部分的电荷变化而变化,从而形成一

种在空间传播的电磁波。处于电磁波

中的导体,将受到电磁波的作用而感

应出相应频率的电动势。

电磁场辐射干扰是一种无规则

的干扰,它极易通过电源耦合到系统

中来。另外,过长的信号线和控制线具有天线效

应,它们既能接收干扰波,又能辐射干扰波。

(6)漏电耦合方式(电阻性耦合)由于绝缘

不良,流经绝缘电阻R的漏电流将引起干扰。例

如,用应变片测量时,通常要求应变片与结构之

间的绝缘电阻在100M欧姆以上,其目的就是使

漏电电流干扰的影响尽量减小。

综上6种干扰信号的耦合方式,本系统可能受到直接耦合方式的干扰,这种情况可采用滤波去耦的方法有效抑制;可能受到静电耦合方式的干扰,这种情况应注意敷设的导线之间应增大彼此之间的距离,并尽量使两导线不要平行;可能受到电磁耦合方式的干扰,这种情况下应避免整个系统中大范围使用大电流低电压的使用;可能受到共阻抗耦合方式,为了抑制电源阻抗的耦合干扰,可采取如下措施:减小电源的内阻、在电路中增加电源去耦滤波电路;可能受到电磁场辐射耦合方式的干扰,对于这种情况,应该注意采用一定的屏蔽措施;可能受到漏电耦合方式的干扰,应注意设备漏电。

8.3软件抗干扰分析

在计算机控制系统中除了整个系统的结构和每个具体的控制模板和1/0模板需要仔细设计硬件抗干扰措施之外,还需要注重软件抗干扰措施的应用。有时一个偶然的人为或非人为干扰,例如并不很强烈的雷击,就使得硬件抗干扰措施无能为力,导致主控模板死机(即程序跑飞)或者控制出错(此时CPU内部寄存器内容被修改或者RAM和1/0口数据被修改)。这在某些工业环节将造成重大的事故。这时.使用软件抗干扰措施就可以在一定程度上避免和减轻这些意外事故的后果。

软件抗干扰技术是利用软件运行过程中的自我监视和控制网络中各机器间的相互监控,来监督和判断控制系统是否出错或失效的一个方法,这是计算机控制系统抗干扰的最后一道屏障。

8.3.1看门狗

看门狗,又叫 watchdog timer,是一个定时器电路, 一般有一个输入,叫喂狗,一个输出到MCU的RST端,MCU正常工作的时候,每隔一端时间输出一个信号到喂狗端,给 WDT 清零,如果超过规定的时间不喂狗,(一般在程序跑飞时),WDT 定时超过,就回给出一个复位信号到MCU,是MCU复位. 防止MCU死机. 看门狗的作用就是防止程序发生死循环,或者说程序跑飞。

工作原理:在系统运行以后也就启动了看门狗的计数器,看门狗就开始自动计数,如果到了一定的时间还不去清看门狗,那么看门狗计数器就会溢出从而引起看门狗中断,造成系统复位。

8.3.2软件陷阱技术

单片机应用系统的用户应用程序一般由循环结构的主程序和中断服务子程序组成,主程序的结构如图1所图1

主程序结构示。将下面的软件陷阱程序段插入到用户应用程序中(如何插入的问题将在下面的第3点中详细讨论),即在用户应用程序存储器不用区域写入代码“0000020000H”。

NOP

NOP

LJMP0000H

当单片机应用系统工作正常时,单片机的CPU不会执行软件陷阱程序段;但是,当单片机应用系统受到干扰而程序跑飞后,由于程序计数器PC值错误,破坏了正常的指令格式,导致执行非正常指令,从而执行软件陷阱程序段,落入软件陷阱,将跑飞的程序引导到复位入口地址0000H。软件陷阱程序段中的连续2条NOP 指令是为了增强“LJMP0000H”被捕获的能力,即“LJMP0000H”不会被冲散,当程序跑飞后会得到完整地执行,从而使跑飞的程序纳入正常轨道。

9心得体会

在这次大作业设计中,我通过搜索网络资料,将理论与生产实际相结合,不仅了解了生产过程的复杂,更加深刻的掌握了理论知识,深刻地了解到啤洒发酵是一个复杂的生物化学反应过程。发酵期间,需要根据酵母的活动能力,繁殖快慢,确定发酵给定的温度。要使酵母的繁殖与哀减,麦汁中糖度的——消耗和双乙酞等杂质含量达到最佳状态,必须严格控制发酵各个阶段的温度。但也体会到要独立设计一个啤酒发酵温度控制系统的难度,明白其中被控对象具有时滞性和时变性的特征,更明白发酵罐内的温度场分布难以精确建模。

本次设计让我深刻的理解了一些在学习中没有理解的知识。多次的查阅资料,使我了解了啤酒发酵过程温度控制系统的相关知识,也让我明白了如何设计一个完整的控制系统,相信在以后的工作生活中本次设计会对我产生深远的影响。

发酵罐温度串级控制系统概述

一、被控对象工作原理及结构特点等 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶以及维生素和单细胞蛋白等。 发酵反应器(发酵罐)是发酵企业中最重要的设备。发酵罐式必须具有适宜于微生物生长和形成产物的各种条件,促进微生物的新陈代谢,使之能在低消耗下获得较高产量。例如,发酵罐的结构应尽可能简单,便于灭菌和清洗;循环冷却装置维持适宜的培养温度;由于发酵时采用的菌种不同、产物不同或发酵类型不同,培养或发酵条件又各有不同,还要根据发酵工程的特点和要求来设计和选择发酵罐的类型和结构。 通风发酵设备要将空气不断通入发酵液中,供给微生物所需的氧,气泡越小,气泡的表面积越大,氧的溶解速率越快,氧的利用率也越高,产品的产率就越高。通风发酵罐有鼓泡式、气升式、机械搅拌式、溢流喷射自吸式等多种类型。 机械搅拌通风发酵罐是发酵工厂常用的类型之一,它是利用机械搅拌器的作用,使空气和賿液充分混合促使氧在賿液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气,同时强化热量传递。无论是微生物发酵、酶催化或动物植物细胞培养的微生物工程工厂都应用此类设备,占目前发酵罐总数的70%~80%,常用语抗生素、氨基酸、有机酸和酶的发酵生产。机械搅拌通风发酵罐是属于一种搅拌釜式反应器,除用作化学反应和生物反应器外搅拌反应器还大量用于混合、分散、溶解、结晶、萃取、吸收或解吸传热等操作。搅拌反应器由搅拌容器和搅拌机两大部分组成。加班容器包括筒体、换热原件及内构件、搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。 1.1温度对发酵的影响 微生物药品发酵所用的菌体绝大多数十中温菌,如丝状真菌、放线菌和一般细菌。它们的最适生长温度一般在20~40摄氏度。在发酵过程中,应维持适当温度,以使微生物生长代谢顺利进行。由于微生物的种类不同,所具有的酶系及其性质也不同,因此所要求的温度也不同,如细菌的生长温度大多比霉菌高。有些微生物在生长、繁殖和合成代谢产物等各个阶

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

啤酒发酵温度过程控制

PLC在啤酒发酵温度控制中的应用 概述 啤酒的发酵过程是在啤酒酵母的参与下,对麦汁的某些组成进行一系列代谢,从而将麦汁风味转变为啤酒风味的过程。啤酒发酵是啤酒生产工艺流程中关键环节之一,也是一个极其复杂的在发酵罐内发生并释放大量热量的生化放热反应过程。由于这一过程中不仅麦汁中的可酵糖和氨基酸等营养物质被酵母细胞酶分解为乙醇(C2H5OH)和二氧化碳(CO2),同时还产生一系列的发酵副产物,如:双乙酰,高级醇、醛、酸、酯等。这些代谢产物的含量虽然极少,但它们对啤酒质量和口味的影响很大,而这些中间代谢产物的生成取决于发酵温度。因此发酵过程是否正常和顺利,将直接影响到最终啤酒成品的质量。比如,发酵过程的温度若发生剧烈变化,不仅会使酵母早期沉淀、衰老、死亡、自溶,造成发酵异常,还直接影响到酵母代谢副产物组成,从而对啤酒酒体与风味,及啤酒胶体稳定性造成危害。所以发酵过程工艺条件的控制历来都受到酿酒工作者的高度重视。 过去啤酒发酵过程中各种工艺参数的控制,多用常规表显示,人工现场操作调节,手工记录来实现。然而随着啤酒产量的不断增大,发酵罐数量逐步增多(有的厂已达30~40个),倘若仍然沿用常规办法,不仅会因仪表众多,给工人的生产操作造成极大的不便,而且还会因疏忽、错漏等人为原因,造成生产质量的不稳定,甚至发生生产事故。因此,设计用可编程控制器(PLC)自动控制啤酒的发酵温度。 一啤酒发酵过程控制 1 被控对象 啤酒发酵是在发酵罐中静态进行的,它是由罐体、冷却带、保温层等部件组成。发酵罐的形状一般为圆锥状,容积较大,大部分在100m3(我国的啤酒发酵罐容积在120m3~500m3)以上。啤酒发酵要严格的按着工艺曲线进行,否则就会影响啤酒质量。为了有利于热量的散发,在发酵罐的外壁设置了上、中、下三段冷却套,相应设立上、中、下三个测温点和三个偏心气动阀,通过阀门开度调节冷却套内的冰水流量以实现对酒体温度的控制。以阀门开度为控制量,酒体温度为被控量,相应有3个冷媒阀门,通过控制流过冷却带的冷媒流量,控制发酵罐的温度。在发酵的过程中,温度在不断的升高,当达到上限温度时,要打开制冷设备,通过酒精在冷却管内循环使罐内的温度降下来。当发酵温度低于工艺要求的温度时,关闭冷媒,则啤酒按工艺要求继续发酵,整个发酵过程大约20多天完成。因此,控制好啤酒发酵过程中温度及其升降速率是决定啤酒质量和生产效率的关键。 2 啤酒发酵温度曲线 啤酒发酵工艺曲线如图1所示,包括自然升温、高温恒温控制、降温及低温恒温控制等三个阶段。在前期的自然升温阶段基本上不需要加以控制,这是由于啤酒罐发酵过程中,升温是靠发酵本身产生的热量进行的,任其自然升温;在恒温阶段,通过控制冷媒开关阀,保持发酵罐内温度恒定;在降温阶段,通过控制冷媒开关阀,以指定速率降温。

关于发酵罐的控制系统

关于发酵罐的控制系统 一参数控制 1温度控制 a 信号输入为4-20mA电流,对应输出为0-150℃温度 b 输出温度需通过校对调整,可编在程序内,也可以做个人机界面,使用人调整(a+bx) c 工作温度设定,通过人机界面由使用人输入 d 控制温度设定,分上限和下限,可采用工作温度加偏差温度(如0.5℃、1℃等)由使用人设定,也可以采用直接的温度值由使用人设定,也可以以0.5℃的偏差直接写入程序 e 控制方式:低于下限温度自动启动加热,高于上限温度自动启动冷却;加热和冷却过程需分别由使用人通过人机界面设定参数,参数为:加热时间(热水阀开启的时间,范围0-5分钟)和加热间隔时间(可设置为两次加热的间隔时间,也可以设置为热水阀关闭的时间,可以0-10分钟,由于加热过程中,热水进入发酵罐夹套后,发酵罐的温度上升要滞后一段时间,所以,关闭热水阀后要等一段时间,避免频繁启动而温度波动过大;同理,冷却过程也需要设置“冷却时间”和“冷却间隔时间” 2 酸碱度(pH)控制 a 信号输入为4-20mA电流,对应输出为0-14的pH值 b 输出pH需通过校对调整,需通过人机界面,使用人调整(a+bx) c pH值设定,通过人机界面由使用人输入 d 控制pH值设定,分上限和下限,可采用工作pH值加偏差pH值(如0.1、0.2等)由使用人设定,也可以采用直接的pH值由使用人设定, e 控制方式:低于下限pH值自动启动加碱,高于上限温度自动启动加酸;加碱和加酸过程需分别由使用人通过人机界面设定参数,参数为:加碱时间(加碱蠕动泵开启的时间,范围0-5分钟)和加碱间隔时间(可设置为两次加碱的间隔时间,也可以设置为加碱蠕动泵关闭的时间,可以0-10分钟,由于加碱过程中,氨水进入发酵罐后,发酵罐的pH值上升要滞后一段时间,所以,关闭加碱蠕动泵后要等一段时间,避免频繁启动而pH值波动过大;同理,加酸过程也需要设置“加酸时间”和“加酸间隔时间” 3 溶氧值(Do)控制 a 信号输入为4-20mA电流,对应输出为0-100的Do值 b 输出Do需通过校对调整,需通过人机界面,使用人调整(a+bx) c Do值设定,通过人机界面由使用人输入 d 控制Do值设定,分上限和下限,可以采用直接的Do值由使用人设定, e 搅拌电机的转速可设定为手动和自动,手动时由使用人通过人机界面直接输入,自动时则需要设定一个初始值和最低值,然后与溶氧(Do)相关联 f 控制方式:低于下限Do值自动启动搅拌电机加速,高于上限Do值自动启动搅拌电机减速;加速和减速过程需分别由使用人通过人机界面设定参数,参数

小型温度控制系统

电子工程设计报告 题目:温度测量系统/闭环温度控制系统设计 专业:电子科学与技术 小组:第8小组 姓名学号:王丹阳11023224 覃业泰 11023226 李赉龙 11023228 指导教师:高新 完成日期:2013.12.15

中文摘要 本电子工程设计的任务是完成一套小型的温度测量与控制系统。这个系统需要完成非电量到电量信号转换、信号处理、数据采集、数据处理、人机交互、数据通信、控制等设计工作,几乎覆盖一般电子系统的所有设计环节。其中包含有三个阶段。本报告为第二阶段内容,在第一阶段电源模块、变送器模块,驱动器模块的基础上,又包含: 单片机模块的设计与实现; 数模转换模块的设计与实现; 模数转换模块的设计与实现; 键盘显示模块的设计与实现。 在上述七个模块的基础上,通过软件设计完成环境温度的显示与闭环温度控制两大功能。并通过键盘很方便的进行两大功能的自由切换和目标控制温度的设定。 本报告针对以上模块分别详细给出了设计要求、方案设计、电路设计、原理分析、电路调试、电路故障等方面的内容,以完整反映实验过程。 【关键词】单片机;温度;闭环控制

目录 中文摘要 (1) 1 课题背景 (4) 1.1 课题背景 (4) 1.2 设计概述 (4) 2 简单电路的模块化设计与实现 (5) 2.1 单片机应用电路设计与实现 (5) 2.1.1基本要求 (5) 2.1.2设计方案 (6) 2.1.3单片机系统的调试 (8) 2.1.4调试中遇到的问题 (9) 2.2模/数转换电路设计与实现 (9) 2.2.1实验要求 (9) 2.2.2设计方案 (10) 2.2.3电路主要参数计算 (11) 2.2.4 模数转换电路模块的调试 (12) 2.3显示与键盘控制电路设计与实现 (13) 2.3.1基本要求 (14) 2.3.2设计方案 (14) 2.3.3显示模块模块的调试 (15) 2.3.4键盘模块的调试 (17) 2.4数/模(D/A)转换电路设计与实现 (18) 2.4.1基本要求 (18)

啤酒发酵论文

啤酒发酵过程的研究 专业班级: 作者: 学号: 指导老师:

啤酒是人类最古老的酒精饮料,是水和茶之后世界上消耗量排名第三的饮 料。啤酒于二十世纪初传入中国,属外来酒种。啤酒以大麦芽﹑酒花﹑水为主 要原料﹐经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒。 啤酒一般典型特征表现在多方面。在色泽方面﹐大致分为淡色﹑浓色和 黑色3种﹐不管色泽深浅﹐均应清亮﹑透明无浑浊现象﹔注入杯中时形成泡 显﹐且酒体爽而不淡﹐柔和适口﹐而浓色啤酒苦味较轻﹐具有浓郁的麦芽香 味﹐酒体较醇厚﹔含有饱和溶解的CO2﹐有利于啤酒的起泡性﹐饮用後有一 种舒适的刺激感觉﹔应长时间保持其光洁的透明度﹐在规定的保存期内﹐不 应有明显的悬浮物。 啤酒发酵过程是指啤酒酵母在一定条件下,利用麦汁中的可发酵性物质而 进行的正常生命活动,而啤酒就是啤酒酵母在生命活动之中所产生的产物。由 于酵母菌类型的不同,发酵的条件和产品要求、风味等的不同,造成发酵方式 也不相同。 1、啤酒发酵的过程方法和注意事项 1.1 酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培 的目的是及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产 的进行和获得良好的啤酒质量。一般把酵母扩大培养过程分为二个阶段:实验 室扩大培养阶段(由斜面试管逐步扩大到卡氏罐菌种)和生产现场扩大培养阶 段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。扩培过程中要求严格无 菌操作,避免污染杂菌,接种量要适当。 1.2 啤酒酵母扩大培养的方法 1.2.1实验室扩大培养阶段 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3 天 8~9℃,7~8天 --→0代酵母 1.2.2酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保

发酵罐温度控制系统讲解

题目:发酵罐温度控制系统设计

课程设计(论文)任务及评语院(系):教研室:Array 注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算

摘要 本题要设计的是温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制;PID控制器;V/I转换;比较机构

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1 概述 (2) 2.2 系统组成总体结构 (2) 2.3 传感器选择 (2) 第3章电路设计 (4) 3.1 传感器电路 (4) 3.2 比较机构电路 (7) 3.3 PID调节器并联实现电路 (7) 3.4 V/I转换电路 (8) 3.5 直流稳压电源电路 (9) 第4章仿真与分析 (10) 4.1 传感器电路仿真 (10) 4.2 PID控制器电路 (11) 4.3 V/I转换电路 (12) 第5章课程设计总结 (14) 参考文献 (15) 附录Ⅰ (16) 附录Ⅱ (18) 附录Ⅲ (20)

第1章绪论 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。 本次课设要求设计发酵罐的温度控制系统。发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。 并且现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子等。而发酵过程是酵母在一定的条件下,利用可发酵性物质而进行的正常生命活动。 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 在发酵罐温度控制系统中应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器是工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其他技术也难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。采用PID算法进行温度控制,它具有控制精度高,能够克服容量滞后的特点,特别适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。 本次课设要求自行设计模拟式PID控制器,通过与前面传感器测定的发酵罐温度产生的电压信号进行比较,转换为输出时的4~20mA电流信号来对冷水阀门开度进行控制,采用冷水法对发酵罐进行降温,以达到对发酵罐温度进行控制的目的。参数要求测定范围是30℃~50℃,测量精度为±0.5℃,以此作为对温度传感器的选择依据。

啤酒发酵操作程序和注意事项

啤酒发酵操作程序和注意事项 1.酵母扩大培养的目的 啤酒酵母扩大培养是指从斜面种子到生产所用的种子的培养过程。酵母扩培的目的是 及时向生产中提供足够量的优良、强壮的酵母菌种,以保证正常生产的进行和获得良好的啤 酒质量。一般把酵母扩大培养过程分为二个阶段:实验室扩大培养阶段(由斜面试管逐步扩 大到卡氏罐菌种)和生产现场扩大培养阶段(由卡氏罐逐步扩大到酵母繁殖罐中的零代酵母)。 扩培过程中要求严格无菌操作,避免污染杂菌,接种量要适当。 2.啤酒酵母扩大培养的方法 ⑴实验室扩大培养阶段(示例) 斜面原菌种 --→斜面活化 --→ 10ml液体试管 --→ 100ml培养 瓶 --→ 1L培养瓶 25℃,3~4天25℃,24~36h 25℃, 24h 20℃,24~36h --→ 5L培养瓶 --→ 25L卡氏罐 16~18℃,24~36h 14~16℃,36~48h ⑵生产现场扩大培养阶段 25L卡氏罐→ 250L汉生罐→ 1500L培养罐→ 100hL培养 罐→ 20m3繁殖罐 12~14℃,2~3天 10~12℃,3天 9~11℃,3天 8~ 9℃,7~8天 --→0代酵母 (2)酵母扩培要求: 酵母扩培是基础,只有培养出来高质量的酵母,才能生产出好的啤酒。扩培必须保证两点: ①原菌种的性状要优良; ②扩培出来的酵母要强壮无污染。扩培在实验室阶段,由于采用无菌操作,只要能遵守操作技术和工艺规定,很少出现杂菌污染现象。进入车间后,如卫生条件控制不好,往往会出现染菌现象,所以扩培人员首先无菌意识要强,凡是接种、麦汁追加过程所要经过的管路、阀门必须用热水或蒸汽彻底灭菌,室内的空气、地面、墙壁也要定期消毒或杀菌,通风供氧用的压缩空气也必须经过0.2μm的膜过滤之后才能使用。同时充氧量要适量,充氧不足酵母生长缓慢,充氧过度会造成酵母细胞呼吸酶活性太强,酵母繁殖量过大对后期的发酵不利的。一般扩培酵母在进入培养罐前每天要通氧三次,每次20分钟。发酵后的培养,要求麦汁中溶解氧9mg/L左右。最后,每一批扩培的同时还应对酵母的发酵度、发酵力、双乙酰峰值、死灭温度等指标进行检测,以便及时、正确掌握酵母在使用过程中的各种性状是否有新的变化。 (3)酵母的添加:酵母添加前麦汁的冷却温度非常重要。各批麦汁冷却温度要求必须呈阶梯式升高,满罐温度控制在7.5℃~7.8℃之间,严禁有先高后低现象,否则将会对酵母活力和以后的双乙酰还原产生不利的影响。同时要准确控制酵母添加量,如果添加量太小,则酵母增长缓慢,对抑制杂菌不利,一旦染菌,无论从口味还是双乙酰还原都将受到影响。添加量太小会因酵母增值倍数过大而产生较多的高级醇等副产物;添加量过大,酵母易衰老、自溶等,添加量控制在7‰左右。 (4)温度控制:在发酵过程中,温度的控制十分关键。根据菌种特性,采用低温发酵,高温还原。既有利于保持酵母的优良性状,又减少了有害副产物的生成,确保了酒体口味比较纯净、爽口。如果发酵温度过高,虽然可缩短发酵周期,加速双乙酰还原,但过高的发酵温度会使啤酒口味比较淡泊,

发酵罐温度控制系统的设计

洛阳理工学院 计算机控制技术与应用课程设计 题目:发酵培养基温度控制系统设计 学生姓名: 学号: 班级: 专业:

摘要 本题要设计的是发酵培养基温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制,PID控制器,V/I转换,比较机构

目录 前言........................................................................................ 错误!未定义书签。 1.1.1 发酵培养基简介 3 1.1.2工艺背景:................................................................ 错误!未定义书签。 1.2温度对发酵的影响...................................................... 错误!未定义书签。 1.2.1温度影响微生物细胞生长................................. 错误!未定义书签。 1.2.2温度影响产物的生成量..................................... 错误!未定义书签。 1.2.3温度影响生物合成的方向................................. 错误!未定义书签。 1.2.4温度影响发酵液的物理性质............................. 错误!未定义书签。 1.3、影响发酵温度变化的因素:..................................... 错误!未定义书签。 1.4发酵热的测定................................................................ 错误!未定义书签。 1.5最适温度的选择与发酵温度的控制............................ 错误!未定义书签。 1.5.1温度的选择....................................................................................... VII 2 培养基温度控制系统的设计.................................................. 错误!未定义书签。 2.1总体设计方案.............................................................................................. VII 2.1.1 系统总框图...................................................................................... VII 2.2硬件设计................................................................................................... V III 2.2.1温度采集电路.................................................................................. V III 2.2.2 PLC与计算机的通信......................................................................... I X 2.3软件部分......................................................................................................... X 3总结........................................................................................................................ X III 参考文献:............................................................................................................... X III

啤酒发酵机制及工艺控制

啤酒发酵机制及工艺控制 【本课程教学目标】 1、通过本节内容的学习,明白啤酒发酵的原理及如何控制发酵中的各种条件。 2、引导学生了解啤酒发酵的流程,感悟如何保证啤酒质量、提高啤酒产量。 3、让学生明白啤酒等食品的来之不易,学会珍惜一粥一饭。【本课程教学难点】 1、啤酒发酵过程中温度、时间、罐压等工艺条件的控制 2、啤酒发酵的操作步骤 【本课程教学重点】 1、啤酒发酵机制 2、啤酒发酵工艺条件控制 【本课程教学方法】 阅读、提问、讨论、总结分析 【本课程课时安排】2课时 【本课程教学过程】 一、导入 通过前面内容的学习,我们学习了酿造啤酒的原料及对原料的处理,还了解了酿造啤酒酵母的特性。今天,咱们一起学习一个很有意思的内容———如何酿造啤酒。

二、正课 1、啤酒发酵代谢主产物的形成 ①、提问:啤酒的主要成分是什么呢? 讨论并归纳:酒精也叫乙醇 ②、提问:在课本中找出啤酒酵母是如何利用冷却的麦芽汁发酵生产啤酒的? 讨论并归纳:麦芽汁的主要成分为C6H12O6 啤酒酵母利用C6H12O6在有氧条件下获得生命活动所需的能量,在无氧条件下生成啤酒主要成分C2H5OH。 反应式如下:有氧下C6H12O6+O2+ADP+Pi→H2O+CO2+ATP 无氧下C6H12O6+H2O→C2H5OH+CO2 2、啤酒发酵代谢副产物的形成 提问:找出啤酒发酵过程中产生的副产物及其对啤酒品质的影响 讨论并归纳: 代谢副产物含量过高对啤酒品质影响 双乙醇出现馊饭味 高级醇使啤酒有“后苦味”,出现“上头”现象 酯类使啤酒有不愉快的香味 醛类使啤酒有强烈的刺激性和辛辣感及腐败性气味含硫化合物对啤酒风味影响很大 总结:代谢副产物对啤酒品质有不良的影响,所以发酵过程中要严格控制代谢副产物的生产量。

发酵温度控制系统的数学模型及仿真

2 发酵罐温度控制系统的数学模型 发酵罐温度控制系统实验平台是以一个7L 发酵罐为主体,罐壁设置有冷却套,相应的设立测温点和调节阀,通过阀门调节冷却套内冷却液的流量来实现对发酵罐内温度的控制,发酵罐示意图如图1所示。 图1 发酵罐示意图 在白酒发酵的过程中,发酵罐内由于酵母的作用,在发酵过程中会产生生化反应热,热量的逐渐释放导致发酵温度逐渐上升。在整个发酵过程中,发酵温度必须根据具体的生产工艺进行严格控制,罐内温度通过控制冷却夹套内的冷却水的流量进行降温,整套系统没有外部加热措施。罐内发酵反应热有一部分使罐内温度升高,一部分热量散失到罐壁和冷媒中,在此不考虑发酵体与罐壁之间的热量传递,罐内的热平衡方程为: ? =-Tdt mC Q Q 21 (2-1) 式中 1Q :发酵过程产生的热量;2Q :发酵过程散失的热量;m :反应物质量 C :发酵罐内反应物的比热容;T 发酵罐温度。 公式1-1可以写成: ? =?Tdt MC Q (2-2) 式中 21Q Q Q -=? 对公式1-2求拉普拉斯变换得: s m C T Q S S )()(=? (2-3) 即可由罐内的热平衡方程式可以得到发酵罐内的传递函数为: m C s Q T G S S S 1 ) ()()(= ?= (2-4) 考虑到在实际的过程中的干扰因素,所以被控对象的数学模型中添加一个滞后环节。因此,用一阶惯性加纯滞后环节来表示,其传递函数为 mCs e Q T G s S S S τ-= ?= ) ()()( (2-5)

3 模糊预测控制器的设计及仿真结果 针对发酵罐中发酵对象大时滞、大时变、严格的非线性、多变量耦合等特点。采用了将模糊控制与预测控制结合的方法,利用模糊建模方法建立对象预测模型。将设定值与预测输入值之间的预测误差值及预测误差值的变化率作为模糊控制器的输入,模糊控制器再根据模糊规则来推理得到控制量,通过执行机构控制被控对象。其结构图如图2所示。 图2模糊控制系统结构图 3.1预测控制部分 预测控制算法与动态矩阵控制算法类似, 主要通过预测模型,利用系统的输入输出数据预测未来时刻系统输出,作为糊控制器的输入。 3.1.1预测模型 假设被控对象基于阶跃响应的预测模型向量为T N a a a a ],...,,[21=,N 为建模时域。则在k 时刻对系统施加一个控制增量Δu(k)时,即可算出在其作用下未来时刻N 个输出值的向量形式: )()()(k u a k y k y po m ??+= (3-1) 式中)(k y po 为k 时刻未加Δu(k)时的初始预测值,)(k y m 为k 时刻在Δu(k)作用下的模型预测值。 3.1.2在线校正 当k 时刻对系统施加控制u(k)时,利用预测模型即可得出未来时刻的输出预测值 )(k y m 。但是,由于实际存在的模型时变、非线性、环境干扰等因素的影响,预测值会偏离 实际值,故在k+l 时刻要利用系统的实际输出y (k+1)进行在线校正: )]|1()1([)()(k k y k y h k y k y m m p +-++= (3-2) 式中h 为N 维误差校正向量,这里取0.11=h ,9.0=i h ,i=2,3...,N 。)(k y p 为校正后的预测值,经过移位后即可作为k+1时刻的初始预测值,用向量形式可表示为: )()1(k y S k y p po ?=+ (3-3) 式中S 为位移阵。

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

啤酒发酵

1发酵过程中麦汁的变化 pH值的下降(ph下降,一般在酵母对数生长期,前快后慢麦汁的pH值一般在5.2-5.6,发酵液的pH值一般在4.2-4.4),含氮物的减少,氧化还原势RH的下降,啤酒色泽变浅,苦味物质和多酚物质的析出,酵母的凝聚(发酵代谢产物使啤酒pH值下降,接近酵母蛋白质的等电点,使酵母带电也趋于零,不能使酵母相互排斥分开,从而产生凝聚。),啤酒清亮度的增加(浊度下降),啤酒中的CO2溶解,草酸钙的形成(草酸是糖代谢的中间产物,与Ca2+结合后形成草酸钙)。2pH值下降的影响 蛋白质和多酚物质的析出,苦味物质的析出,色度,后熟速度加快,啤酒泡沫特性,啤酒口味细腻,生物稳定性提高,有利于酵母凝聚 3pH值下降的原因 挥发性及不挥发性有机酸的形成,CO2的形成,一级磷酸盐被酵母消耗,释放出H离子,NH2离子被酵母吸收,钾离子被酵母吸收,并释放出H离子 4影响pH值下降的因素 麦汁的性质,酵母的种类,酵母添加量和通风强度,发酵状况,微生物状况酵母自溶。 5含氮物减少的原因 酵母吸收麦汁中的可同化氮,高分子蛋白质物质的沉降析出,吸附于酵母细胞表面,被CO2带于泡盖中 6RH值:麦汁、发酵液、啤酒中许多的氧化性和还原性物质相互作用,达到平衡时,反映在电极电位上的数值称rH值。rH是表示溶液的氧化还原电势 rH值大,氧化性强,还原性弱;rH值小,还原性强,氧化性弱 麦汁的rH值为20-26麦汁通氧后,氧含量较多,rH值较高,发酵液的rH值为8-10(随着酵母的繁殖,氧很快被酵母消耗,因而rH值逐渐降低,RH值大小,影响酵母的生理活动,能改变酵母的发酵产物。对啤酒质量的影响,rH值越小,啤酒质量越好,啤酒色泽越浅、氧化感越小。 7色泽变浅(一般浅色啤酒下降:1.5-2.5EBC) 原因:随着发酵温度、pH值的变化,麦汁中色素物质析出进入泡盖。通过酵母细胞壁的吸附作用,色素物质被沉淀物吸附后一起沉降 8苦味物质和多酚物质析出的原因(发酵后约1/3的苦味物质损失,多酚物质约减少25%,对啤酒苦味的纯正性和非生物稳定性有利。) pH值的下降,CO2带入泡盖,酵母吸附 9影响啤酒澄清的因素 混浊物的特性和数量,澄清时的酒液温度,酒液的运动情况,啤酒的pH值 后酵贮酒设备的形状和酒液高度,澄清时间,酒液的粘度 传统发酵方式的发酵技术 10主发酵操作(主要的发酵过程,70%的糖在此阶段发酵) 酵母添加,酵母的繁殖和倒池,发酵过程,下酒,酵母的回收,清洗和杀菌 11酵母添加:酵母添加的原则:确保(在添加温度5-6℃时)添加酵母12-16小时后起发酵开始。 酵母添加量:酵母泥:0.5升浓酵母泥/hl 12°P麦汁;酵母数:12-15×106个/ml麦汁 决定酵母添加量的因素:酵母的生理状态,酵母泥的稠度,麦汁浓度,麦汁中FAN 量,发酵时间,添加温度,麦汁溶氧量

过程控制课程设计——啤酒发酵罐温度控制系统

内蒙古科技大学信息工程学院过程控制课程设计报告 题目:啤酒发酵罐的温度控制系统设计 学生姓名:赵晓红 学号:0967112235 专业:测控技术及仪器 班级:09测控2班 指导教师:左鸿飞

前言 啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。 啤酒的发酵过程是一个微生物代谢过程。它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。在发酵期间,工艺上主要控制的变量是温度、糖度和时间。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。 在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

发酵罐的设计

目录 第一章啤酒发酵罐结构与动力学特征 (3) 一、概述 (3) 二、啤酒发酵罐的特点 (3) 三、露天圆锥发酵罐的结构 (4) 3.1罐体部分 (4) 3.2温度控制部分 (5) 3.3操作附件部分 (5) 3.4仪器与仪表部分 (5) 四、发酵罐发酵的动力学特征 (6) 第二章发酵罐的化工设计计算 (7) 一、发酵罐的容积确定 (7) 二、基础参数选择 (7) 三、D、H的确定 (7) 四、发酵罐的强度计算 (9) 4.1 罐体为内压容器的壁厚计算 (9) 五、锥体为外压容器的壁厚计算 (11) 六、锥形罐的强度校核 (13) 6.1内压校核 (13) 6.2外压实验 (14) 6.3刚度校核 (14)

第三章发酵罐热工设计计算 (14) 一、计算依据 (14) 二、总发酵热计算 (15) 第四章发酵罐附件的设计及选型 (19) 一、人孔 (19) 二、接管 (19) 三、支座 (20) 第五章发酵罐的技术特性和规范 (21) 一、技术特性 (21) 二、发酵罐规范表 (22) 参考文献 (24)

发酵罐设计实例 第一章啤酒发酵罐结构与动力学特征 一、概述 啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

炼油厂常压塔温度控制系统的设计 过程控制系统与装置 课程设计(论文)

过程控制系统与装置课程设计(论文)题目:炼油厂常压塔温度控制系统的设计

课程设计(论文)任务及评语 院(系):电气工程学院教研室:测控技术与仪器

目录 第1章炼油厂常压塔温度控制系统设计的方案 (1) 1.1 概述 (1) 1.2过程控制系统方案设计的基本要求 (1) 1.3常压塔温度控制系统的总体设计 (2) 第2章炼油厂常压塔温度控制系统设计内容 (3) 2.1精馏塔控制系统的组成与结构 (3) 2.2主要内容与设计步骤 (5) 2.2.1 被控参数的选择 (5) 2.2.2温度变送器的选择 (6) 2.2.3温度调节器的选择 (6) 2.2.4执行器的选择 (7) 2.3一线温度控制系统设计 (7) 2.3.1一线温度控制的主要内容与仪器选择 (9) 第3章课程设计总结 (11) 参考文献 (12)

第1章炼油厂常压塔温度控制系统设计的方案 1.1 概述 过程控制的对象复杂多样,控制方案和系统结构种类较多。除了简单控制系统以外,还有复杂的控制系统,即串级控制系统、前馈控制系统、大滞后过程控制系统、比值控制系统、均匀控制系统、分程控制系统、阀位控制系统、选择性控制系统、接耦控制系统,还有计算机控制系统。 1.2过程控制系统方案设计的基本要求 1.技术要求: 测量范围:0-100℃ 常压塔控制温度:70±0.5℃,最大偏差:1℃ 一线控制温度:60±0.5℃,最大偏差:1.3℃ 2.说明书要求: 确定控制方案并绘制原理结构图、方框图; 选择传感器、变送器、控制器、执行器,给出具体型号; 确定控制器的控制规律以及控制器正反作用方式; 生产过程对过程控制系统的要求是多种多样的,可简要归纳为安全性、稳定性和经济性三个方面。 安全性是指在整个生产过程中,过程控制系统能够确保人员与设备的安全(并兼顾环境卫生、生态平衡等社会安全性要求),是对过程控制系统最重要、最基本的要求。通常采用参数越限报警、事故报警、联锁保护等措施加以保证。 稳定性是过程控制系统保证生产过程正常工作的必要条件。稳定性是指在存在一定扰动的情况下,过程控制系统将工艺参数控制在规定的范围内,维持设备和系统长期稳定运行,使生产过程平稳、持续地进行,同时要求系统具有良好的动态响应特性。 经济性是指过程控制系统在提高产品质量、产量的同时,节省原材料,降低能源消耗,提高经济效益与社会效益。采用有效的控制手段对生产过程进行优化控制是满足工

基于PLC的啤酒发酵自动控制系统设计

辽宁工业大学PLC技术及应用课程设计(论文)题目:啤酒发酵过程中温度的PLC控制 院(系):电气工程学院 专业班级: 学号: 学生姓名: 指导教师:(签字) 起止时间:2013.12.9-2013.12.18

辽宁工业大学课程设计说明书(论文) 课程设计(论文)报告的内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数。 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) ②章标题(四号字、黑体、居左) ③节标题(小四号字、宋体) ④页码(小四号字、宋体、居右) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级标题,黑体小三、居左;三级标题,黑体四号;正文文字,小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中。 ②示例:(五号宋体) 期刊类:[序号]作者1,作者2,……作者n.文章名.期刊名(版本).出版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.出版地:出版社,出版年:页次.

相关文档
相关文档 最新文档