文档库 最新最全的文档下载
当前位置:文档库 › 结构动力学例题复习题

结构动力学例题复习题

结构动力学例题复习题
结构动力学例题复习题

第十六章结构动力学

【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。

图16-6

【解】各刚架的自由度确定如图中所示。这里要注意以下两点:

1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。

2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。

【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。

设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则

)(R I y P D I P +δ+?=?+?+?=

式中,)t (q EI

38454

P =?,EI 483 =δ。将它们代入上式,并注意到y

m I -=,y c R -=,得

)(48)(38453

4y c y m EI

t q EI y --+=

图16-7

经整理后可得

)(t P ky y c y m E =++

式中,3EI 481k =δ=

,)(8

5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和

实际动荷载引起的位移相等。图a 的相当体系如图f 所示。

【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和

3

m

质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。

【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。

这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

量,而其它一切位移均可利用它来表示。

图16-8

)t (α以顺时针向为正。则A 点有位移)t (2α 和加速度)t (2α

;D 点有位移)t (2

和加速度)t (23α 及速度)t (2

3α ;C 点约束反力为)t (k Rc α= 。 由

∑=0M

B

,有

04

3)(232323221=?+?+?+?+?

t q R R I I C 将惯性力、阻尼力及约束反力代入上式,得

04

3)t (q 23)]t (k [23)]t (c 23[23)]t (3m 23[2)]t (m 2[2=?+?α-?α-?α-?α-

经整理,运动方程为

)t (q 8

9)t (k )t (c 49)t (m =α+α+α 小结:

? 例16-2及例16-3讨论的是单自由度的一般情况下的运动方程的建立。建立方程的思路是通过分析动力平衡或考虑变形协调。一般来说,对于单自由度体系,求11δ和11k 的难易程度是相同的,因为它们互为倒数,都可用同一方法求得。对于多自由度体系,若是静定结构,一般情况下求柔度系数容易些,但对超静定结构就要根据情况而定。 ? 刚度法和柔度法。它们都是根据达朗贝尔原理和所采用的阻尼理论在体系上加惯性力和阻尼力。刚度法是考虑质量自由度方向的平衡;柔度法是建立沿自由度方向位移的协调条件。

? 所谓结构振动自由度是指:确定体系全部质点位置所需的独立位移分量的个数。 在例16-3中我们选取)t (α为独立位移分量,由此得两质点处的位移、加速度及惯性力的表达式。

? 体系的振动自由度数目既和体系的质点数目有关,又不完全取决于质点数目,自由

度还和体系的可能位移状态有关(如例题16-3),因此要根据具体问题,按自由度定义分析确定。另一方面,自由度是确定质点空间位置的独立坐标(位移分量)个数,它和结构超静定次数或独立位移个数没有关系。

? 任何单自由度的振动问题,本质上都可抽象为质点、弹簧、阻尼器体系。从实际结构到抽象模型的关键是求m 和k (或δ)。

【例16-4】试 写 出 图 16-9a 质 点 m 的 运 动 微 分 方 程 , 并 计 算 各 系 数 。

图16-9 【解】

(1) 列位移方程, )()()(1111t Q t P y m y Q P ?+?+-=

δ (2) 计算系数项(图b) , EI a a a a EI

34232221

1311=

??

? ???????=δ (3) 计算自由项(图c,d )

EI Pa a a a a Pa a a Pa EI

P

1211632/2212123222

1

211

31=

??? ??????+?????=? 同理, EI

Qa Q

121131=? (4) 将 系 数 代 入 位 移 方 程 ,

)(1211)(1211343

3

3

t Q EI

a

t P EI

a

y y

m EI

a

+

=+

或)(16

11)(16

11433

t Q t P y a

EI y m +

=

+

【例16-5】 试 按刚度法列 出 图 16-10a 所示 刚 架 在 给 定 荷 载 作 用 下 的

动 力 平 衡 方 程 。

图16-10 【解】

( 1 ) 考 虑 质 点 m 平 衡 (图b) 有

I S = , y

m I -= (2) 确 定 弹 性 力 恢 复 力 S ,

弹 性 力 恢 复 力S 可 以 认 为 由 两 部 分 叠 加 而 成 。 第 一 部分 为 使 m 产 生 位 移 施 加 的 力11R ; 第 二 部 分 为 m 不 动 在 荷 载 作 用 下 产 生 的 反 力 P R 1 , 即 P R R S 111+= ,

()

y a l a EI

y k R +==211113 , ()a l a t ql R P +=8 sin 31θ

( 3 ) 代 回 动 力 平 衡 方 程 得 ,

()

()a l a t

ql y a l a EI y m +=++8 sin 332θ

【例16-6】 图 16-11a 所示梁不计自重 ,求 自 振 频 率 ω 。

图16-11

【解】由M 图(图b ),求得柔 度 为:EI l 192/53

=δ 。 所以, 35/1921Wl EIg mg g

m =δ

=δ=

ω 【例16-7】 图 16-12a 所示 单 跨 梁 不 计自重 ,杆 无 弯 曲 变 形 ,弹 性 支

座 刚 度 为 k ,求 自 振 频 率 ω 。

图16-12

【解】在 W 处 加 )4/(1,)2/(1,111k k P =δ=?=

()W mg g

m /kg 4111

11=δ=δ=

ω 。

【例16- 8】 图 16-13a 所示梁不计自 重 ,2

4

m kN 102,kN 200??==EI W ,求 自 振 圆频 率 。

【解】由于对称跨中无转角 ,求刚度k 。2/32

1212331EI EI

l EI k ===

,则kN/m 10624

1?==k k 。14s 2.54200

/106-=?====ωm

kN W kg mg kg m k

图16- 13

【例16-9】 试求图16-14a 所示结构的自振频率。略去杆件自重及阻尼影响。

图16-14

【解】图a 为一次超静定结构,用力矩分配法作出单位弯矩图(图b )。计算质点处的柔度系数11δ(即位移计算),由图b (或图c )与图d (虚拟状态),得

EI

l EI l EI l l l l EI l EI 3

3331104219.0153623512348132221421481==??? ??-=???? ???-=δ 则,m

l EI

m l EI m 3311172.82315361==δ=ω。

【例16-10】作图16-15a 所示 结构的动 力 弯 矩 幅 值 图 。已 知 质 点 重 W =

1.2kN ,扰 力 幅 值 P = 75.0kN ,扰 力 频 率 -1s 177=θ,梁 的 抗 弯 刚 度 EI =

4490kN ·m 2

图16-15

【解】由图b 列 幅 方 程 ,即

P A m A P 1211δθδ+=,P m A P 1211)1(δθδ=-,因为 11

1

δωm =

P P m P

A P P P 112

2211111

)

1(μδδω

θθδδ=-=

-=

,2

211

ω

θμ-=

由图c 求柔度系数11δ,即kN /000279.034311

m EI

m ==δ, 由图d 求柔度系数P 1δ,即kN /000408.061131m EI

m P

==δ, 111

2s 78561-==

δωm ,

kN

37.1, m 000102.075.0000408.03

1

, 3

1

, 2 ,s 63.8821-=-=??-=-===-A m A θμωθω

将动荷载P 和惯性力A m 2

θ加于结构上,得动力弯矩幅值图如图e 所示。

【例16-11】 图16-16a 所 示 体 系 中 ,电 机 重 kN 10=W 置 于 刚 性 横 梁 上 ,电 机 转 速 min /500r n = ,水 平 方 向 强 迫 力 为 ) sin(kN 2)(t t P θ?=,已 知 柱 顶 侧 移 刚 度 kN/m 1002.14

?=k ,自 振 频 率 -1

s 100=ω 。求 稳 态 振 动 的 振 幅 及 最 大 动 力 弯 矩 图 。

图16-16

【解】只有水平振动。干扰力频率-1

s 36.52=θ ,动力系数 ,378.1=μ 静位移 m 9610.1/1002.124

4

st -=?==

m

kN kN k P y 振 幅 mm 27.09610.1387.1 4

st =?=μ=-m y A

动 力 弯 矩 图 (图c )M M M P M D 756.22378.1=??=μ= 。

【例16-12】 图 16-17a 所示 体 系 各 柱 EI = 常 数 ,柱 高 均 为 l ,

))/(18(3ml EI =θ。求 最 大 动 力 弯 矩 。

图16-17

【解】由图b 可知,3336123l EI

l EI k =?

=,则自 振 频 率3

36ml

EI

m k

==ω。

动力系数211

2

2

θ-=

μ,最 大 动 力 弯 矩 M P M D μ=(max)(见图c 、d )。 【例16-13】 求 图 16-18a 所示 体 系 的 自 振 频 率 和 主 振 型 ,并 作 出 振 型 图 。已 知 :m m m m ==21,2,EI = 常 数 。

图16-18

【解】用柔度法作。

1.为求柔度系数,首先绘出单位弯矩图(图b 和c)。由位移计算公式, 得

EI 3333.111=δ,EI 5.02112-=δ=δ,EI 5833.022=δ

2.求频率

将它们代入频率方程,即

01

212

2221

21122

111=ω

-δδδω-

δm m m m

展开上式并令

λ=ω2

1

得 ()()0212

12

22112221112=δ-δδ+λδ+δ-λm m m m

()()212112221122221112221112,1m m m m 4

1

2m m δδ+δδ-δ+δ±

δ+δ=

λ 两个根为 EI m 883.21=λ,EI m 366.02=λ 从而可得两个自振频率为 m EI 5889.0111=λ=

ω, m EI 653.112

2=λ=ω 3.求主振型

下面确定相应的两个主振型。求第一振型时,将1ω=ω代入上式,由于系数行列式为零,所以两个方程线性相关,只有一个是独立的,可由其中任何一式求得)

1(1A 与)

1(2

A 的比

值,比如由第一式可得

4338.05.03333.125889.0122

121

112

1)

1(1

)

1(21-=-?-=δδ-ω==ρEI

m EI m EI m m m A A

同理可求得第二振型为

6012.41

2

1211122)

2(1

)

2(22=δδ-ω==ρm m A A

两振型的规准化矩阵表达式为

??????-=????????????δδ-ω=4338.011121211121)

1(m m A

,??????=?????

???????δδ-ω

=6012.411121211122)

2(m m A

如图d 、e 所示。

【例16-14】 求 图16-19a 所 示 体 系 的 频 率 方 程 。

图16-19

【解】本题为两个动力自由度(图b )。另外注意的是,水平向的振动的质点是m 2。于是由图b 列 幅 值 方 程 :

?

??=ωδ+ωδ=ωδ+ωδy y m x m x y m x m 22222121221122,21210

211122

221112m m m m ωδδωωδδω--=, 由图c 、d 求柔度系数,其结果如下。

δδδδ11

312213223

3243====l EI l EI l EI

,,

【例16-15】 求 图 16-20a 所示 两 个 自 由 度 体 系 的 自 振 频 率 , k EI

l =

123

图16-20

【解】用柔度法解。首先根据图c 、d 计算柔度系数,其位移计算公式为

?∑-=δc R dx EI M M j

i ij ,这里 k

c 支座反力=为弹支座处位移。

EI

l k EI l k l l l l l l EI 484941212132221322113

311=+=

?????

? ??

?--??? ??+??+??=δ EI l k EI l 4894163

322=

+=δ,EI

l k EI l 48134163

32112=+=

δ=δ。

将它们代入频率方程,{}[][]{}01

2=ω

-δE M ,解得 3

1953

.0ml EI

=ω,32054.3ml EI =ω。

【例16-16】求 图 16-21a 所示 体 系 的 自 振 频 率 、振 型 及 广 义 质 量 。

图16-21

【解】由图b 幅 值 方 程 为 :

()()0

011212

1232=--+=--kA A A k A m A A k l m ωω

整理后得, (

)

(

)

??

?

??=+-=

-+02212

221kA A k m A k m kA ωω 令上的系数行列为零,得频率方程,由该方程的两频率如下

()()m

k m

k 2

53,

2

53222

1+=

-=

ωω

振 型 1:

2

1

521-=

A A ,振 型 2:2)15(21+-=A A ,见图c 。 广 义 质 量 为:m m m M 38.112150012151=??

????????-????????????-=,

m m m M 62.312150012152=??

?

???????+-????????????+-=

【例16-17】 求 图16-22a 示 桁 架 的 自 振 频 率 。各 杆 EA 为 常 数。

图16-22

【解】 将 振 动 分 为 竖 向 、水 平 分 量 ,求 1N ,2N

δδδ112212272483===/,/,/,EA EA EA ;

{}λω==1141972/./,m EA 3.303T

ωλωλ11221026510550====/.(/),/.(/),EA m EA m

【例16-18】 试求图16-23a 所示刚架的自振频率和主振型。EI=常数。

图16-23

【解】图a 在不计轴向变形情况下,则与图b 的振动是相同的。因此图a 可分成反对称(图c )和正对称(图d )的振动。

第一频率由单自由度频率计算公式 m

k

=ω可知,则为反对称情况。由单跨梁的位移计算公式,得柔度系数为

EI

l 76873

11=δ

则第一频率为

3

311147.1077681ml

EI

ml EI m ===

δω 同理第二频率为

3

322

286.131921ml EI

ml EI m ==

=

δω

振型:第一振为反对称振动,如图e 所示;第二振为对称振动,如图f 所示;

【例16-19 】 图16-24所示梁的质量重kN G 20=,振动力最大值kN P 8.4=,干扰频率s

130=θ,已知梁的GPa E 210=,4

4106.1m I -?=。试求两质点处的最大竖向位移。

梁自重不计。

【解】用柔度法解。由图b 、c 、d 计算系数及自由项如下:

EI 62211=

δ=δ, EI 31412=δ, EI P P 8511=?, EI

P P 241752=?。 s 130=θ代入,稳态振动位移幅值方程 {}[][]{}{}P A E M ?θ-=??

? ??ω-δ2211并乘以EI 有

???=+-=++-003889.01009.25514.90034.0514.91009.252

121A A A A 解得 m A 3110268.2-?= ,m A 3210409.2-?=

图16-24

【例16-20】 图16-25a 所示刚架各横梁刚度无穷大,试求各横梁处的位移幅值和柱端弯矩幅值。已知t m 100=,2

5

.105m kN EI ?=。m l 5=;简谐荷载幅值kN P 30=,每分钟振动240次。

图16-25

【解】用刚度法解。稳态振动位移幅值方程

[][](){}{}P A M K =ω-2

有 []???????

???----=110132026243l EI K ,m kN l EI /1096510524243353?=??=。 π=?π=θ860

2402,2264π=θ。[]????

?

?????=15.12100M (单位t ,即kg 310)

代入稳态振动位移幅值方程,有

解得 m y 31100756.0-?-=,m y 32101771.0-?-=,m y 33105178.0-?-=

惯性力幅值为

{}[]{}y M I o 2θ=,即

??

?

???????=????????????

????????----0300835.3296096252.1931920192

669.449103213y y y

kN I I I o o o ???????

???---=???????????-?-?-π???????????=??????????71.3278.1655.9105178.0101771.0100756.0641001502003332321 本题横梁刚度为无穷大,每层只有两根柱且截面及高度相等,故每根柱的弯矩为 4

h

Q M i i =

i Q 为该层的总剪力,等于该层以上水平外力(包括惯性力)的代数和;h 为该层柱高。于

是各层柱端弯矩为

顶层:m kN M .8875.404

5

71.323=?=

中层:m kN M .3625.244

5

)3078.1671.32(2=?-+=

第层:m kN M .3.364

5

)55.93078.1671.32(1=?+-+=。如图b 所示。对于横梁的杆端

弯矩可由刚结点力矩平衡推求。

【例16-21】 用振型分解法重作例16-20。 【解】已知

频率为:s 140.191=ω, s 127.412=ω ,s

167.603=ω

振型为:[]T

A

290.4608.21)

1(=,[]T

A 584.1226

.11)2(-=,

[]T

A 294.0834.01)3(-=。

[]????

?

?????=15.12m M ,{}???

???????θ=0sin 0t P P ,π=?π=θ8602402

得广义质量

{}[]{}m A M A M T 607.30~

)1()1(1==

{}[]{}m A M A M T

7637.6~)2()2(2==

{}[]{}m A M A M T 1298.3~

)3()3(3==

广义荷载

{}{}t P P A P T

θ==sin 608.2~)1(1

{}{}t P P A P T

θ==sin 226.1~)2(2

{}{}t P P A P T

θ-==sin 834.0~)3(3

因系简谐荷载,又不计阻尼,由下式比较可得

t m

P

y y

θ=ω+sin 2 ,则其解为 t m P y θθ-ω=

sin )(22 而 j

j j j j M P ~~

2=ηω+η

,这里{}{}t P A P T j j θ=sin ~

)( 所以

m t m P M P 3

2

22211111010013.0sin )6440.19(607.30608.2)(~~-?-=θπ-=θ-ω=η m t m P M P 3

222

2222210050747.0sin )6427.41(763.6266.1)(~~-?=θπ-=θ-ω=η m t m P M P 3

222

2333310026217.0sin )

6467.60(1298.3834.0)(~~-?-=θπ--=θ-ω=η ? 计算几何坐标 {}[]{}η=A y ,

即 m y y y 332110026217.0050747.010013.0294.0834.0290.4584.1226

.1608.2111

-????

????

???--??

????????--=?????????? 以下计算同例题16-18,略。

【例16-22】 试用能量法求图16-26a 所示梁具有均布质量g q m =的最低频率,设以梁在自重下的弹性曲线为其振动形式。

图16-26

【解】均布自重(图b )下的弯矩方程(图c )为

2

8582

2qx qlx ql M x -

+-=

有图乘法(图c 、d )求挠度曲线方程:

??

?

???-???? ??-+--=2832322858322812222x x qx x x qx qlx ql x x ql EI y ()432225348x lx x l EI

q

+-=

()EI l q EI l q dx x lx x l EI q qydx L

l

5

230

524

3

2

2

2

10125.35245334825348-?=??? ??+-=+-=?? ()dx x lx x l EI mq dx my l

l

2

4

3220

222253)48(??+-= ()29

25

6

2

7

5

3

8

6

2

4

4

2

2)(10309.11220304259)48(EI l mq dx x l lx x l x x l x l EI mq l

?=+--+-=

?40

2027

.238ml EI dx my qydx

l

l

==

ω??, q

EIg

l 245.15=ω

结构动力学试卷B卷答案

华中科技大学土木工程与力学学院 《结构动力学》考试卷(B卷、闭卷) 2013~2014学年度第一学期成绩 学号专业班级姓名 一、简答题(每题5分、共25分) 1、刚度法和柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便? 答:从位移协调的角度建立振动方程的方法为柔度法。从力系平衡的角度建立的振动方程的方法为刚度法。这两种方法在本质上是一致的,有着相同的前提条件。在便于求出刚度系数的体系中用刚度法方便。同理,在便于求出柔度系数的体系中用柔度法方便。在超静定结构中,一般用刚度法方便,静定结构中用柔度法方便。 2、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力系数是指最大动位移[y(t)]max与最大静位移yst的比值,其与体系的自振频率和荷载频率θ有关。当单自由度体系中的荷载作用在质量处才有位移动力系数与内力动力系数一样的结果。 3、什么叫临界阻尼?怎样量测体系振动过程中的阻尼比?若要避开共振应采取何种措施? 答:当阻尼增大到体系在自由反应中不再引起振动,这时的阻尼称为临界阻尼。根据公式即测出第k次振幅和第k+n次振幅即可测出阻尼比。 措施:○1可改变自振频率,如改变质量、刚度等。○2改变荷载的频率。○3可改变阻尼的大小,使之避开共振。 4、振型正交的物理意义是什么?振型正交有何应用?频率相等的两个主振型互相正交吗? 答:物理意义:第k主振型的惯性力与第i主振型的位移做的功和第i主振型的惯性力与第k主振型的静位移做的功相等,即功的互等定理。 作用:○1判断主振型的形状特点。○2利用正交关系来确定位移展开公式中的系数。 5、应用能量法求频率时,所设的位移函数应满足什么条件?其计算的第一频率与精确解相比是偏高还是偏低?什么情况下用能量法可得到精确解? 答:所设位移函数要满足位移边界条件,同时要尽可能与真实情况相符。第一频率与精确解相比偏高。如果所假设的位移形状系数与主振型的刚好一致,则可以得到精确解。

结构力学第五章习题及答案

第五章 习题 5—2 试用力法计算下列结构,并会出弯矩图。 解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将? 11 = 11 x 1代入(b)得 F P A B C l/2 l/2 (a) F P X 1 X 1=1 M 1图 基本体系 M P 图 l F P F P l /2 1=?0 1111=?+?=?P

(c ) 5. 计算系数和常数项 EI l l l l EI 332)21(1311= ???=δ 6. 将d11、 ?11代入力法方程式(c ) 7.作弯矩图 3FP P l /16 1111=?+P X δEI l F l F l l l F l l EI P P P P 4852322212312221(13 1= ???+????=?) (1651111↑=?-=P P F X δp M X M M +=116 32165l F l F l F M P P P A = -?=

解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将?11 = 11 x 1代入(b)得 (c ) EI 2 EI 1 F P A B X 1 X 1=1 F P C (b) M 1图 基本体系 M P 图 l F P (l -a ) 1=?0 1111=?+?=?P 0 1111=?+P X δ

5. 计算系数和常数项 1 33)3221(1)]332()(21)332()(21[13 2331211EI a EI a l a a a EI a l a a l l a a a l EI + -=???++??-?++??-?= δ2 2216)2()(]3 )(2)(213)()(21 [1EI a l a l F a l F a a l a l F a a l EI P P P P +--= -??-?+-??-?=? 6. 将d11、 ?11代入力法方程式(c ) 31 23 3 231)1(322a I I l a al l F X P --+-= 7.作弯矩图 (d )解: 超静定次数为2 选择基本结构如图(1)所示力法典型方程为: d 11X 1+d 12X 2+△1P =0 d 21X 1 + d 22X 2+△2P =0 计算系数和常数项,为此作作出X 1=1、X 2=1和荷载单独作用下的弯矩图如(2)(3)(4)所示计 p M X M M +=1 1(a)

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

(完整版)结构动力学历年试题

结构动力学历年试题(简答题) 1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请 简述每一种荷载的特点。P2 2.通过与静力问题的对比,试说明结构动力计算的特点。P3 3.动力自由度数目计算类 4.什么叫有势力?它有何种性质。P14 5.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P16 6.什么是振型的正交性?它的成立条件是什么?P105 7.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P32 8.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P132 9.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在 哪里?第五章课件 10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确 解相比有何特点?造成这种现象的原因何在?P209 11.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P1 12.坐标耦联的产生与什么有关,与什么无关?P96 13.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面? P132及其课件 14.请给出度哈姆积分的物理意义?P81 15.结构地震反应分析的反应谱方法的基本原理是什么?P84总结 16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。。。 17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该 如何进行判断?P132 18.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型, 每种类型请给出一种实例。P2 19.请分别给出自振频率与振型的物理意义?P103 20.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题 21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响 可以不考虑,这样处理的物理基础是什么?P115 22.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数 为25000个,我们如何缩短计算所耗费的机时?P103 23.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案 24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速), 为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。详解见卷子上答案 25.简述用振型叠加法求解多自由度体系动力响应的基本原理及使用条件分别是什么?若 振型叠加法不适用,可采用何种普遍适用的方法计算体系响应?详解见卷子上答案 26.振型函数边界条件。。。 27.集中质量和一致质量有限元的差异和优缺点,采用这两种有限元模型给出的自振频率与 实际结构自振频率相比有何种关系?P242及卷子上答案 28.人站在桥上可以感觉到桥面的震动,简述当车辆行驶在桥上和驶离桥面的主要振型特征 有何不同? 29.简述用Duhamel积分法求体系动力响应的基本原理,以及积分表达式中的t和τ有何差

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

2016结构动力学(硕)答案.pdf

《结构动力学》试题(硕) 一、名词解释:(每题3分,共15分) 约束动力系数广义力虚功原理达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3.简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m , 0T m n k (式中m 、n 为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的 N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦) 。分别求解每一个正规坐标的反应,然后根据 叠加V=ΦY 即得出用原始坐标表示的反应。由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4.什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。 前者是由于系统的弹性变形而引起各质点的位移分量; 而后者则是指结构中的刚体由于约束不够而产生的刚 体运动。三、计算(每题13分,共65分) 1.图1所示两质点动力体系,用 D ’Alembert 原理求运动方程。图1

2.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承 在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构力学练习题及答案

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共 11分) 1 . (本小题 3分) 图示结构中DE 杆的轴力F NDE =F P /3。( ). 2 . (本小题 4分) 用力法解超静定结构时,只能采用多余约束力作为基本未知量。 ( ) 3 . (本小题 2分) 力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。( ) 4 . (本小题 2分) 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。 ( ) 二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分) 图示结构EI=常数,截面A 右侧的弯矩为:( ) A .2/M ; B .M ; C .0; D. )2/(EI M 。 2. (本小题4分) 图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj. 2

3. (本小题 4分) 图a 结构的最后弯矩图为: A. 图b; B. 图c; C. 图d; D.都不对。( ) ( a) (b) (c) (d) 4. (本小题 4分) 用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。 ( ) 5. (本小题3分) 图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3 /(24EI); B. F P l 3 /(!6EI); C. 5F P l 3 /(96EI); D. 5F P l 3 /(48EI). 三(本大题 5分)对图示体系进行几何组成分析。 F P =1

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

结构力学试题及答案汇总(完整版)

. ... . 院(系) 建筑工程系 学号 三 明 学院 姓名 . 密封 线 内 不 要 答 题 密封……………………………………………………………………………………………………… ……………………………………………结构力学试题答案汇总 一、选择题(每小题3分,共18分) 1. 图 示 体 系 的 几 何 组 成 为 : ( A ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬 变 ; D. 常 变 。 (第1题) (第4题) 2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( C ) A. 力 ; B. 应 力 ; C. 刚 体 位 移 ; D. 变 形 。 3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( B ) A .圆 弧 线 ; B .抛 物 线 ; C .悬 链 线 ; D .正 弦 曲 线 。 4. 图 示 桁 架 的 零 杆 数 目 为 : ( D ) A. 6; B. 7; C. 8; D. 9。 5. 图 a 结 构 的 最 后 弯 矩 图 为 : ( A ) A .图 b ; B .图 c ; C .图 d ; D .都不 对 。 6. 力 法 方 程 是 沿 基 本 未 知 量 方 向 的 : ( C ) A .力 的 平 衡 方 程 ; B .位 移 为 零 方 程 ; C .位 移 协 调 方 程 ; D .力 的 平 衡 及 位 移 为 零 方 程 。

. ... . 二、填空题(每题3分,共9分) 1.从 几 何 组 成 上 讲 , 静 定 和 超 静 定 结 构 都 是___几何不变____ 体 系 , 前 者___无__多 余 约 束 而 后 者____有___多 余 约 束 。 2. 图 b 是 图 a 结 构 ___B__ 截 面 的 __剪力__ 影 响 线 。 3. 图 示 结 构 AB 杆 B 端 的 转 动 刚 度 为 ___i___, 分 配 系 数 为 ____1/8 ____, 传 递 系 数 为 ___-1__。 三、简答题(每题5分,共10分) 1.静定结构内力分析情况与杆件截面的几何性质、材料物理性质是否相关? 为什么? 答:因为静定结构内力可仅由平衡方程求得,因此与杆件截面的几何性质无关, 与材料物理性质也无关。 2.影响线横坐标和纵坐标的物理意义是什么? 答:横坐标是单位移动荷载作用位置,纵坐标是单位移动荷载作用在此位置时物 理量的影响系数值。 四、计算分析题,写出主要解题步骤(4小题,共63分) 1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。(本题16分) (本题16分)1.因为w=0 所以本体系为无多约束的几何不变体系。(4分) F N1=- F P (6分); F N2=P F 3 10(6分)。 2.作 图 示 结 构 的 M 图 。(本题15分)

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P =?,EI 483 =δ。将它们代入上式,并注意到y m I -=,y c R -=,得 )(48)(38453 4y c y m EI t q EI y --+= 图16-7 经整理后可得 )(t P ky y c y m E =++ 式中,3EI 481k =δ= ,)(8 5)(t q k t P P E =?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

结构力学试题及参考答案

《结构力学》作业参考答案 一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。) 1.图示桁架结构中有3个杆件轴力为0 。(×) 2.图示悬臂梁截面A 的弯矩值是ql 2。 (×) l l 3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。(× ) 5.用平衡条件能求出全部内力的结构是静定结构。( √ ) 6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。(√ ) 7.超静定结构的力法基本结构不是唯一的。(√) 8.在桁架结构中,杆件内力不是只有轴力。(×) 9.超静定结构由于支座位移可以产生内力。 (√ ) 10.超静定结构的内力与材料的性质无关。(× ) 11.力法典型方程的等号右端项不一定为0。 (√ ) 12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。(√) 13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系 数的计算无错误。 (× ) 14.力矩分配法适用于所有超静定结构的计算。(×) 15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。 (×)

二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。不选、错选或多选者,该题无分。) 1.图示简支梁中间截面的弯矩为( A ) q l A . 82ql B . 42ql C . 22 ql D . 2ql 2.超静定结构在荷载作用下产生的内力与刚度(B ) A . 无关 B . 相对值有关 C . 绝对值有关 D . 相对值绝对值都有关 3.超静定结构的超静定次数等于结构中(B ) A .约束的数目 B .多余约束的数目 C .结点数 D .杆件数 4.力法典型方程是根据以下哪个条件得到的(C )。 A .结构的平衡条件 B .结构的物理条件 C .多余约束处的位移协调条件 D .同时满足A 、B 两个条件 5. 图示对称结构作用反对称荷载,杆件EI 为常量,利用对称性简化后的一半结构为(A )。 6.超静定结构产生内力的原因有(D ) A .荷载作用与温度变化 B .支座位移 C .制造误差 D .以上四种原因

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

工程力学结构动力学复习题

工程力学结构动力学复习题

工程力学结构动力学复习题 一、简答题 1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段? 2、何谓结构的振动自由度?它与机动分析中的自由度有何异同? 3、何谓动力系数?简谐荷载下动力系数与哪些因素有关? 4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么? 5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们? 6、简述振型分解法是如何将耦联的运动方程解耦的. 7、时域法求解与频域法求解振动问题各有何特点? 8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应 之比值。简谐荷载下的动力放大系数与频率比、

阻尼比有关。当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。原因是:当把动荷载换成作用于质量 的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。 9、振型正交性的物理意义是什么?振型正交性有何应用? 答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。 由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会 转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振 型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。 一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计 算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。 10、什么是阻尼、阻尼力,产生阻尼的原因一般

结构动力学硕答案

结构动力学硕答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《结构动力学》试题(硕) 一、 名词解释:(每题3分,共15分) 约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关? 2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么? 3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是 什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ= (式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。 由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。 三、 计算(每题13分,共65分) 1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。 图1 2. 图2所示,一长为l ,弯曲刚度为EI 的悬臂梁自由端有一质量为m 的小 球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg 的圆柱体,其半径为r ,在一半径为R 的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。 图3 4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。 初始条件 y(0)={0.060.050.04}m y (0)= {0.0 0.30.0 }m/s 图4

结构动力学思考题解答

结构动力学思考题 made by 云屹 思考题一 1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同? 主要区别为: (1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响; (2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化; (3)动力学的求解方法通常与荷载类型有关,静力学一般无关。 运动方程的不同: 动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。 2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数; 静力自由度:确定结构体系在空间中的几何位置的独立参数。 意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。 3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体 4、在结构振动的过程中引起阻尼的原因有哪些? (1)材料的摩擦或材料变形引起的热耗散; (2)构件连接处或结构构件与非结构构件之间的摩擦; (3)结构外部介质的阻尼。 5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变? 如果满足条件: (1)线性问题; (2)重力的影响预先被平衡; 则动位移的运动方程不会改变,否则会改变。 思考题二 1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]? k ij:由第j自由度的单位位移所引起的第i自由度的力; m ij:由第j自由度的单位加速度所引起的第i自由度的力。 依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。

结构力学计算题及答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71. 用力法作下图所示刚架的弯矩图。 l B D P A C l l EI =常数 72. 用力法求作下图所示刚架的M 图。 73. 利用力法计算图示结构,作弯矩图。 74. 用力法求作下图所示结构的M 图,EI=常数。 75. 用力法计算下图所示刚架,作M 图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 取整体为研究对象,由 0A M =,得 2220yB xB aF aF qa +-= (1)(2分) 取BC 部分为研究对象,由 0C M =∑,得 yB xB aF aF =,即yB xB F F =(2)(2分) 由(1)、(2)联立解得2 3 xB yB F F qa ==(2分) 由 0x F =∑有 20xA xB F qa F +-= 解得 4 3xA F qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 2 3 yA yB F F qa =-=-(1分) 则222 4222333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62. 解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分) 63. 解:

结构力学试题及答案汇总完整版

. .. . 院(系) 建筑工程系 学号 三明学院 姓名 . 密封线内不要答题 密封…………………………………………………………………………………………………………………………………………………… 结构力学试题答案汇总 一、选择题(每小题3分,共18分) 1. 图 示 体 系 的 几 何 组 成 为 : ( A ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬 变 ; D. 常 变 。 (第1题) (第4题) 2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( C ) A. 力 ; B. 应 力 ; C. 刚 体 位 移 ; D. 变 形 。 3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( B ) A .圆 弧 线 ; B .抛 物 线 ; C .悬 链 线 ; D .正 弦 曲 线 。 4. 图 示 桁 架 的 零 杆 数 目 为 : ( D ) A. 6; B. 7; C. 8; D. 9。 5. 图 a 结 构 的 最 后 弯 矩 图 为 : ( A ) A .图 b ; B .图 c ; C .图 d ; D .都不 对 。 6. 力 法 方 程 是 沿 基 本 未 知 量 方 向 的 : ( C ) A .力 的 平 衡 方 程 ; B .位 移 为 零 方 程 ; C .位 移 协 调 方 程 ; D .力 的 平 衡 及 位 移 为 零 方 程 。

. .. . 二、填空题(每题3分,共9分) 1.从 几 何 组 成 上 讲 , 静 定 和 超 静 定 结 构 都 是___几何不变____体 系 , 前 者___无__多 余 约 束 而 后 者____有___多 余 约 束 。 2. 图 b 是 图 a 结 构 ___B__ 截 面 的 __剪力__ 影 响 线 。 3. 图 示 结 构 AB 杆 B 端 的 转 动 刚 度 为 ___i___, 分 配 系 数 为 ____1/8 ____, 传 递 系 数 为 ___-1__。 三、简答题(每题5分,共10分) 1.静定结构力分析情况与杆件截面的几何性质、材料物理性质是否相关? 为什么? 答:因为静定结构力可仅由平衡方程求得,因此与杆件截面的几何性质无关,与材料物理性质也无关。 2.影响线横坐标和纵坐标的物理意义是什么? 答:横坐标是单位移动荷载作用位置,纵坐标是单位移动荷载作用在此位置时物理量的影响系数值。 四、计算分析题,写出主要解题步骤(4小题,共63分) 1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。(本题16分) (本题16分)1.因为w=0 所以本体系为无多约束的几何不变体系。(4分) F N1=- F P (6分); F N2= P F 3 10(6分) 。 2.作 图 示 结 构 的 M 图 。(本题15分)

武汉理工大学《结构动力学》2013年期末试卷及标准答案

武汉理工大学《结构动力学》2013年期末试卷 一、填空题。(11分) 1、右图所示振动体系不计杆件的轴向变形,则 动力自由度数目是 。(3分) 2、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。( 3、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。(3分) 4、多自由度框架结构顶部刚度和质量突然变 时,自由振动中顶部位移很大的现象称 。(3分) 二、判断以下说法是否正确,对错误的说法加以改正。(6×3分=18分) 1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。( ) 2、超静定结构体系的动力自由度数目一定等于其超静定次数。( ) 3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。( ) 4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。( ) 5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。( ) 6、用瑞利法时若取重量作用下的静变形曲线为试函数,求得的基频的精度不高。( ) 三、选择题。(6×3分=18分) 1、对单自由度体系的自由振动,下列说法正确的是( ) A C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b A 、b a ωω< B 、∞→EA 时b a ωω≈ C 、0→EA 时b a ωω≈ D 、b a ωω= 3、(1)无阻尼的自由振动 (2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动 (3)有阻尼的自由振动 (4)突加荷载引起的无阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4) C 、(2)(3) D 、(1)(4)

相关文档