文档库 最新最全的文档下载
当前位置:文档库 › 聚酰亚胺膜的应用研究进展

聚酰亚胺膜的应用研究进展

聚酰亚胺膜的应用研究进展
聚酰亚胺膜的应用研究进展

聚酰亚胺的研究概况.doc

高分子材料学(论文)题目:聚酰亚胺的研究概况 化工学院高分子材料科学与工程专业 学号 班级材料1102 学生姓名 指导教师 二〇一四年五月

聚酰亚胺的研究概况 摘要:聚酰亚胺(PI)作为一种综合性能优异的材料,已被广泛的应用。本文首先对聚酰亚胺的发展历程,国内目前聚酰亚胺的发展状况做了简单介绍。其次介绍了聚酰亚胺目前比较重要的几种合成方法,着重介绍了聚酰亚胺的性能以及针对其优良的性能聚酰亚胺目前的应用领域。最后,针对聚酰亚胺存在的缺点,根据国内外一些研究状况,列举了目前比较重要几种改性方向。通过本文的介绍,可以对聚酰亚胺有一个系统的认识。 关键词:发展历程;合成;性能;应用;改性 Abstract: As a comprehensive performance excellent material, polyimide (PI) has been widely used. Firstly, the paper makes a brief introduction about the development process of polyimide, and the current domestic development condition. Secondly, it introduces several more important synthetic methods about the polyimide, and then introduces the properties of the polyimide and its e current applications. Finally, according to its shortcomings and some research at home and abroad, the paper cites several relatively important direction of the current modification. Through the introduction of this article, you can have a good systematic understanding of polyimide. Key Words:development process;synthetic; properties; applications; modification 引言 随着航空航天,电子信息工业,汽车工业与家用电器等工业的蓬勃发展,对材料的要求越来越高。因此材料的研究不断朝着高性能化,多功能化,轻量化和低成本化等方面发展。[1] 聚酰亚胺(PI)就是综合性非常优异的材料。聚酰亚胺是一类以酰亚胺环为特征结构的聚合物。其中以苯环直接与酰亚胺环相连的聚合物最为重要。其分子的通式如下: O O O 聚酰亚胺具有高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,被广泛应用于电机电器、电子微电子工业、航空航天工业、汽车工业、机械化工、分离膜、胶黏剂等领域。目前,聚酰亚胺是在已经工业化的工程塑料中耐热性能最好的品种之一。[2-6]

聚酰亚胺

展开 1 名 词 定 义 2 介 绍 3 概 述 4 分 类

. 1 缩聚型聚酰亚胺 4 . 2 加聚型聚酰亚胺 4 . 3 子类 5 性能 6 质量指标

合 成 途 径 8 应 用 9 展 望 1名词定义 中文名称: 聚酰亚胺 英文名称: polyimide,PI 定义: 重复单元以酰亚胺基为结构特征基团的一类聚合物。具有耐高温、耐腐蚀和优良的电性能。 应用学科: 材料科学技术(一级学科);高分子材料(二级学科);塑料(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 2介绍 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃, 无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007,属F至H级绝缘材料。

英文名:Polyimide 简称:PI 聚酰亚胺 聚酰亚胺是指主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手"(protion solver),并认为"没有聚酰亚胺就不会有今天的微电子技术"。 4分类 4.1缩聚型聚酰亚胺 缩聚型芳香族聚酰亚胺是由芳香族二元胺和芳香族二酐、芳香族四羧酸或芳香族四羧酸二烷酯反应而制得的。由于缩聚型聚酰亚胺的合成反应是在诸如二甲基甲酰胺、N-甲基吡咯烷酮等高沸点质子惰性的溶剂中进行的,而聚酰亚胺复合材料通常是采用预浸料成型工艺,这些高沸点质子惰性的溶剂在预浸料制备过聚酰亚胺 程中很难挥发干净,同时在聚酰胺酸环化(亚胺化)期间亦有挥发物放出,这就容易在复合材料制品中产生孔隙,难以得到高质量、没有孔隙的复合材料。因此缩聚型聚酰亚胺已较少用作复合材料的基体树脂,主要用来制造聚酰亚胺薄膜和涂料。 4.2加聚型聚酰亚胺 由于缩聚型聚酰亚胺具有如上所述的缺点,为克服这些缺点,相继开发出了加聚型聚酰亚胺。目前获得广泛应用的主要有聚双马来酰亚胺和降冰片烯基封端聚酰亚胺。通常这些树脂都是端部带有不饱和基团的低相对分子质量聚酰亚胺,应用时再通过不饱和端基进行聚合。 ①聚双马来酰亚胺 聚双马来酰亚胺是由顺丁烯二酸酐和芳香族二胺缩聚而成的。它与聚酰亚胺相比,性能不差上下,但合成工艺简单,后加工容易,成本低,可以方便地制成各种复合材料制品。但固化物较脆。 ②降冰片烯基封端聚酰亚胺树脂 其中最重要的是由NASA Lewis研究中心发展的一类PMR(for insitu polymerization of monomer reactants, 单体反应物就地聚合)型聚酰亚胺树脂。RMR型聚酰亚胺树脂是将芳香族四羧酸的二烷基酯、芳香族二元胺和5 -降冰片烯-2,3-二羧酸的单烷基酯等单体溶解在一种尝基醇(例如甲醇或乙醇)中,为种溶液可直接用于浸渍纤维。 4.3子类 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型P I,可溶性PI,聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

中国聚酰亚胺薄膜

2012-2017年中国聚酰亚胺(PI)薄膜行业发展前景分析及投资价【报告目录】 第一章聚酰亚胺(PI)薄膜产业相关概述 第一节聚酰亚胺(PI)薄膜基础概述 一、聚酰亚胺(PI)薄膜发展历程 二、聚酰亚胺(PI)薄膜特性 第二节聚酰亚胺(PI)薄膜分类 一、苯型聚酰亚胺薄膜 二、联苯型聚酰亚胺薄膜 第三节聚酰亚胺(PI)薄膜应用 第二章2012年世界聚酰亚胺(PI)薄膜市场分析 第一节2012年世界聚酰亚胺(PI)薄膜运行环境浅析 第二节2012年世界聚酰亚胺(PI)薄膜市场分析 一、世界聚酰亚胺(PI)薄膜的生产情况 二、世界聚酰亚胺(PI)薄膜生产工艺与合成工艺研究 三、世界聚酰亚胺(PI)薄膜应用分析 第三节2012年世界聚酰亚胺(PI)薄膜重点市场分析 一、美国 二、日本 三、其它 第四节2012-2017年世界聚酰亚胺(PI)薄膜市场前景预测 第三章2012年全球重点聚酰亚胺薄膜企业分析 第一节DuPont公司 第二节东丽.杜邦公司 第三节钟渊化学工业公司 一、企业概况 二、日本钟渊斥资增产聚酯亚胺薄膜 第四节宇部兴产公司 一、宇部兴产调整己内酰胺生产布局 二、宇部兴产实现尼龙6生产与己内酰胺生产紧密配套 三、宇部兴产:贸易往来继续扩大投资全面展开 第五节韩国SKC公司 第六节中国台湾达迈科技公司 第四章2012年中国聚酰亚胺薄膜行业市场发展环境解析 第一节国内宏观经济环境分析

一、GDP历史变动轨迹分析 二、固定资产投资历史变动轨迹分析 三、2012年中国宏观经济发展预测分析 第二节2012年中国聚酰亚胺薄膜市场政策环境分析 一、聚酰亚胺薄膜标准 二、相关行业政策 第三节2012年中国聚酰亚胺薄膜市场社会环境分析 第五章2010国聚酰亚胺薄膜应用研究 第一节聚酰亚胺薄膜工艺流程和主要设备 第二节2012年中国电子产品用聚酰亚胺薄膜的生产工艺 一、流延法制备聚酰亚胺薄膜工艺研究 二、流涎-双向拉伸法 第三节2012年中国聚酰亚胺薄膜前沿工艺研究 一、功能性聚酰亚胺薄膜的研制 二、聚酰亚胺薄膜国内生产工艺及技术进展 三、FPC用聚酰亚胺薄膜基片的技术发展 四、超耐热聚酰亚胺薄膜的加工工艺 第六章2012年中国聚酰亚胺(PI)薄膜行业运行形势解析 第一节2012年中国聚酰亚胺(PI)薄膜行业发展综述 一、中国聚酰亚胺(PI)薄膜产业亮点聚焦 二、中国聚酰亚胺(PI)薄膜产业运行新形态 三、中国聚酰亚胺(PI)薄膜应用分析 第二节2012年中国聚酰亚胺(PI)薄膜行业产品价格分析 一、产品价格回顾 二、影响产品价格的因素分析 三、未来产品价格走势预测分析 第三节2012年中国聚酰亚胺(PI)薄膜行业面临的问题探讨 第七章2012年中国聚酰亚胺(PI)薄膜行业市场发展动态分析第一节2012年中国聚酰亚胺(PI)薄膜行业供给分析 一、聚酰亚胺(PI)薄膜总体供给分析 二、聚酰亚胺(PI)薄膜主要生产地区分析 三、聚酰亚胺(PI)薄膜主要企业分析 第二节2012年中国聚酰亚胺(PI)薄膜行业市场消费分析 一、聚酰亚胺(PI)薄膜消费领域结构分析 二、聚酰亚胺(PI)薄膜消费规模分析 三、聚酰亚胺(PI)薄膜市场供需状况分析 第三节2012年中国聚酰亚胺(PI)薄膜行业市场供需平衡分析

聚酰亚胺薄膜的性质及应用

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/8c10856317.html,)聚酰亚胺薄膜的性质及应用 变宝网11月14日讯 聚酰亚胺薄膜是一种耐高温电机电器绝缘材料,表现为黄色透明,它主要分成均苯型聚酰亚胺薄膜和联苯型聚酰亚胺薄膜两类,有突出的耐高温、耐辐射、耐化学腐蚀和电绝缘性能,可在250~280℃空气中长期使用。 一、聚酰亚胺薄膜的化学性质 聚酰亚胺化学性质稳定。聚酰亚胺不需要加入阻燃剂就可以阻止燃烧。一般的聚酰亚胺都抗化学溶剂如烃类、酯类、醚类、醇类和氟氯烷。它们也抗弱酸但不推荐在较强的碱和无机酸环境中使用。某些聚酰亚胺如CP1和CORIN XLS是可溶于溶剂,这一性质有助于发展他们在喷涂和低温交联上的应用。 二、聚酰亚胺薄膜的物理性质 热固性聚酰亚胺具有优异的热稳定性、耐化学腐蚀性和机械性能,通常为橘黄色。石墨或玻璃纤维增强的聚酰亚胺的抗弯强度可达到345 MPa,抗弯模量达到20GPa.热固性聚酰亚胺蠕变很小,有较高的拉伸强度。聚酰亚胺的使用温度范围覆盖较广,从零下一百余度到两三百度。

三、聚酰亚胺薄膜的应用 聚酰亚胺薄膜是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底版。IKAROS的帆就是使用聚酰亚胺的薄膜制和纤维作的在火力发电部门,聚酰亚胺纤维可以用于热气体的过滤,聚酰亚胺的纱可以从废气中分离出尘埃和特殊的化学物质。 涂料:作为绝缘漆用于电磁线,或作为耐高温涂料使用。 先进复合材料:用于航天、航空器及火箭部件。是最耐高温的结构材料之一。例如美国的超音速客机计划所设计的速度为2.4M,飞行时表面温度为177℃,要求使用寿命为60000h,据报道已确定50%的结构材料为以热塑型聚酰亚胺为基体树脂的碳纤维增强复合材料,每架飞机的用量约为30t。 纤维:弹性模量仅次于碳纤维,作为高温介质及放射性物质的过滤材料和防弹、防火织物。中国长春有生产各种聚酰亚胺产品。 泡沫塑料:用作耐高温隔热材料。 工程塑料:有热固性也有热塑型,热塑型可以模压成型也可以用注射成型或传递模塑。主要用于自润滑、密封、绝缘及结构材料。广成聚酰亚胺材料已开始应用在压缩机旋片、活塞环及特种泵密封等机械部件上。

聚酰亚胺(PI)纤维产品性能基础数据

连云港奥神聚酰亚胺纤维 聚酰亚胺(PI)纤维产品性能基础数据 1纤维基本参数 表1纤维的力学性能 样品 伸长率(%) 强度(cn/dtex ) 线密度(dtex) PI 10-20 3.5- 4.5 1.5-3 注:纤维长度、卷曲程度可按客户需求定制。 2耐酸特性 T e n s i l e (c N /d t e x ) Time (hr) E l o n g a t i o n (%) Time (hr) 上图是几种特种纤维在80℃、0.1mol/L 的HCl 溶液中,其纤维在不同腐蚀时间后的力学性能变化关系。可见,与其它纤维相比,PI 纤维强度稍有下降,但比P84纤维的耐酸稳定性好,主要是因为我们制备的PI 纤维化学结构有所改进所致。此外,纤维在酸性环境下处理后,其延伸率基本稳定。

3 耐热氧化稳定性 T e n s i l e (c N /d t e x ) Time (hr) E l o n g a t i o n (%) Time (hr) 上图是几种特种纤维在300℃空气气氛中处理后,其强度和延伸率随受热处理时间的变化关系。很明显,我们制备的PI 纤维在几种纤维中的表现是最好的,其延伸率的保持率相对也是最好的。注:PPS 纤维在300℃热处理条件下,已经断裂。 4. 高温裂解特性 100 200 300 400 500 600700800900 20 40 60 80 100 M a s s (%) Temperature (o C) PTFE 1313 P84PI 采用TGA 对几种纤维进行热处理实验(如图)发现,我们的PI 纤维产品具有明显的优势,其5%裂解温度为560℃,最大裂解温度630℃。

年产500吨聚酰亚胺薄膜项目方案

年产800吨聚酰亚胺薄膜项目 项目时间:-年投资金额: 所在地区:山东项目进程:拟定筹划 山东欧亚化工有限公司年产800吨聚酰亚胺薄膜项目环境影响报告书 (简本) 1 建设项目概况 1.1项目概况 1.1.1建设项目背景 聚酰亚胺薄膜是目前世界上性能最好的薄膜类绝缘材料,具有优良的力学性能、电性能、化学稳定性能、抗辐射性能、以及耐高温和耐低温性能。基于目前行业的发展现状,山东欧亚化工有限公司拟在山东省沾化县城北工业园创业二路以东、清风一路以北(占地面积69267m2)投资14000万元建设年产500吨聚酰亚胺薄膜项目。该项目以对硝基苯酚钠、对硝基氯化苯、硝基苯、乙酰胺、固体粗均苯四甲酸二酐等为主体原料,经缩聚、流涎、亚胺化生产聚酰亚胺薄膜。 1.1.2建设内容 拟建项目主要建设内容包括职工宿舍、办公楼、仓库、缩合车间、还原车间、锅炉房、消防循环水池、清净下水池、制氢装置、甲醇罐区、升华与选料车间、二酐车间、聚酰亚胺薄膜车间、分切与涂胶车间、及车间配电室等。该项目建成后,将年产聚酰亚胺薄膜500t,详见表1。 表1项目建设内容一览表

表1项目建设内容一览表(续)

表1项目建设内容一览表(续) 1.1.3生产工艺 拟建项目生产工艺流程包括二硝基二苯醚缩合生产工序、甲醇制氢生产工序、二氨基二苯醚生产工序、均苯四甲酸二酐精制工序以及聚酰亚胺薄膜生产工序等。 1.1.4生产规模 拟建项目投产后,将形成年产500吨聚酰亚胺薄膜的生产规模。 1.1.5建设周期 拟建项目建设期为16个月,拟定于2013年12月底投入试运行。 1.1.6程特性表 表2拟建项目工程特性表 1.2选址合理性分析 1.2.1产业政策符合性分析

聚酰亚胺科普材料

聚酰亚胺 一、概述 英文名:Polyimide ;简称:PI 。 聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。聚酰亚胺是目前已经工业化的高分子材料中耐热性最高的品种,具有耐高温、耐低温、机械性能优越、耐有机溶剂、耐辐射、介电性能良好、无毒等诸多特性,可以作为薄膜、涂料、塑料、复合材料、胶粘剂、泡沫塑料、纤维、分离膜、液晶取向剂、光刻胶等产品,被称为“解决问题的能手”,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。在国家《新材料产业“十二五”发展规划》中,聚酰亚胺被列为重点发展的先进高分子材料。 一、性能 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达600℃,是迄今聚合物中热稳定性最高的品种之一。 2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。

4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。 5、聚酰亚胺的热膨胀系数在2×10-5-3×10-5/℃,南京岳子化工YZPI热塑性聚酰亚胺3×10-5/℃,联苯型可达10-6/℃,个别品种可达10-7/℃。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。 7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω·cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 二、合成工艺 聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,主要包

聚酰亚胺薄膜的改性、分类与在电子行业中的应用

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用 摘要 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。 首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。 聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。

关键词:聚酰亚胺;薄膜;低介电常数;电子工业 1.引言 聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随

聚酰亚胺基础内容相关情况介绍大全

聚酰亚胺相关基础内容介绍大全 一、概述 聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。PI是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200℃~300℃,无明显熔点,具有高绝缘性能。另外,PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手并认为"没有聚酰亚胺就不会有今天的微电子技术"。 二、聚酰亚胺结构式 正象主链含酰胺结构的聚合物被称为聚酰胺,主链含亚胺结构的聚合物统称为聚酰亚胺。其中亚胺骨架在主链结构上的聚合物,也就是直链型聚酰亚胺不仅合成困难也无实用性。相反具有环状结构的聚酰亚胺,特别是五员环状聚酰亚胺已知的品种很多,实用性很强。因此,一般所说的聚酰亚胺都是指后面这种环状聚酰亚胺。环状聚酰亚胺与聚苯并咪唑等同是含氮的杂环聚合物的一种。

聚酰亚胺进一步还可分为由芳香族四羧酸和二胺为原料通过缩聚反应得到的缩聚型聚酰亚胺和双马酰亚胺经加聚反应(或缩加聚)得到的加聚型聚酰亚胺。其中前面的缩聚型聚酰亚胺是大家最熟悉也是应用最广的,一般所称的聚酰亚胺都是指这种缩聚型聚酰亚胺。具有代表性的聚酰亚胺就是由美国杜邦公司1960年开发成功,1965年商品化的二苯醚型聚酰亚胺。

聚酰亚胺薄膜及挠性覆铜膜(FCCL)等新材料项目环境分析评估报告书

聚酰亚胺薄膜及挠性覆铜膜(FCCL)等新材料项目环境影响报告书 (简本)

(一)建设项目概况 1.建设项目的地点及相关背景; 2.建设项目主要建设内容、生产工艺、生产规模、建设周期和投资(包括环保投资),并附工程特性表; 3.建设项目选址选线方案比选,与法律法规、政策、规划和规划环评的相符性。 (二)建设项目周围环境现状 1.建设项目所在地的环境现状; 2.建设项目环境影响评价范围。 (三)建设项目环境影响预测及拟采取的主要措施与效果 1.建设项目的主要污染物类型、排放浓度、排放量、处理方式、排放方式和途径及其达标排放情况,对生态影响的途径、方式和范围; 2.建设项目评价范围内的环境保护目标分布情况; 3.按不同环境要素和不同阶段介绍建设项目的主要环境影响及其预测评价结果; 4.对涉及法定环境敏感区的建设项目应单独介绍对环境敏感区的主要环境影响和预测评价结果; 5.按不同环境要素介绍污染防治措施、执行标准、达标情况及效果,生态保护措施及效果; 6.环境风险分析预测结果、风险防范措施及应急预案; 7.建设项目环境保护措施的技术、经济论证结果; 8.建设项目对环境影响的经济损益分析结果;

9.建设项目防护距离内的搬迁所涉及的单位、居民情况及相关措施; 10.建设单位拟采取的环境监测计划及环境管理制度。 (四)公众参与 1.公开环境信息的次数、内容、方式等; 2.征求公众意见的范围、次数、形式等; 3.公众参与的组织形式; 4.公众意见归纳分析,对公众意见尤其是反对意见处理情况的说明; 5.从合法性、有效性、代表性、真实性等方面对公众参与进行总结。 (五)环境影响评价结论 (六)联系方式 建设单位、环评机构的联系人和详细联系方式(含地址、邮编、电话、传真和电子邮箱)。 一、建设项目概况 1、建设项目地点及相关背景 项目名称:高新电子信息材料及制品项目 项目性质:新建 项目地点: 建设背景: HWG新材料有限公司依托中国工程物理研究院雄厚的技术力量,借助该院在五十余年建设系列重大装备和众多国家重大工程中与国内著名研院所形成的良好合作关系和组织完成重大工程的经验,决定在广安经济技术开发区新桥工业园内投资100亿元建设高新电子信息材料产业基地,计划用地1000亩,广安市发改委以“川投资备(51160013060801)0006号”文出具了该项目备案通知书,其建设

聚酰亚胺的结构与性能分析及运用

聚酰亚胺的结构与性能分析及运用 李名敏051002109 摘要:聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将聚酰亚胺的研究、开发及利用列入 21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认 识。本文介绍了其基本结构与性能及应用。 关键词:聚酰亚胺;工程塑料;聚合物;结构与性能;应用;结晶度;共轭效应; 分子量 1 引言 聚酰亚胺是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI) ,是目前工程塑料中耐热性最好的品种之一。PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。近来,各国都在将PI的研究、开发及利用列入21世纪最有希望的工程塑料之一。聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"[1]。 2 聚酰亚胺的基本结构 聚酰亚胺是指主链上含有酰亚胺环的一类聚合物。均苯型聚酰亚胺是以均苯四甲酸二酐与二胺基二苯醚采用非均相悬浮缩聚法,首先合成出聚酰胺酸(PA酸)再经加热脱水、环化(亚胺化)反应,即得到聚酰亚胺[3]。其亚胺化化学反应式通常为: 在主链重复结构单元中含酰亚胺基团,芳环中的碳和氧以双键相连,芳杂环产生共轭效应,

这些都增强了主键键能和分子间作用力。 3 聚酰亚胺的基本结构与性能的关系 3.1热性能 主链键能大,不易断裂分解。耐低温性好,很低的热膨胀系数。聚酰亚胺大量用于薄膜,突出特点是耐热性好。在250℃下,可连续使用70000h以上。在200℃时拉伸强度达98MPa(1000Kgf/cm2)以上;在300℃经1500h的热老化后,其拉伸强度仍可保持在初始值的2/3以上[5]。分子间距离主要决定于分子的三维堆积密度,分子越规整、对称性越强(越有利于结晶),分子堆积密度就越高,分子间距离就越小。对于同种类的分子,结晶的晶相密度总是高于非晶相密度,这就是结晶有利于耐热性提高的原因。分子主链上引入芳香基团,链刚性增大,使无规热运动链段增大,需要更高的温度链段才能运动(这也是对称的硬链段优先结晶的原因),这就是芳香基团的引入有利于耐热性提高的原因。总之分子间作用力越强、分子间距离越小,分子链刚性越大,所需平衡的无规热运动程度(温度)就越高,耐热性就越好[2]。依此推论,耐热性好的材料,应为分子主链是全芳香(大刚性)、分子间作用力强、分子主链无任何取代基(高对称)的材料,而聚酰亚胺这些条件都符合,所以其具有良好的耐热性。 3.2力学性能 拉伸、弯曲、压缩强度较高;突出的抗蠕变性,尺寸稳定性。聚酰亚胺具有很好的机械性能。作为工程塑料,其弹性模量仅次于碳纤维。纤维增强的PI 塑料的强度[8]、模量能得到进一步提高。聚酰亚胺具有优良的耐磨减摩性,其机械性能随温度波动的变化小,高温下蠕变小,其蠕变速度甚至比铝还小,主要原因是聚酰亚胺分子链中含有大量的芳杂环的共轭效应。 3.3电性能 优良的电绝缘性能。偶极损耗小,耐电弧晕性突出,介电强度高,随频率变化小[7]。聚酰亚胺的大分子中虽然含有相当数量的极性基(如羰基和醚基),但其电绝缘性优良,原因是羰基纳入五元环,醚键与相邻基团形成共扼体系。使其极性受到限制,同时由于大分子的刚性和较高的玻璃化温度,因此在较宽的温度范围内偶极损耗小,电性能十分优良。同时,聚酰哑胺还具有优异的耐电晕性能。这些性能在宽广的温度范围和频率范围内仍能保持较高的水平。 3.4耐化学药品性

聚酰亚胺膜(PI膜)项目初步方案

聚酰亚胺膜(PI膜)项目 初步方案 规划设计/投资分析/产业运营

摘要说明— 聚酰亚胺(Polyimide,PI)是分子主链中含有酰亚胺基团(-CO-NHCO-)的芳杂环高分子化合物,被誉为“解决问题的能手”。PI是目前能够实际应用的最耐高温的高分子材料,同时在低温下也能保持较好性能, 长期在-269℃到280℃范围内不变形。此外PI材料在加工性能、机械性能、绝缘性能、阻燃性能,耐化学腐蚀性、耐辐射性能等诸多方面均有良好的 表现,可广泛应用于航天、机械、医药、电子等高科技领域。 该聚酰亚胺膜(PI膜)项目计划总投资7279.10万元,其中:固定资 产投资6103.80万元,占项目总投资的83.85%;流动资金1175.30万元, 占项目总投资的16.15%。 达产年营业收入8094.00万元,总成本费用6459.89万元,税金及附 加123.44万元,利润总额1634.11万元,利税总额1982.94万元,税后净 利润1225.58万元,达产年纳税总额757.36万元;达产年投资利润率 22.45%,投资利税率27.24%,投资回报率16.84%,全部投资回收期7.44年,提供就业职位132个。 报告内容:项目基本信息、建设必要性分析、产业分析、项目建设规模、项目选址可行性分析、项目工程设计、项目工艺技术、环境保护分析、企业卫生、项目风险评价、项目节能评价、进度说明、项目投资计划方案、项目经营效益分析、项目评价结论等。

规划设计/投资分析/产业运营

聚酰亚胺膜(PI膜)项目初步方案目录 第一章项目基本信息 第二章建设必要性分析 第三章项目建设规模 第四章项目选址可行性分析 第五章项目工程设计 第六章项目工艺技术 第七章环境保护分析 第八章企业卫生 第九章项目风险评价 第十章项目节能评价 第十一章进度说明 第十二章项目投资计划方案 第十三章项目经营效益分析 第十四章招标方案 第十五章项目评价结论

聚酰亚胺复合膜综述

聚酰业胺基复合膜的制备及性能研究综述 一.前言 随着科学技术的发展,对材料性能提出了越来越高的要求。聚酰亚胺是一种重要的工程塑料,具有良好的综合性能,是耐热等级最高的聚合物材料之一,广泛应用在航天航空、电子电气等产业中。钛酸钡(BaTiO3)是一种具有钙钛矿结构(ABO3)的介电材料,它具有铁电、压电、高介电常数和正温度系数效应等优异的电学性能,因此它成为高介电陶瓷电容器的主要原材料,而且关于钛酸钡及掺杂钛酸钡的制备和介电性能研究也一直是研究的热点。有机一无机复合材料综合了有机物和无机物各自的优点,在力学、热学、光学、电磁学及生物学等方面具有许多优异的性能,已经成为国内外新型复合材料研究的热点。其中聚合物/陶瓷复合材料就是重要的一类复合材料,它结合了陶瓷材料和聚合物材料的优点,通过制备研究,有望得到机械性能优良、成型工艺简单的高介电复合材料,是一种很有发展前景的电子材料。 二.研究总结 现代电力系统和电子器件与产品对材料的介电性能和产品质量提出了更高的要求,希望向轻型化、薄型化、小型化、低能耗等方向发展。就电介质材料而言,减少电介质材料体积,提高电解质材料容量一直是追求的目标。目前,对容易大面积加工的柔性高介电常数,低损耗薄膜的研究越来越受到人们的关注。聚酰亚胺薄膜自上世纪60年代投入应用以来,以其优异的热性能,绝缘性能、介电性能和机械性能等使其成为电子,化工和航天等工业领域的首选高分子材料。自美国杜邦公司首先实现聚酰亚胺工业化生产以来,各大公司随后也相继开发和生产了聚酰亚胺树脂及薄膜。我国目前的聚酰亚胺树脂及薄膜的生产规模较小,价格和成本较高,产品的质量也有一定差距,利润空间已经很小,聚酰亚胺薄膜的市场需求已趋于饱和。因此,进一步提高产品质量,拓展聚酰亚胺的新用途,提高在国际上的竞争能力,将成为今后我国聚酰亚胺工业发展的重点,也是需要广大研究者关注的课题。聚酰亚胺是一种重要的工程塑料,对其改性探究,一直都是各国研究的焦点。随着高新科技的发展,普通聚酰亚胺材料已经不能满足高新科技产品的制造对材料性能的要求,由此聚酰亚胺改性就成为现在研究的热点。将无机组分引入聚酰亚胺基体中达到无机一有机性能的复合,成为其改性工作中较有效的方法。目前,对聚酰亚胺中引入二氧化硅,氧化铝等无机组分研究较多,引入钛酸钡粉体的研究相对较少。钛酸钡是钛酸盐系电子陶瓷的主要原料,具有高介电常数和低介电损耗的优点,在电子和光学工业中得到广泛应用。但钛酸钡薄膜制备需高温且工艺复

聚酰亚胺的改性研究新进展

聚酰亚胺的改性研究新进展 聚酰亚胺的改性研究新进展 聚酰亚胺(PI)主要有芳香族和脂肪族两大类,脂肪族聚酰亚胺实用性差,实际应用的聚酰亚胺主要是芳香型聚酸亚胺。这类聚合物有着卓越的机械性能,介电性能,耐热、耐辐射及耐腐蚀等特性。应用极其广泛。聚酰亚胺的不足之处是不溶不熔、加工成型难、成本高等。随着社会和科技的发展,对PI的需求量越来越多,对其性能要求越来越高,对其研究越来越深入,近年来,通过组成、结构改造,共聚、共混等方法改性,大量新型聚酰亚胺高分子材料被合成出来,本文归纳了近十年来国内外在聚酰亚胺改性及应用方面的研究情况。 1 分子结构改造 分子结构改造主要有引入柔顺性结构单元、扭曲和非共平面结构、大的侧基或亲溶剂基团、杂环、氟硅等特性原子以及主链共聚等方法 1.1 引入特殊结构单元的聚酰亚胺 在二酐或二胺单体中引入柔性结构单元可提高聚酰亚胺的流动性,提高聚酰亚胺的溶解性、熔融性。其中主要方法是在单体中引入醚链,有人用二酐醚合成出了PI,该 PI可溶于NMP、DMF、DMAc等强极性溶剂[ ;也有人用含有长的醚链的二胺合成出的PI具有良好的溶解性,可在很多有机溶剂中溶解比]。 而在PI中引入扭曲和非共平面结构能防止聚合物分子链紧密堆砌,从而降低分问作用力,提高溶解性。通过合成具有扭曲结构的二胺【3]和二酐[ 单体而制得的PI 其溶解性大大的增强,不仅溶于强极性溶剂中甚至可以在一些极性比较弱的溶剂THF中溶解,这是仅仅通过引入柔性基团所办不到的。 同样在大分子链上引入大的侧基或亲溶剂基团,可以在不破坏分子链的刚性的情况下有效降低分子链问的作用力从而提高PI的溶解性。如Liaw 等人[s]用具有大的侧基的联苯基环己基二胺制备P1,由于这类PI中引入了较大的侧基,从而降低聚合物分子链的堆积密度,溶剂分子容易渗入聚合物内,因此具有良好的溶解性能。 1.2 含氟、硅的聚酰亚胺 含氟基团的引入,可以增加聚酰亚胺分子链间的距离,减少分子间的作用力,因而可以溶入许多有机溶剂,同时氟原子有较强的疏水性使聚酰亚胺制品的吸湿率很低,而其有较低的摩尔极化率使得PI的介电常数降低 ]。氟原子具有很大的电负性,可破坏聚酰亚胺分子结构中具有发色功能结构基团的电子云的共轭性,因而透

聚酰亚胺

聚酰亚胺( PI) 聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度 范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅 0.004~0.007,属F至H级绝缘材料。 聚酰亚胺是指主链上含有酰亚胺环(-CO-NH-CO-)的一类聚合物,其中以含有酞酰亚胺结构的聚合物最为重要。 性能: 1.外观淡黄色粉末 2.弯曲强度(20℃) ≥170MPa 3.密度 1.38~1.43g/cm3 4.冲击强度(无缺口) ≥28kJ/m2 5.拉伸强度≥100 MPa 6.维卡软化点 >270℃ 7.吸水性(25℃,24h) 8.伸长率 >120% 钛酸钡 分子式:BaTiO 分子量:233.1922性状白色粉末熔点1625℃相对密度3 6.017溶解性:溶于浓硫酸、盐酸及氢氟酸,不溶于热的稀硝酸、水和碱。 熔点:1625℃

钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在 1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显着地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。 当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。 当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。钛酸钡从正交晶系转变成三方晶系,其结构变化也不大。从晶胞来看,相当于原立方晶胞的一根体对角线伸长了,另一根体对角线缩短了。 综上所述,在整个温区(<1618℃),钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低。在130℃(即居里点)以上,钛酸钡晶体呈现顺电性,在130℃以下呈现铁电性。 这里所说的钛酸钡的介电性质主要指的是钛酸钡陶瓷的介电性质。钛酸钡陶瓷的介电性能基本上和钛酸钡单晶的相似。但由于陶瓷是多晶结构,存在晶粒和晶界。晶粒的大小

我国高性能聚酰亚胺薄膜关键技术实现产业化讲解

我国高性能聚酰亚胺薄膜关键技术实现产业化 2011年07月13日10:04科学时报我要评论(0 字号:T|T [导读]列车在高速运行的状态下,发电机的温度会升得很高,如果电机绝缘系统耐热等级不够,电机线路之间极易发生短路,造成危险。 6月30日,备受关注的京沪高铁正式开通运营。世界各国也都在积极关注高铁的发展。而新材料是支撑高铁技术的关键。 列车在高速运行的状态下,发电机的温度会升得很高,如果电机绝缘系统耐热等级不够,电机线路之间极易发生短路,造成危险。而高铁的发电机之所以能够安全平稳地正常运行,全部得益于电机绝缘系统采用了一种叫做高性能聚酰亚胺薄膜的绝缘材料。 高性能聚酰亚胺薄膜还有一个别称——“黄金薄膜”。但长期以来,这种材料的研发和生产技术完全被美国和日本等国垄断着。 近日,中科院化学所与深圳瑞华泰薄膜科技有限公司召开新闻发布会宣布:由双方合作研发的高性能聚酰亚胺薄膜已成功实现产业化。 这意味着我国在这一技术领域打破了国外的长期技术垄断,跻身国际先进水平,同时也大大加快了我国航空航天、微电子、新能源、先进制造等领域高端材料应用的国产化进程。 八年攻关,满足产业渴求 高性能聚酰亚胺薄膜性能稳定,形态多样,用途广泛。在-269℃~400℃的范围内具有耐辐射、耐高热、不燃烧、高韧性、低损耗等特点,具有极高的商业价值和战略价值,被广泛应用于微电子、电气绝缘、航空航天等领域。 伴随着超大规模集成电路制造与封装等高新技术的发展,我国对高性能聚酰亚胺薄膜的需求也日益增加。上世纪90年代后期,我国对这种薄膜的年需求量为500吨,到了2010年就已经超过2800吨,每年以25%的速度增长。

聚酰亚胺薄膜

聚酰亚胺的合成和性能Ionomers H-1含有1、2、4-Triazole组 一系列的磺化聚酰亚胺共聚物H-1含有1、2、4-triazole集团是合成了主链结构的导氢离子膜用于燃料电池的应用。triazole-containing缩聚的dianiline,acid-functionalized benzidine,naphthalenetetracarboxylic dianhydride聚酰亚胺ionomers给冠军。这是ionomers高分子量(Mw > 100负责、锰> 20负责),使得且强韧膜,溶液的铸件。离子交换容量的膜质(IEC)从1.10到2.68不等mequiv / g确认经核磁共振氢谱分析和滴定法。比较与其他聚酰亚胺膜ionomer透露,引入三氮唑类组引起更好的热稳定性(分解温度200°C的ca。),可与水解及氧化稳定性,更好的力学性能。虽然尼克-海德菲尔德团体没有函数作为离子交换网 站,triazole-containing质子膜电导率略高于显示。最高的质子传导性(0.3 S /厘米在88% RH)处获得了高IEC(2.68 mequiv / g)ionomer膜。膜的ionomer显示低氢和氧渗透在干燥和潮湿环境。 聚酰亚胺膜蚀刻粒子跟踪支持:掠入射x射线散射研究的摘要 聚酰亚胺膜粒子跟踪蚀刻硅衬底上覆盖着一个土生土长的氧化层进行了研究。制备步骤类似于常见的经典粒子跟踪蚀刻膜生产,上升到自立式膜,成功应用于支持膜。聚酰亚胺薄膜作为起始物料基于模板制备高能离子的扩散。这部电影/膜结构是探讨在不同尺度由掠入射x射线散射在每一个个体摘要制备步骤。此外,用原子力显微镜表征,variable-angle光谱ellipsometry、傅里叶变换红外传输,衰减全反射光谱被执行。一定数量的6±1国立聚酰亚胺膜孔内”,是侦破。毛孔垂直方位和有一个锥形基片表面形状,可以创造出一个略微降低了基质孔隙的大小/电影的界面。 促进有机蒸汽的敏感性检测以硅块聚酰亚胺聚合物 结果表明,聚酰亚胺聚合物有机硅块超乎寻常非极性有机蒸汽的敏感性,包括氯有机溶剂蒸气。当0.18?5.34 -μm-thick有机硅块聚合物薄膜沉积了聚酰亚胺在10-MHz厚度剪切模式(TSM)振荡器,这些电影parts-per-billion执行本检测浓度(TCE)和检测灵敏度的0.5每500磅23.5赫兹?蒸气。与一个电影厚度为3.4μm(91.5 -kHz多普勒频移对膜),优化了传感器噪声最小0.04赫兹,计算检测限传感器的响应(S / N = 3),是3磅TCE的。检测限度氯化有机溶剂蒸气其他,如奈米(四氯乙烯),cis-1,2-dichloroethylene(DCE),trans-1,2-DCE、1、1-DCE、氯乙烯(VC)分别为0.6岁,6、6、11分,13磅,分别。假设只有mass-loading频响到TSM沉积装置、硅聚酰亚胺聚合物隔断系数

3一分钟读懂聚酰亚胺PI材料结构与性能

通常所说的聚酰亚胺材料是分子结构含有酰亚胺基链节的芳杂环高分子化合物,英文名Polyimide(简称PI),是目前工程塑料中耐热性最好的品种之一。 聚酰亚胺结构与性能的关系如下图所示: 聚酰亚胺主要性质如下: 1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都在500℃左右。由联苯二酐和对苯二胺合成的聚酰亚胺,热分解温度达到600℃,是迄今聚合物中热稳定性最高的品种之一。

2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。 3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100MPa以上,均苯型聚酰亚胺的薄膜(Kapton)为170MPa以上,而联苯型聚酰亚胺(Upilex S)达到400MPa。作为工程塑料,弹性膜量通常为3-4GPa,纤维可达到 200Gpa,据理论计算,均苯二酐和对苯二胺合成的纤维可达500GPa,仅次于碳纤维。 4、聚酰亚胺的热膨胀系数在2×10-5-3×10-5,广成热塑性聚酰亚胺3×10-5,联苯型可达10-6℃,个别品种可达10-7。 5、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500小时水煮。 6、聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad 快电子辐照后强度保持率为90%。

7、聚酰亚胺具有良好的介电性能,介电常数为3.4左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到2.5左右。介电损耗为10-3,介电强度为 100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为1017Ω/cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。 8、聚酰亚胺是自熄性聚合物,发烟率低。 9、聚酰亚胺在极高的真空下放气量很少。 10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。 聚酰亚胺PI性质小结: 1、力学性能:拉伸、弯曲、压缩强度较高,突出的抗蠕变性和尺寸稳定性。 2、热性能:主链键能大、不易断裂分解、耐高温、耐低温、低热膨胀系数。

相关文档