文档库 最新最全的文档下载
当前位置:文档库 › PCIE基础知识

PCIE基础知识

PCIE基础知识
PCIE基础知识

PCIe总线概述

随着现代处理器技术的发展,在互连领域中,使用高速差分总线替代并行总线是大势所趋。与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线,完成之前需要许多单端并行数据信号才能达到的总线带宽。

PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe 总线使用了高速差分总线,并采用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备。这使得PCIe与PCI总线采用的拓扑结构有所不同。PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报文的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Quality of Service)问题。

PCIe总线的基础知识

与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。PCIe 总线使用的层次结构与网络协议栈较为类似。

1.1 端到端的数据传递

PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。

由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe链路可以由多个Lane组成。

高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。该电容也被称为AC 耦合电容。PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。

与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。因此差分信号可以使用更高的总线频率。

此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。

PCIe链路可以由多条Lane组成,目前PCIe链路可以支持1、2、4、8、12、16和32个Lane,即×1、×2、×4、×8、×12、×16和×32宽度的PCIe链路。每一个Lane上使用的总线频率与PCIe 总线使用的版本相关。

第1个PCIe总线规范为V1.0,之后依次为V1.0a,V1.1,V2.0和V2.1。目前PCIe总线的最新规范为V2.1,而V3.0正在开发过程中,预计在2010年发布。不同的PCIe总线规范所定义的总线频率和链路编码方式并不相同,如表4-1所示。

表4-1 PCIe总线规范与总线频率和编码的关系

PCIe总线规范总线频率1[1] 单Lane的峰值带宽编码方式

1.x 1.25GHz

2.5GT/s 8/10b编码

2.x 2.5GHz 5GT/s 8/10b编码

3.0 4GHz 8GT/s 128/130b编码

如上表所示,不同的PCIe总线规范使用的总线频率并不相同,其使用的数据编码方式也不相同。PCIe总线V1.x和V2.0规范在物理层中使用8/10b编码,即在PCIe链路上的10 bit中含有8 bit的有效数据;而V3.0规范使用128/130b编码方式,即在PCIe链路上的130 bit中含有128 bit的有效数据。

由上表所示,V3.0规范使用的总线频率虽然只有4GHz,但是其有效带宽是V2.x的两倍。下文将以V2.x规范为例,说明不同宽度PCIe链路所能提供的峰值带宽,如表4-2所示。

由上表所示,×32的PCIe链路可以提供160GT/s的链路带宽,远高于PCI/PCI-X总线所能提供的峰值带宽。而即将推出的PCIe V3.0规范使用4GHz的总线频率,将进一步提高PCIe链路的峰值带宽。

在PCIe总线中,使用GT(Gigatransfer)计算PCIe链路的峰值带宽。GT是在PCIe链路上传递的峰值带宽,其计算公式为总线频率×数据位宽×2。

在PCIe总线中,影响有效带宽的因素有很多,因而其有效带宽较难计算。尽管如此,PCIe 总线提供的有效带宽还是远高于PCI总线。PCIe总线也有其弱点,其中最突出的问题是传送延时。

PCIe链路使用串行方式进行数据传送,然而在芯片内部,数据总线仍然是并行的,因此PCIe 链路接口需要进行串并转换,这种串并转换将产生较大的延时。除此之外PCIe总线的数据报文需要经过事务层、数据链路层和物理层,这些数据报文在穿越这些层次时,也将带来延时。

在基于PCIe总线的设备中,×1的PCIe链路最为常见,而×12的PCIe链路极少出现,×4和×8的PCIe设备也不多见。Intel通常在ICH中集成了多个×1的PCIe链路用来连接低速外设,而在MCH中集成了一个×16的PCIe链路用于连接显卡控制器。而PowerPC处理器通常能够支持×8、×4、×2和×1的PCIe链路。

PCIe总线物理链路间的数据传送使用基于时钟的同步传送机制,但是在物理链路上并没有时钟线,PCIe总线的接收端含有时钟恢复模块CDR(Clock Data Recovery),CDR将从接收报文中提取接收时钟,从而进行同步数据传递。

值得注意的是,在一个PCIe设备中除了需要从报文中提取时钟外,还使用了REFCLK+和REFCLK-信号对作为本地参考时钟,这个信号对的描述见下文。

1.2 PCIe总线使用的信号

PCIe设备使用两种电源信号供电,分别是Vcc与Vaux,其额定电压为3.3V。其中Vcc为主电源,PCIe设备使用的主要逻辑模块均使用Vcc供电,而一些与电源管理相关的逻辑使用Vaux供电。在PCIe设备中,一些特殊的寄存器通常使用Vaux供电,如Sticky Register,此时即使PCIe设备的Vcc被移除,这些与电源管理相关的逻辑状态和这些特殊寄存器的内容也不会发生改变。

在PCIe总线中,使用Vaux的主要原因是为了降低功耗和缩短系统恢复时间。因为Vaux在多数情况下并不会被移除,因此当PCIe设备的Vcc恢复后,该设备不用重新恢复使用Vaux 供电的逻辑,从而设备可以很快地恢复到正常工作状状态。

PCIe链路的最大宽度为×32,但是在实际应用中,×32的链路宽度极少使用。在一个处理器系统中,一般提供×16的PCIe插槽,并使用PETp0~15、PETn0~15和PERp0~15、

PER--]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]n0~15共64根信号线组成32对差分信号,其中16对PETxx信号用于发送链路,另外16对PERxx信号用于接收链路。除此之外PCIe总线还使用了下列辅助信号。

1 PERST#信号

该信号为全局复位信号,由处理器系统提供,处理器系统需要为PCIe插槽和PCIe设备提供该复位信号。PCIe设备使用该信号复位内部逻辑。当该信号有效时,PCIe设备将进行复位操作。PCIe总线定义了多种复位方式,其中Cold Reset和Warm Reset这两种复位方式的实现与该信号有关,详见第1.5节。

2 REFCLK+和REFCLK-信号

在一个处理器系统中,可能含有许多PCIe设备,这些设备可以作为Add-In卡与PCIe插槽连接,也可以作为内置模块,与处理器系统提供的PCIe链路直接相连,而不需要经过PCIe插槽。PCIe设备与PCIe插槽都具有REFCLK+和REFCLK-信号,其中PCIe插槽使用这组信号与处理器系统同步。

在一个处理器系统中,通常采用专用逻辑向PCIe插槽提供REFCLK+和REFCLK-信号,如图4-2所示。其中100Mhz的时钟源由晶振提供,并经过一个“一推多”的差分时钟驱动器生成多个同相位的时钟源,与PCIe插槽一一对应连接。

PCIe插槽需要使用参考时钟,其频率范围为100MHz±300ppm。处理器系统需要为每一个PCIe 插槽、MCH、ICH和Switch提供参考时钟。而且要求在一个处理器系统中,时钟驱动器产生的参考时钟信号到每一个PCIe插槽(MCH、ICH和Swith)的距离差在15英寸之内。通常信号的传播速度接近光速,约为6英寸/ns,由此可见,不同PCIe插槽间REFCLK+和REFCLK-信号的传送延时差约为2.5ns。

当PCIe设备作为Add-In卡连接在PCIe插槽时,可以直接使用PCIe插槽提供的REFCLK+和REFCLK-信号,也可以使用独立的参考时钟,只要这个参考时钟在100MHz±300ppm范围内即可。内置的PCIe设备与Add-In卡在处理REFCLK+和REFCLK-信号时使用的方法类似,但是PCIe 设备可以使用独立的参考时钟,而不使用REFCLK+和REFCLK-信号。

在PCIe设备配置空间的Link Control Register中,含有一个“Common Clock Configuration”位。当该位为1时,表示该设备与PCIe链路的对端设备使用“同相位”的参考时钟;如果为0,表示该设备与PCIe链路的对端设备使用的参考时钟是异步的。

在PCIe设备中,“Common Clock Configuration”位的缺省值为0,此时PCIe设备使用的参考时钟与对端设备没有任何联系,PCIe链路两端设备使用的参考时钟可以异步设置。这个异步

时钟设置方法对于使用PCIe链路进行远程连接时尤为重要。

在一个处理器系统中,如果使用PCIe链路进行机箱到机箱间的互连,因为参考时钟可以异步设置,机箱到机箱之间进行数据传送时仅需要差分信号线即可,而不需要参考时钟,从而极大降低了连接难度。

3 WAKE#信号

当PCIe设备进入休眠状态,主电源已经停止供电时,PCIe设备使用该信号向处理器系统提交唤醒请求,使处理器系统重新为该PCIe设备提供主电源Vcc。在PCIe总线中,WAKE#信号是可选的,因此使用WAKE#信号唤醒PCIe设备的机制也是可选的。值得注意的是产生该信号的硬件逻辑必须使用辅助电源Vaux供电。

WAKE#是一个Open Drain信号,一个处理器的所有PCIe设备可以将WAKE#信号进行线与后,统一发送给处理器系统的电源控制器。当某个PCIe设备需要被唤醒时,该设备首先置WAKE#信号有效,然后在经过一段延时之后,处理器系统开始为该设备提供主电源Vcc,并使用PERST#信号对该设备进行复位操作。此时WAKE#信号需要始终保持为低,当主电源Vcc上电完成之后,PERST#信号也将置为无效并结束复位,WAKE#信号也将随之置为无效,结束整个唤醒过程。

PCIe设备除了可以使用WAKE#信号实现唤醒功能外,还可以使用Beacon信号实现唤醒功能。与WAKE#信号实现唤醒功能不同,Beacon使用In-band信号,即差分信号D+和D-实现唤醒功能。Beacon信号DC平衡,由一组通过D+和D-信号生成的脉冲信号组成。这些脉冲信号宽度的最小值为2ns,最大值为16us。当PCIe设备准备退出L2状态(该状态为PCIe设备使用的一种低功耗状态)时,可以使用Beacon信号,提交唤醒请求。

4 SMCLK和SMDAT信号

SMCLK和SMDAT信号与x86处理器的SMBus(System Mangement Bus)相关。SMBus于1995年由Intel提出,SMBus由SMCLK和SMDAT信号组成。SMBus源于I2C总线,但是与I2C总线存在一些差异。

SMBus的最高总线频率为100KHz,而I2C总线可以支持400KHz和2MHz的总线频率。此外SMBus上的从设备具有超时功能,当从设备发现主设备发出的时钟信号保持低电平超过35ms时,将引发从设备的超时复位。在正常情况下,SMBus的主设备使用的总线频率最低为10KHz,以避免从设备在正常使用过程中出现超时。

在SMbus中,如果主设备需要复位从设备时,可以使用这种超时机制。而I2C总线只能使用硬件信号才能实现这种复位操作,在I2C总线中,如果从设备出现错误时,单纯通过主设备是无法复位从设备的。

SMBus还支持Alert Response机制。当从设备产生一个中断时,并不会立即清除该中断,直到主设备向0b0001100地址发出命令。

上文所述的SMBus和I2C总线的区别还是局限于物理层和链路层上,实际上SMBus还含有网络层。SMBus还在网络层上定义了11种总线协议,用来实现报文传递。

SMBus在x86处理器系统中得到了大规模普及,其主要作用是管理处理器系统的外部设备,并收集外设的运行信息,特别是一些与智能电源管理相关的信息。PCI和PCIe插槽也为SMBus 预留了接口,以便于PCI/PCIe设备与处理器系统进行交互。

在Linux系统中,SMBus得到了广泛的应用,ACPI也为SMBus定义了一系列命令,用于智能电池、电池充电器与处理器系统之间的通信。在Windows操作系统中,有关外部设备的描述信息,也是通过SMBus获得的。

5 JTAG信号

JTAG(Joint Test Action Group)是一种国际标准测试协议,与IEEE 1149.1兼容,主要用于芯片内部测试。目前绝大多数器件都支持JTAG测试标准。JTAG信号由TRST#、TCK、TDI、TDO

和TMS信号组成。其中TRST#为复位信号;TCK为时钟信号;TDI和TDO分别与数据输入和数据输出对应;而TMS信号为模式选择。

JTAG允许多个器件通过JTAG接口串联在一起,并形成一个JTAG链。目前FPGA和EPLD可以借用JTAG接口实现在线编程ISP(In-System Programming)功能。处理器也可以使用JTAG接口进行系统级调试工作,如设置断点、读取内部寄存器和存储器等一系列操作。除此之外JTAG接口也可用作“逆向工程”,分析一个产品的实现细节,因此在正式产品中,一般不保留JTAG接口。

6 PRSNT1#和PRSNT2#信号

PRSNT1#和PRSNT2#信号与PCIe设备的热插拔相关。在基于PCIe总线的Add-in卡中,PRSNT1#和PRSNT2#信号直接相连,而在处理器主板中,PRSNT1#信号接地,而PRSNT2#信号通过上拉电阻接为高。PCIe设备的热插拔结构如图4-3所示。

如上图所示,当Add-In卡没有插入时,处理器主板的PRSNT2#信号由上拉电阻接为高,而当Add-In卡插入时主板的PRSNT2#信号将与PRSNT1#信号通过Add-In卡连通,此时PRSNT2#信号为低。处理器主板的热插拔控制逻辑将捕获这个“低电平”,得知Add-In卡已经插入,从而触发系统软件进行相应地处理。

Add-In卡拔出的工作机制与插入类似。当Add-in卡连接在处理器主板时,处理器主板的PRSNT2#信号为低,当Add-In卡拔出后,处理器主板的PRSNT2#信号为高。处理器主板的热插拔控制逻辑将捕获这个“高电平”,得知Add-In卡已经被拔出,从而触发系统软件进行相应地处理。

不同的处理器系统处理PCIe设备热拔插的过程并不相同,在一个实际的处理器系统中,热拔插设备的实现也远比图4-3中的示例复杂得多。值得注意的是,在实现热拔插功能时,Add-in Card需要使用“长短针”结构。

如图4-3所示,PRSNT1#和PRSNT2#信号使用的金手指长度是其他信号的一半。因此当PCIe 设备插入插槽时,PRSNT1#和PRSNT2#信号在其他金手指与PCIe插槽完全接触,并经过一段延时后,才能与插槽完全接触;当PCIe设备从PCIe插槽中拔出时,这两个信号首先与PCIe 插槽断连,再经过一段延时后,其他信号才能与插槽断连。系统软件可以使用这段延时,进行一些热拔插处理。

1.3 PCIe总线的层次结构

PCIe总线采用了串行连接方式,并使用数据包(Packet)进行数据传输,采用这种结构有效去除了在PCI总线中存在的一些边带信号,如INTx和PME#等信号。在PCIe总线中,数据报文在接收和发送过程中,需要通过多个层次,包括事务层、数据链路层和物理层。PCIe总线的层次结构如图4-4所示。

PCIe总线的层次组成结构与网络中的层次结构有类似之处,但是PCIe总线的各个层次都是使用硬件逻辑实现的。在PCIe体系结构中,数据报文首先在设备的核心层(Device Core)中产生,然后再经过该设备的事务层(Transaction Layer)、数据链路层(Data Link Layer)和物理层(Physical Layer),最终发送出去。而接收端的数据也需要通过物理层、数据链路和事务层,并最终到达Device Core。

1 事务层

事务层定义了PCIe总线使用总线事务,其中多数总线事务与PCI总线兼容。这些总线事务可以通过Switch等设备传送到其他PCIe设备或者RC。RC也可以使用这些总线事务访问PCIe 设备。

事务层接收来自PCIe设备核心层的数据,并将其封装为TLP(Transaction Layer Packet)后,发向数据链路层。此外事务层还可以从数据链路层中接收数据报文,然后转发至PCIe设备的核心层。

事务层的一个重要工作是处理PCIe总线的“序”。在PCIe总线中,“序”的概念非常重要,也较难理解。在PCIe总线中,事务层传递报文时可以乱序,这为PCIe设备的设计制造了不小的麻烦。事务层还使用流量控制机制保证PCIe链路的使用效率。有关事务层的详细说明见第6章。

2 数据链路层

数据链路层保证来自发送端事务层的报文可以可靠、完整地发送到接收端的数据链路层。来自事务层的报文在通过数据链路层时,将被添加Sequence Number前缀和CRC后缀。数据链路层使用ACK/NAK协议保证报文的可靠传递。

PCIe总线的数据链路层还定义了多种DLLP(Data Link Layer Packet),DLLP产生于数据链路层,终止于数据链路层。值得注意的是,TLP与DLLP并不相同,DLLP并不是由TLP加上Sequence Number前缀和CRC后缀组成的。

3 物理层

物理层是PCIe总线的最底层,将PCIe设备连接在一起。PCIe总线的物理电气特性决定了PCIe 链路只能使用端到端的连接方式。PCIe总线的物理层为PCIe设备间的数据通信提供传送介质,为数据传送提供可靠的物理环境。

物理层是PCIe体系结构最重要,也是最难以实现的组成部分。PCIe总线的物理层定义了LTSSM(Link Training and Status State Machine)状态机,PCIe链路使用该状态机管理链路状态,并进行链路训练、链路恢复和电源管理。

PCIe总线的物理层还定义了一些专门的“序列”,有的书籍将物理层这些“序列”称为PLP(Phsical Layer Packer),这些序列用于同步PCIe链路,并进行链路管理。值得注意的是PCIe 设备发送PLP与发送TLP的过程有所不同。对于系统软件而言,物理层几乎不可见,但是系统程序员仍有必要较为深入地理解物理层的工作原理。

1.4 PCIe链路的扩展

PCIe链路使用端到端的数据传送方式。在一条PCIe链路中,这两个端口是完全对等的,分别连接发送与接收设备,而且一个PCIe链路的一端只能连接一个发送设备或者接收设备。因此PCIe链路必须使用Switch扩展PCIe链路后,才能连接多个设备。使用Switch进行链路扩展的实例如图4-5所示。

在PCIe总线中,Switch2[2]是一个特殊的设备,该设备由1个上游端口和2~n个下游端口组成。PCIe总线规定,在一个Switch中可以与RC直接或者间接相连3[3]的端口为上游端口,

在PCIe总线中,RC的位置一般在上方,这也是上游端口这个称呼的由来。在Switch中除了上游端口外,其他所有端口都被称为下游端口。下游端口一般与EP相连,或者连接下一级Switch继续扩展PCIe链路。其中与上游端口相连的PCIe链路被称为上游链路,与下游端口相连的PCIe链路被称为下游链路。

上游链路和下游链路是一个相对的概念。如上图所示,Switch与EP2连接的PCIe链路,对于EP2而言是上游链路,而对Switch而言是下游链路。

在上图所示的Switch中含有3个端口,其中一个是上游端口(Upstream Port),而其他两个为下游端口(Downstream Port)。其中上游端口与RC或者其他Switch的下游端口相连,而下游端口与EP或者其他Switch的上游端口相连。

在Switch中,还有两个与端口相关的概念,分别是Egress端口和Ingress端口。这两个端口与通过Switch的数据流向有关。其中Egress端口指发送端口,即数据离开Switch使用的端口;Ingress端口指接收端口即数据进入Switch使用的端口。

Egress端口和Ingress端口与上下游端口没有对应关系。在Switch中,上下游端口可以作为Egress端口,也可以作为Ingress端口。如图4-5所示,RC对EP3的内部寄存器进行写操作时,Switch的上游端口为Ingress端口,而下游端口为Egress端口;当EP3对主存储器进行DMA写操作时,该Switch的上游端口为Egress端口,而下游端口为Ingress端口。

PCIe总线还规定了一种特殊的Switch连接方式,即Crosslink连接模式。支持这种模式的Switch,其上游端口可以与其他Switch的上游端口连接,其下游端口可以与其他Switch的下游端口连接。

PCIe总线提供CrossLink连接模式的主要目的是为了解决不同处理器系统之间的互连,如图4-6所示。使用CrossLink连接模式时,虽然从物理结构上看,一个Switch的上/下游端口与另一个Switch的上/下游端口直接相连,但是这个PCIe链路经过训练后,仍然是一个端口作为上游端口,而另一个作为下游端口。

处理器系统1与处理器系统2间的数据交换可以通过Crosslink进行。当处理器系统1(2)访问的PCI总线域的地址空间或者Requester ID不在处理器系统1(2)内时,这些数据将被Crosslink 端口接收,并传递到对端处理器系统中。Crosslink对端接口的P2P桥将接收来自另一个处理器域的数据请求,并将其转换为本处理器域的数据请求。

使用Crosslink方式连接两个拓扑结构完全相同的处理器系统时,仍然有不足之处。假设图4-6中的处理器系统1和2的RC使用的ID号都为0,而主存储器都是从0x0000-0000开始编址时。当处理器1读取EP2的某段PCI总线空间时,EP2将使用ID路由方式,将完成报文传送给ID号为0的PCI设备,此时是处理器2的RC而不是处理器1的RC收到EP2的数据。因为处理器1和2的RC使用的ID号都为0,EP2不能区分这两个RC。

由上所述,使用Crosslink方式并不能完全解决两个处理器系统的互连问题,因此在有些

Switch中支持非透明桥结构。这种结构与PCI总线非透明桥的实现机制类似,本章对此不做进一步说明。

使用非透明桥仅解决了两个处理器间数据通路问题,但是不便于NUMA结构对外部设备的统一管理。PCIe总线对此问题的最终解决方法是使用MR-IOV技术,该技术要求Switch具有多个上游端口分别与不同的RC互连。目前PLX公司已经可以提供具有多个上游端口的Switch,但是尚未实现MR-IOV技术涉及的一些与虚拟化相关的技术。

即便MR-IOV技术可以合理解决多个处理器间的数据访问和对PCIe设备的配置管理,使用PCIe总线进行两个或者多个处理器系统间的数据传递仍然是一个不小问题。因为PCIe总线的传送延时仍然是制约其在大规模处理器系统互连中应用的重要因素。

最新热学基础知识补充习题含答案精品版

2020年热学基础知识补充习题含答案精品 版

襄阳四中2012年物理热学试题精选 一、选择题 1.从微观的角度来看,一杯水是由大量水分子组成的,下列说法中正确的是( ) A .当这杯水静止时,水分子也处于静止状态 B.水的温度越高,水分子的平均动能越大 C.每个水分子都在运动,且速度大小相等 D.这些水分子的动能总和就是这杯水的动能 答案:B 2.关于分子动理论的理解,下列说法正确的是( ) A.当分子间的距离增大时,分子间的引力和斥力均减小,但斥力减小得更快,所以分子间的作用力总表现为引力B.当分子力表现为斥力时,分子力和分子势能总是随分子间距离的减小而增大 C.布朗运动是固体分子的运动,它说明固体分子永不停息地做无规则运动 D.已知某种液体的密度为ρ,摩尔质量为M,阿伏加德罗常数为N A,则该液体分子间的平均距离可以表示为答案:BD 3.关于热力学定律,下列说法正确的是(B ) A.在一定条件下物体的温度可以降到0 K B.物体从单一热源吸收的热量可全部用于做功 C.吸收了热量的物体,其内能一定增加 D.压缩气体总能使气体的温度升高 4.下图为两分子系统的势能Ep与两分子间距离?Skip Record If...?的关系曲线。下列说法 正确的是(BC ) A.当?Skip Record If...?大于r1时,分子间的作用力表现为引力 B.当?Skip Record If...?小于r1时,分子间的作用力表现为斥力 C.当?Skip Record If...?等于r2时,分子间的作用力为零 D.当?Skip Record If...?由r1变到r2的过程中,分子间的作用力做负功 5.1859年麦克斯韦从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律。若以横坐标?Skip Record If...?表示分子速率,纵坐标f(v)表示各速率区间的分子数占总分子数的百分比。下面四幅图中能正确表示某一温度下气体分子速率分布规律的是(D ) 6.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的( A ) A.温度和体积B.体积和压强 C.温度和压强D.压强和温度 7.下列说法正确的是( ) A.区分晶体与非晶体的最有效方法是看有没有规则的几何外形 B.区分晶体与非晶体的最有效方法是看有没有一定的熔点 C.一定温度下,饱和汽的压强是一定的 D.空气的相对温度等于水蒸气的实际压强与同温下水的饱和汽压的比值

热学知识点

热学 第一部分、分子热运动 1、分子运动理论的初步认识 (1)物质由分子、原子组成的。 (2)一切物质的分子都在不停地做无规则的运动——扩散现象。 (3)分子之间有相互作用的引力和斥力。 2、(1)分子运动理论的基本内容:物质是由分子组成的;分子不停地做无规则运动;分子间存在相互作用的引力和斥力。 (2)扩散现象:不同物质在相互接触时,彼此进入对方的现象叫扩散。气体、液体、固体均能发生扩散现象。扩散的快慢与温度有关。扩散现象表明:一切物质的分子都在永不停息地做无规则运动,并且间接证明了分子间存在间隙。 (3)分子间的相互作用力既有引力又有斥力,引力和斥力是同时存在的。当两分子间的距离等于10-10 米时,分子间引力和斥力相等,合力为零,叫做平衡位置;当两分子间的距离小于10-10米时,分子间斥力大于引力,合力表现为斥力;当两分子间的距离大于10-10米时,分子间引力大于斥力,合力表现为引力;当分子间的距离很大(大于分子直径的10倍以上)时,分子间的相互作用力变得十分微弱,可近似认为分子间无相互作用力。 第二部分、内能 1、内能 (1)概念:物体内部所有分子做无规则热运动的动能和分子势能的总和,叫物体的内能。 ①内能是指物体内部所有分子做无规则热运动的动能和分子势能的总和,不是指少数分子或单个分子所具有的能。 ②内能与温度有关,但不仅仅与温度有关,从微观角度来说,内能与物体内部分子的热运动和分子间的相互作用力有关。从宏观的角度来说,内能与物体的质量、温度、体积都有关。 ③一切物体在任何情况下都具有内能,物体的内能与温度有关,同一个物体,温度升高,它的内能增加,温度降低,内能减少。 (2)影响内能的主要因素:物体的质量、温度、状态及体积等。 (3)热运动:物体内部大量分子的无规则运动叫做热运动。分子无规则运动的速度与温度有关,温度越高,分子无规则运动的速度就越快,物体的温度越低,分子无规则运动的速度就越慢。内能也常叫做热能。 (4)内能与机械能的区别 ①物体的内能的多少与物体的温度、体积、质量和物体状态有关;而机械能与物体的质量、速度、高度、形变有关。它们是两种不同形式的能。 ②一切物体都具有内能,但有些物体可以说没有机械能,比如静止在地面土的物体。 ③内能和机械能可以通过做功相互转化。 ④内能的单位与机械能的单位是一样的,国际单位制都是焦耳,简称焦。用J表示。 2、改变物体内能的两种方法:做功与热传递 (1)做功: ①对物体做功,物体内能增加;物体对外做功,物体的内能减少。 ②做功改变物体的内能实质是内能与其他形式的能相互转化的过程。 (2)热传递: ①热传递的条件:物体之间(或同一物体不同部分)存在温度差。 ②物体吸收热量,物体内能增加;物体放出热量,物体的内能减少。 ③用热传递的方法改变物体的内能实质是内能从一个物体转移到另一个物体或从物体的一部分转移到另一部分。 3、做功与热传递改变物体的内能是等效的。 4、热量 (1)概念:物体通过热传递的方式所改变的内能叫热量。 (2)热量是一个过程量。热量反映了热传递过程中,内能转移的多少,是一个过程量。所以在热量前面只能用“放出”或“吸收”,绝对不能说某物体含有多少热量,也不能说某物体的热量是多少。 (3)热量的国际单位制单位:焦耳(J)。 第三部分、比热容 1、比热容的概念:单位质量的某种物质温度升高(或者降低)1℃吸收(或者放出)的热量叫做这种物质的比热容,简称比热。用符号c表示比热容。 2、比热容的单位:在国际单位制中,比热容的单位是焦每千克摄氏度,符号是J/(kg·℃)。 3、比热容的物理意义 (1)比热容是通过比较单位质量的某种物质温度升高1℃时吸收的热量,用来表示各种物质的不同性质。 (2)水的比热容是4.2×103J/(kg·℃)。它的物理意义是:1千克水温度升高(或降低)1℃,吸收(或放出)的热量是4.2×103J。 4、比热容表 (1)比热容是物质的一种特性,各种物质都有自己的比热。 (2)从比热表中还可以看出,各物质中,水的比热容最大。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响,很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温度升高的慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。 (3)水比热容大的特点,在生产、生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖。 5、说明 (1)比热容是物质的特性之一,所以某种物质的比热不会因为物质吸收或放出热量的多少而改变,也不

培训资料-印刷制版基础知识

印刷、制版基础知识 第一节印刷基本知识 一、印刷的五大要素 1.原稿:原稿是整个制版、印刷工艺中的依据,直接关系到印刷品的艺术效果和复制还原效果。凹印制版常见原稿有:黑稿、彩稿、印刷品原稿、摄影原稿、设计光盘原稿等。 2.印版:印版即提供印刷用的模版,它是由原稿到印刷品的印刷过程中重要的媒介物。印版因着墨和不着墨部分的结构形式不同而分为凸版、凹版、平版和孔版四类。其功能是根据原稿,区分出图文部分与非图文部分,使非图文部分形成空白不接受油墨,而图文部分则接受油墨,在印刷时,使附着油墨的图文转移到承印物的表面,从而完成一色的印刷。 3.油墨:油墨是获得印刷图文的主要材料之一,是体现原稿色彩的重要因素。油墨的种类很多,主要根据印版种类、印刷形式、承印材料的不同而区分,凹版包装印刷油墨主要有里印油墨、表印油墨两大类,其中里印油墨又可分为PVC用油墨、OPP用油墨、PET用油墨等。 4.承印材料:承印材料指印刷过程中承载图文墨色的材料。凹版包装印刷的承印材料主要有纸张、薄膜、铝箔等。薄膜又包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚脂(PET)等。 5.印刷设备:印刷设备主要指印刷、复合等机械,是实现印刷品生产的关键。 二、印刷种类 1.凸版印刷:凸版印刷简称凸印,俗称铅印,历史最久。目前我国印刷行业采用较多的活字版和铜锌版印刷。 2.凹版印刷:凹版印刷简称凹印,其图 文部分低于印版表面的空白部分。我国 的软包装印刷主要是采用凹版印刷。右 图为凹版印刷方式图解。 3.平版印刷:其印版上的图文和空白两 部分几乎处在同一平面上,故称为平版 印刷。胶印是常见的平版印刷方式。平 版印刷不是直接印刷,而间接印刷。 4.孔版印刷:孔版属于透过性印刷,利用细金属网透空的特性,将图文部分镂空而非图文部分以抗墨性胶质体保护,油墨置于版面上以刮版刮压,油墨透过镂空的图文部分转移到承印物上。常见的孔版印刷方式是丝网印刷,现在仍然应用广泛。 第二节凹版印刷的特点及国内凹印的发展 一、凹版印刷的特点 1.墨层厚实,墨色均匀。凹印能真实再现原稿效果,层次丰富、清晰,墨层厚实,墨色饱和度高,色泽鲜艳明亮,这是由凹印的特点所决定的。凹版印刷采用的是网穴结构,依靠墨量体积不同来表现层次。 2.印刷速度快?。现代凹版印刷机均采用圆压圆形式,特别是卷筒式凹版印刷机,印版滚筒和压印滚筒上没有空档,机器运转平稳,采用微机自动控制,印刷速度最高可达250米/分钟。 3.适应介质广泛。凹印适用的介质非常广,PVC、PET、PE、NY、CPP、OPP、BOPP、组合膜以及其它与以上材料有相同性质的薄膜类、纸张,甚至铝箔等。 4.产品适应范围广。通过选用不同的油墨,可以在纸张、塑料薄膜、纺织品、铝箔、玻璃纸等各种材料上印刷。凹版印刷机可以和柔印、丝印、烫印、凹凸压印、分切等多种工序组成自动化

PCIE基础知识

PCIe总线概述 随着现代处理器技术的发展,在互连领域中,使用离速差分总线替代并行总线是大势所趋。与单端并行信号相比,高速差分信号可以使用更高的时钟频率,从而使用更少的信号线, 完成之前需要许多单端并行数据信号才能达到的总线带宽。 PCI总线使用并行总线结构,在同一条总线上的所有外部设备共享总线带宽,而PCIe 总线使用了鬲速差分总线,并釆用端到端的连接方式,因此在每一条PCIe链路中只能连接两个设备。这使得PCIe与PCI总线釆用的拓扑结构有所不同。PCIe总线除了在连接方式上与PCI总线不同之外,还使用了一些在网络通信中使用的技术,如支持多种数据路由方式,基于多通路的数据传递方式,和基于报丈的数据传送方式,并充分考虑了在数据传送中出现服务质量QoS (Qual ity of Service)问题。 PCIe总线的基础知识 与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。PCIe 总线使用的层次结构与网络协议栈较为类似。 端到端的数据传递 PCIe链路使用“端到端的数据传送方式”.发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。

Da" Linker layer “ Ph 、sical layer ■ Data Linker la^^r 图41PCIe 总线的物理链蒋 由上图所示,在PCIe 总线的物理链路的一个数扌居通路(Lane)中,由两组差分信号,共4根 信号线组成。其中发送端的TX 部件与接收端的RX 部件使用一组差分信号连接,该链路也被 称为发送端的发送链路,也是接收端的接收链路:而发送端的RX 部件与接收端的TX 部件使 用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个 PCIe 链路可以由多个Lane 组成。 离速差分信号电气规范要求其发送端串接一个电容,以进行AC 耦合。该电容也被称为AC 耦合电容。PCIe 链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成, 信号接收端通过比较这两个信号的差值,判斯发送端发送的是逻辑“1”还是逻辑“0”。 与单端信号相比,差分信号抗千扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、 “贴近”,而且在同层。因此外部干扰噪声将被“同值”而且“同吋”加载到D+和D-两根信 号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。因此差分信号可以使用 更商的总线频率。 此外使用差分信号能有效抑制电磁干扰EMI (Electro Magnetic Interference) o 由于差分 信号D+与D-距离很近而且信号幅值相等.极性相反。这两根线与地线间耦合电磁场的幅值 相等,将相互抵消,因此差分信号对外界的电触千扰较小。当然差分信号的缺点也是显而易 见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。 PCIe 链路可以由多条Lane 组成,目前PCIe 链路可以支持1、2. 4. 8、12、16和32个Lane, 即X1、X2、X4、X8、X12. X16和X32宽皮的PCIe 链路。每一个Lane 上使用的总线 频率与PCIe 总线使用的版本相关。 第1个PCIe 总线规范为,之后依次为… 和。目前PCIe 总线的置新规范为,而正在开发过 程中,预计在2010年发布。不同的PCIe 总线规范所定义的总线频率和链路编码方式并不相 同,如表4T 所示。

高中物理热学知识点归纳全面很好

选修3-3热学知识点归纳 一、分子运动论 1. 物质是由大量分子组成的 (1)分子体积 分子体积很小,它的直径数量级是 (2)分子质量 分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁) 1摩尔的任何物质含有的微粒数相同,这个数的测量值: 设微观量为:分子体积V 0、分子直径d 、分子质量m ; 宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积: (对气体,V 0应为气体分子平均占据的空间大小) 分子直径: 球体模型: V d N =3A )2(34π 303 A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1 A 1A A N V V N V M N V N M n ====ρμρμ 2. 分子永不停息地做无规则热运动 (1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。 (2)布朗运动 布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。 (3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。 因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。 (4)布朗运动产生的原因 大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。 (5)影响布朗运动激烈程度的因素

汽车CAN总线基础知识培训资料

汽车C A N总线基础知 识

CAN总线协议 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线发展 控制器局域网CAN( Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。而且能够检测出产生的任何错误。当信号传输距离达到10km时,CAN仍可提供高达50kbit/s的数据传输速率。CAN总线的工作原理 CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。[1]CAN与I2C总线的许多细节很类似,但也有一些明显的区别。当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。

当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。它允许分布过程同步化,即总线上控制器需要测量数据时,可由网上获得,而无须每个控制器都有自己独立的传感器。 CAN总线在空闲(没有节点传输报文)时是一直处于隐性状态。当有节点传输报文时显性覆盖隐性,由于CAN总线是一种串行总线,也就是说报文是一位一位的传输的,而且是数字信号(0和1),1代表隐性,0代表显性。在传送报文的过程中是显隐交替的,就像二进制数字0101001等,这样就能把信息发送出去,而总线空闲的时候是一直处于隐性的。 CAN总线特征 (1)报文(Message)总线上的数据以不同报文格式发送,但长度受到限制。当总线空闲时,任何一个网络上的节点都可以发送报文。 (2)信息路由(Information Routing)在CAN中,节点不使用任何关于系统配置的报文,比如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。

热力学的基础知识

热力学的基础知识

热力学的基础知识 1、水和水蒸汽有哪些基本性质? 答:水和水蒸汽的基本物理性质有:比重、比容、汽化潜热、比热、粘度、温度、压力、焓、熵等。水的比重约等于1(t/m3、kg/dm3、g/cm3)蒸汽比容是比重的倒数,由压力与温度所决定。水的汽化潜热是指在一定压力或温度的饱和状态下,水转变成蒸汽所吸收的热量,或者蒸汽转化成水所放出的热量,单位是: KJ/Kg。水的比热是指单位质量的水每升高1℃所吸收的热量,单位是KJ/ Kg·℃,通常取4.18KJ。水蒸汽的比热概念与水相同,但不是常数,与温度、压力有关。 2、热水锅炉的出力如何表达? 答:热水锅炉的出力有三种表达方式,即大卡/小时(Kcal/h)、吨/小时(t/h)、兆瓦(MW)。 (1)大卡/小时是公制单位中的表达方式,它表示热水锅炉每小时供出的热量。 (2)"吨"或"蒸吨"是借用蒸汽锅炉的通

俗说法,它表示热水锅炉每小时供出的热量相当于把一定质量(通常以吨表示)的水从20℃加热并全部汽化成蒸汽所吸收的热量。 (3)兆瓦(MW)是国际单位制中功率的单位,基本单位为W (1MW=106W)。正式文件中应采用这种表达方式。 三种表达方式换算关系如下: 60万大卡/小时(60×104Kcal/h)≈1蒸吨/小时〔1t/h〕≈0.7MW 3、什么是热耗指标?如何规定? 答:一般称单位建筑面积的耗热量为热耗指标,简称热指标,单位w/m2,一般用qn表示,指每平方米供暖面积所需消耗的热量。黄河流域各种建筑物采暖热指标可参照表2-1

上表数据只是近似值,对不同建筑结构,材料、朝向、漏风量和地理位置均有不同,纬度越高的地区,热耗指标越高。 4、如何确定循环水量?如何定蒸汽量、热量和面积的关系? 答:对于热水供热系统,循环水流量由下式计算: G=[Q/c(tg-th)]× 3600=0.86Q/(tg-th)式中:G - 计算水流量,kg/h

热学必背知识点

物理选修3—3模块必背知识点 考点一 分子动理论和内能的基本概念 1.分子动理论 (1)物体是由大量分子组成的: ①多数分子大小的数量级为10-10 m. ②阿伏加德罗常数N A =6.02×1023 mol -1. (2)分子在永不停息地做无规则热运动: 实验依据:布朗运动、扩散现象. ①扩散现象 由于物质分子的无规则运动而产生的物质迁移现象.温度越高,扩散得越快. ②布朗运动 现象:悬浮在液体(或气体)中的固体微粒的永不停息的无规则运动. 本质:布朗运动间接反映.... 了液体(或气体)分子的无规则运动. 特点:温度越高,微粒越小,布朗运动越剧烈. (3)分子间存在相互作用力. (4)气体分子运动速率的统计分布 氧气分子速率分布呈现中间多、两头少的特点. 2.温度是分子平均动能的标志、内能 (1)温度:一切达到热平衡的系统都具有相同的温度. (2)两种温标:摄氏温标和热力学温标的关系:T =t +273.15 K. (3)温度是分子热运动平均动能的标志. (4)分子的势能: ①意义:由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能. ②分子势能的决定因素: 微观上——决定于分子间距. 宏观上——决定于体积和状态. (5)物体的内能: ①物体中所有分子热运动的动能与分子势能的总和. ②物体的内能大小由物体的温度、体积、物质的量决定.(气体由于分子间距太大,往往不考虑其分子势能,即理想气体的内能由它的温度和物质的量决定) ③物体的内能与物体的位置高低、运动速度大小无关. ④改变物体内能有两种方式:做功和热传递. 考点二 微观量的估算 1.微观量:分子体积V 0、分子直径d 、分子质量m 0. 2.宏观量:物体的体积V 、摩尔体积V mol 、物体的质量m 、摩尔质量M 、物体的密度ρ. 3.关系 (1)分子的质量:m 0=M N A =ρV mol N A . (2)分子的体积:V 0=V mol N A =M ρN A .(对于固体和液体是分子的体积,对于气体是分子所占据空间的体积) (3)物体所含的分子数:N =V V mol ·N A =m ρV mol ·N A 或N =m M ·N A =ρV M ·N A .

凹印版辊的基本知识综述

上世纪90年代初,受国内包装市场飞速发展和国际 制版先进设备迅速更新的影响,制版设备与技术得到快速发展,制版企业遍地开花,版材市场供不应求。90年代中后期,随着计算机的普及与性能提高,制版质量大幅提高,制版周期不断缩短。经历了近20年的高速发展,我国软包装制版行业也经历了一个不断发展的过程。 俗话说,印刷品质量“三分在印刷,七分靠制版”。那么,当前我国塑料软包装行业制版技术如何?其市场状况怎 样?印刷制版过程中需要注意哪些问题?本期技术专题,编辑部将和您一起关注制版的相关技术。 凹版印刷作为印刷工艺的一种,以其印制品墨层厚实,颜色鲜艳、饱和度高、印版耐印率高、印品质量稳定、印刷速度快等优点在印刷包装及图文出版领域内占据极其重要 的地位。从应用情况来看,在国外,凹印主要用于杂志、产品目录等精细出版物,包装印刷和钞票、邮票等有价证券的印刷,而且也应用于装饰材料等特殊领域;在国内,凹印则主要用于软包装印刷,随着国内凹印技术的发展,也已经在纸张包装、木纹装饰、皮革材料、药品包装上得到广泛应用,

运城制版有限公司就是一家在各个领域均有水准的专业制 版公司,其使用的设备均从德国或瑞士进口,其生产的各种凹印版辊质量在全国都是首屈一指的,其生产的凹印版辊已有部分向国外出口。近年来,凹印版辊印刷大量采用醇溶性油墨和水性油墨、UV油墨,既符合了国家绿色环保印刷的要求,又能适应薄膜、复合材料、纸张等多种介质,因而在包装印刷领域保持了常胜不衰的局面,成为国内印刷行业中不可或缺的重要一员。 凹印版辊的制作工艺,从其发展的过程来看,有多种工艺选择,分别是碳素纸照相法、直接加网法、胶凹印转换电子雕刻、数字电子雕刻、激光雕刻后腐蚀、激光直接雕刻等等。在此,我主要谈谈其中目前最重要也是应用最广泛的电子雕刻凹印版辊的制作。 从凹印版辊的制作流程来看,主要有以下步骤:印版基体制作、印版辊筒镀铜处理、原稿(或设计)图像文件制作、印版图像电子雕刻制作、印版辊筒镀铬。其中,印版基体制作及印版镀铜辊筒处理是与原稿(或设计)图像文件制作是同步进行的,当印版镀铜辊筒处理与原稿(或设计)图像文件制作完成后,才可进行印版图像电子雕刻制作,最后印版镀铬,至此完成印版的全部制作过程。

计算机基础知识及答案(二)

计算机基础知识及答案( 二) 1 微型计算机采用的是冯? 诺依曼体系结构,其硬件系统由运算器、控制器、存储器、输入设备和 ___C___ 五部分组成。 A 键盘、鼠标器。 B 显示器、打印机。 C 输出设备。 D 系统总线。 2、在微型计算机中,其核心部件中央处理器CPU 被称之为—D—。 A关键部件。B主要部件。C必备部件。D微处理器MPU(Micro ProcessingUnit) 。 3、微处理器把运算器和__A ___ 集成在一块很小的硅片上,是一个独立的部件。 A 控制器。 B 内存储器。 C 输入设备。 D 输出设备。 4、微型计算机的基本构成有两个特点:一是采用微处理器,二是采用___D___ 。 A 键盘和鼠标器作为输入设备。 B 显示器和打印机作为输出设备。CROM 和RAM 乍为主存储器。D 总线系统。 5、根据微型计算机硬件构成的特点,可以将其硬件系统具体化为由微处理器、内存储器、接口电路、I/O 设备和__D ___ 组成。 A 键盘、鼠标器。 B 显示器、打印机。 C 外围设备。 D 总线系统。 6、在微型计算机系统组成中,我们把微处理器CPU 只读存储器ROM 和随机存储器RAME 部分统称为___D___ 。 A 硬件系统。 B 硬件核心模块。 C 微机系统。 D 主机。 7、微型计算机使用的主要逻辑部件是___D___ 。 A 电子管。 B 晶体管。 C 固体组件。 D 大规模和超大规模集成电路。 8、在微型计算机中,通常把输入/输出设备,统称为__D _____ 。

ACPU B 存储器。C 操作系统。D 外部设备。 9、下面是关于微型计算机总线的描述,正确的有___C___ 。 A 总线系统由系统总线、地址总线、数据总线和控制总线组成。 B 总线系统由接口总线、地 址总线、数据总线和控制总线组成。C系统总线由地址总线、数据总线和控制总线组成。D 地址总线、数据总线和控制总线的英文缩写分别为DB AB CBo 10、微型计算机的系统总线是CPU与其它部件之间传送D信息的公共通道。 A输入、输出、运算。B输入、输出、控制。C程序、数据、运算。D数据、地址、控制。 11、CPU与其它部件之间传送数据是通过A实现的。 A数据总线。B地址总线。C控制总线。D数据、地址和控制总线三者。 12、下面是关于数据总线(Data Bus )的描述,不正确的是_D ____________ 。 A数据总线用来传送数据信息。B数据总线的位数,决定了CPU 一次能够处理的数据的位数。CMPU H次能够处理的数据的位数称为字长。D字长越长的CPU处理信息所需的时间越长。 13、CPU与其它部件之间传送地址是通过B实现的。 A数据总线。B地址总线。C控制总线。D数据、地址和控制总线三者。 14、下面是关于地址总线(Address Bus )的描述,不正确的是_D _____________ 。 A地址总线用来传送地址信息。B地址总线的根数,决定了CPU可访问的内存最大范围。C若地址总线为n根,则该微处理器可访问内存的最大范围是2的n次方。D拥有32根地址总线的微处理 器,其可访问内存的最大范围是4000M 15、CPU与其它部件之间传送控制信号是通过_________ C_实现的。 A数据总线。B地址总线。C控制总线。D数据、地址和控制总线三者。

高中物理知识点总结热力学基础

高中物理知识点总结热 力学基础 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一.教学内容:热力学基础(一)改变物体内能的两种方式:做功和热传递 1. 做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。 2. 热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。 (二)热力学第一定律 1. 内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q 的总和。 2. 表达式:。 3. 符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热量Q 取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能减少取负值。 (三)能的转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒定律。 (四)热力学第二定律 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。 (2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。

热力学第二定律揭示了涉及热现象的宏观过程都有方向性。 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体的熵就越大。 (五)说明的问题 1. 第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。 2. 第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。 (六)能源和可持续发展 1. 能量与环境 (1)温室效应:化石燃料燃烧放出的大量二氧化碳,使大气中二氧化碳的含量大量提高,导致“温室效应”,使得地面温度上升,两极的冰雪融化,海平面上升,淹没沿海地区等不良影响。 (2)酸雨污染:排放到大气中的大量二氧化硫和氮氧化物等在降水过程中溶入雨水,使其形成酸雨,酸雨进入地表、江河、破坏土壤,影响农作物生长,使生物死亡,破坏生态平衡,同时腐蚀建筑结构、工业装备、动力和通讯设备等,还直接危害人类健康。 2. 能量耗散和能量降退 (1)能量耗散:在能量转化过程中,一部分机械能转变成内能,而这些内能最终流散到周围的环境中,我们没有办法把这些流散的内能重新收集起来加以利用,这种现象叫做能量的耗散。

凹版印刷知识考试题库

凹版印刷知识考试题库 一、填空题: 1.油墨的主要成分包含{颜料}、{树脂{连接料}}、{助剂}、{溶剂}。 2.员工更换或研磨刮刀时,要{戴防割手套},更换下来的废弃刀片要放入{废刮刀专用桶}内,不得{随意丢入垃圾箱},以免割伤他人。 3.电眼间距的检测必须在每一卷的自检中进行,用{钢尺}测出一个版周的实际数值,,目测预估到小数点后一位,除以一个版周里的{版数},得到的数值即为电眼间距值。该数值必须控制在工作标准书所示Pitch值的允差范围之内。如有超出,须{及时调整相关生产参数)。 4.压胴使用过程中出现异常,由机台人员及时提出异常现象,用{油性笔}做好标示并提供{印刷异常样品},并填写{废压胴单}交带班主管签字后交版库,以便及时研磨修缮。 5.印刷过程中出现较严重品质异常,领机应首先{处理异常},然后{夹条标示}并{在流程单及MES 系统上注明},且应送{检品}复卷确认,视情况{整版不良去除或注明哪几条单条报废}。 6.在自检中油墨附着性用{24mm}宽的透明胶带粘在印刷面的油墨上,再以{1m/秒}的速度匀速撕下胶带,膜上的油墨{90%}未被粘下为合格,否则作异常提报。 7.常说的“5S”包含{整理}、{整顿}、{清洁}、{清扫}、{教养}五项。 8.印刷时色差有个标准范围,在标准范围内可以正常出货,而一旦超出这个范围,则就有可能报废。我们所说的这个范围是:dH{≤1.0}、dE{≤3.0}以内。 9.版胴不良的确认必须由领机提报给{带班主管}确认,提供{异常留样}并填写{版胴异常提报单},由{带班主管}签名,同时必须知会{版库人员},便于分析、判别、处理、改善版胴存在的问题。 10.诺克尔粘度仪控制面板上有两行显示粘度的数值,其中上面一行数字代表{油墨的实际粘度}。 11.我们常用色差仪检测在制品与标准样品之间的颜色差别程度,美能达CR-10色差仪上的dH、dC、dL、dE都代表不同的含义。其中dH数值后会跟有一个字母,此字母表明的是:与基准色相比较被测色在哪个方面发生了改变:“R”代表{偏红}、“B”代表{偏兰}、“Y”代表{偏黄}、“P”代表{偏紫}、“G”代表{偏绿}。 12.首自检取样数量要求{≥2版周},取样频次要求{每卷}取样1次。 13.为保证生产顺畅,交接班时,交班方至少给接班方准备{2H}生产的原物料;如果是换单交班的,则须完成{新订单的领料}。 14.半制品所用纸管应与原膜宽度相同,最长不能长出半成品{2cm}。 15.现场人员设备保养项目包括{清洁}、{检查}、{给油}三项。 16.版胴在上机前,应根据{排程}、{送版单}、{版套标示}、{版顶版号}进行确认。 17.上版时必须根据《工作指示单》要求,先确认印刷半成品{出卷方向},进而确定装版方向。 18.异常原因细部分析中的5M1E是指:{人}、{机器}、{材料}、{方法}、{环境}、{测量}。 19.《印刷制程检验标准》上规定,双向拉伸类薄膜:主要图案套色偏差{≤0.20mm},次要图案{≤0.35mm}。 20.印刷机的张力系统包含{印前张力}、{印后张力}、{收卷张力}、{放卷张力}、{收卷牵引辊张力}、{放卷牵引辊张力}六部分。 21.印刷时所用的单元机组都要打开加热开关,以便油墨及时干燥。那么设定温度时需要考虑{印刷面积的大小}、{印刷速度的快慢}、{印刷材质的不同}三个因素。 22.蒸煮油墨中添加固化剂的作用是{增加油墨的附着力}。 23.印刷机正常停机时,应先降速至{50 }m/min以下,再按停机按钮。 24.印刷首检的八项管制重点是:{外观}、{颜色准确性}、{条码正确性}、{图案文字正确性}、{出

计算机基础知识及答案二

----- 计算机基础知识及答案(二) 1、微型计算机采用的是冯·诺依曼体系结构,其硬件系统由运 算器、控制器、存储器、输 入设备和___C___五部分组成。 A 键盘、鼠标器。 B 显示器、打印机。 C 输出设备。 D 系统 总线。 2、在微型计算机中,其核心部件中央处理器CPU,被称之为 ___D___。 A 关键部件。 B 主要部件。C必备部件。D 微处理器 MPU(Micro Processing Unit)。 、微处理器把运算器和3集成在一块很小的硅片上,是一个独立的 部件。__A____ A 控制器。 B 内存储器。 C 输入设备。D输出设备。 4、微型计算机的基本构成有两个特点:一是采用微处理器,二

是采用___D___。 显示器和打印机作为输出设备。键盘和鼠标器作为输入设备。B A CROM和RAM作为主存储器。 总线系统。D 、根据微型计算机硬件构成的特点,可以将其硬件系统具体化为由微处理器、内存储器、5 组成。I/O 设备和__D____接口电路、 显示器、打印机。B A 键盘、鼠标器。总线系统。 D C 外围设备。 CPU、在微型计算机系统组成中,我们把微处理器6、只读存储器ROM和随机存储器RAM三 。部分统称为___D___ 主机。微机系统。 B 硬件系统。硬件核心模块。C D A 、微型计算机使用的主要逻辑部件是7。___D___ A 电子管。 B 晶体管。 C 固体组件。 D 大规模和超大规模集成电路。

8、在微型计算机中,通常把输入/ 输出设备,统称为__D____。ACPU。B 存储器。C操作系统。 D 外部设备。 9、下面是关于微型计算机总线的描述,正确的有___C___。 ----- ----- A 总线系统由系统总线、地址总线、数据总线和控制总线组成。 B 总线系统由接口总线、地 D系统总线由地址总线、数据总线和控制总线组成。C 址总线、数据总线和控制总线组成。 地址总线、数据总线和控制总线的英文缩写分别为DB、AB,CB。 10、微型计算机的系统总线是CPU与其它部件之间传___D___信息的公共通道。 送 A 输入、输出、运算。 B 输入、输出、控制。 C 程序、数据、运算。 D 数据、地址、控制。

PCI-Express总线基础知识

PCIe总线的基础知识 与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。PCIe 总线使用的层次结构与网络协议栈较为类似。 4.1.1 端到端的数据传递 PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4?1所示。 由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe链路可以由多个Lane组成。 高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。该电容也被称为AC 耦合电容。PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。 与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。因此差分信号可以使用更高的总线频率。 此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。

物理热学知识点总结

物理初三热学知识点总结 1.温度、温度计 --温度:物体的冷热程度 --测量温度的工具——温度计 ℃:摄氏度(冰水混合物的温度规定为0℃,沸水的温度规定为100℃,100等分后每一份为1℃) ℉:华氏度 注意:在做“读出温度计示数”题时应看好温度数值增加是向上还是向下,上则为正度数,下则为负度数 2.熔化&凝固、汽化&液化、升华&凝华 --基本概念 固→液熔化吸热液→气汽化吸热固→气升华吸热 液→固凝固放热气→液液化放热气→固凝华放热 --重要知识点 熔化&凝固:晶体有固定的熔点(凝固点),非晶体没有固定的熔点(凝固点)。 不同的晶体,熔点(凝固点)一般不同。 影响液体蒸发快慢的因素有:①液体温度的高低;②液体表面积的大小;③液体表面空气流动的快慢。 海拔高,气压低,沸点低;海拔低,气压高,沸点高。 液化的两种方法:降低温度&压缩体积。 蒸发的两个条件:温度达到沸点&持续吸热。 蒸发吸热,有致冷作用。 -- 3.分子动理论&内能 --基本概念 分子动理论:①物质是由分子构成的;

②分子在永不停息做无规则运动; ③分子之间有着相互作用的引力与斥力。 (实例:两物体吸在一起拆不开,错例:挂钩吸在墙壁上——压强) 扩散现象:①扩散现象说明了分子在永不停息做无规则运动; ②温度越高,分子运动得越快(剧烈),扩散现象进行越快。 内能:①物体所有分子所具有的分子动能和分子势能的总和; ②改变物体内能的两种方法:做功和热传递。 ③内能改变的两种宏观表现:温度、物态 --易错点 1.物体吸收热量,内能不一定增加(同时对外做功) 2.外界对物体做功,内能不一定增加(同时吸收热量) 3.内能增加,温度不一定上升(晶体熔化时) 4.水达到沸点后,内能增加,温度不再上升 5.做功和热传递改变内能是等效的 6.热传递的实质:内能的转移;做功的实质:能量的转化 4.热量&比热容、燃料&热机 --热量 在热传递的过程中,传递能量的多少,叫热量(热传递时内能变化的量度)。单位焦耳(J) --比热容 单位质量的某种物质,温度升高(降低)1℃吸收(放出)的热量,叫做这种物质的比热容。 公式:Q=cm?t 单位:J/(kg·℃) 比热容是物质的一种特性,同一种物质比热容一般不变,不同物质比热容一般不同。(注:①Q=cm?t中,任意一个量和Q为定值时,其他两个量成反比;②通常情况下水的比热容要比大多物质要大。) --燃料、热机 热值:1kg某种燃料完全燃烧时放出的热量叫做燃料的热值。 热机:把内能转化为机械能的机器。分为蒸汽机、内燃机(汽油、柴油)、喷气式发动机。汽油机四冲程:吸气(汽油和空气)、压缩(机械→内)、做功(内→机械)、排气 热机效率:转化为机械能的内能÷总内能×100%

现场总线基础知识

现场总线基础知识 现场总线技术综述 现场总线(Fieldbus)是80年代末、90年代初国际上发展形成的,用于过程自动化、制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都先后在不同程度上进行了现场总线技术与产品的开发。现场总线设备的工作环境处于过程设备的底层,作为工厂设备级基础通讯网络,要求具有协议简单、容错能力强、安全性好、成本低的特点。 具有一定的时间确定性和较高的实时性要求,还具有网络负载稳定,多数为短帧传送、信息交换频繁等特点。由于上述特点,现场总线系统从网络结构到通讯技术,都具有不同上层高速数据通信网的特色。 一般把现场总线系统称为第五代控制系统,也称作FCS——现场总线控制系统。人们一般把50年代前的气动信号控制系统PCS称作第一代,把4~20mA等电动模拟信号控制系统称为第二代,把数字计算机集中式控制系统称为第三代,而把70年代中期以来的集散式分布控制系统DCS称作第四代。现场总线控制系统FCS作为新一代控制系统,一方面,突破了DCS系统采用通信专用网络的局限,采用了基于公开化、标准化的解决方案,克服了封闭系统所造成的缺陷;另一方面把DCS的集中与分散相结合的集散系统结构,变成了新型全分布式结构,把控制功能彻底下放到现场。可以说,开放性、分散性与数字通讯是现场总线系统最显著的特征。 现场总线技术在历经了群雄并起,分散割据的初始阶段后,尽管已有一定范围的磋商合并,但至今尚未形成完整统一的国际标准。其中有较强实力和影响的有:FoudationFieldbus (FF)、LonWorks、Profibus、HART、CAN、Dupline等。它们具有各自的特色,在不同应用领域形成了自己的优势。本文将在简要描述现场总线技术特点的基础,紧扣系统的可靠性、实用性等,介绍现场总线网络结构、体系结构等关键技术及目前较为流行的几种有实力的现场总线技术的现状,最后阐述现场总线的发展趋势与技术展望。 一、现场总线的技术特点 1、系统的开放性。开放系统是指通信协议公开,各不同厂家的设备之间可进行互连并实现信息交换,现场总线开发者就是要致力于建立统一的工厂底层网络的开放系统。这里的开放是指对相关标准的一致、公开性,强调对标准的共识与遵从。一个开放系统,它可以与任何遵守相同标准的其它设备或系统相连。一个具有总线功能的现场总线网络系统必须是开放的,开放系统把系统集成的权利交给了用户。用户可按自己的需要和对象把来自不同供应商的产品组成大小随意的系统。 2、互可操作性与互用性,这里的互可操作性,是指实现互连设备间、系统间的信息传送与沟通,可实行点对点,一点对多点的数字通信。而互用性则意味着不同生产厂家的性能类似的设备可进行互换而实现互用。 3、现场设备的智能化与功能自治性。它将传感测量、补偿计算、工程量处理与控制等

相关文档