文档库 最新最全的文档下载
当前位置:文档库 › 吊装工具计算书

吊装工具计算书

吊装工具计算书
吊装工具计算书

吊装工具计算书

依据<<建筑施工计算手册>>(13.1.2 吊装工具计算)。

吊钩螺杆部分截面验算:

一.吊钩螺杆部分截面验算:

吊钩螺杆部分可按受拉构件由下式计算:

式中: ∑t──吊钩螺杆部分的拉应力;

F──吊钩所承担的起重力,取 F=8000N;

A1──螺杆扣除螺纹后的净截面面积:

其中 d1──螺杆扣除螺纹后的螺杆直径(mm),取d1=20mm;

[∑t]──钢材容许受拉应力。

经计算得:螺杆扣除螺纹后的净截面面积 A1=3.14×202/4=314.00mm2;

螺杆部分的拉应力∑t=8000/314.00=25.48N/mm2。

由于吊钩螺杆部分的拉应力25.48(N/mm2),不大于容许受拉应力50(N/mm2),所以满足要求!

二.吊钩水平截面验算:

水平截面受到偏心荷载的作用,在截面内侧的K点产生最大拉应力∑c,可按下式计算:

式中: F──吊钩所承担的起重力,取 F=8000N;

A2──验算2-2截面的截面积,

其中: h──截面高度,取 h=28mm;

b1,b2──分别为截面长边和短边的宽度,取 b1=18mm,b2=10mm;

M x──在2-2截面所产生的弯矩,

其中: D──吊钩的弯曲部分内圆的直径(mm),取 D=100mm;

e1──梯形截面重心到截面内侧长边的距离,

λx──截面塑性发展系数,取λx=1.0;

W x──截面对x-x轴的抵抗矩,

其中: I x──水平梯形截面的惯性矩,

[∑c]──钢材容许受压应力,取[∑c]=300N/mm2;

2-2截面的截面积 A2=28×(18+10)/2=392mm2;

解得:梯形截面重心到截面内侧长边的距离 e1=12.67mm;

在2-2截面所产生的弯矩M x=8000×(100/2+12.67)=501333.33N.mm;

解得:水平梯形截面的惯性矩 I x=24913.78mm4;

截面对x-x轴的抵抗矩 W x=24913.78/12.67=1966.88mm3;

经过计算得∑c=8000/392.00+501333.33/1966.88=275.30N/mm2。

由于吊钩2-2截面部分的压应力275.30(N/mm2),不大于容许受压应力300(N/mm2),所以满足要求!

三.吊钩垂直截面验算:

垂直截面的应力计算与水平截面验算相同:

h──截面高度,取 h=28mm;

b1,b2──分别为截面长边和短边的宽度,取 b1=17.99mm,b2=10mm;

3-3截面的截面积 A3=28×(17.99+10)/2=391.86mm2;

解得:梯形截面重心到截面内侧长边的距离 e1=12.67mm;

在2-2截面所产生的弯矩M x=8000×(100/2+12.67)=501342.86N.mm;

解得:水平梯形截面的惯性矩 I x=24906.12mm4;

截面对x-x轴的抵抗矩 W x=24906.12/12.67=1966.09mm3;

经过计算得∑c=8000/391.86+501342.86/1966.09=275.41N/mm2。

垂直截面的剪应力τ按下式计算:

式中: F──吊钩所承担的起重力,取 F=8000N;

A3──3-3截面的竖截面面积,取 A3=391.86mm2。

经过计算得=8000/(2×391.86)=10.21N/mm2。

根据强度强度理论公式按下式验算:

经过计算得∑=(275.412+10.212)0.5=275.60N/mm2。

由于吊钩3-3截面部分的综合应力275.60(N/mm2),不大于容许综合应力300(N/mm2),所以满足要求!

圆形吊环计算:

圆形吊环计算:

圆环的弯曲应力∑0按下式验算:

式中: P──作用于圆环上的荷截,取 P=8000N;

R0──环的中心圆半径,取 R0=100mm;

d──圆环截面圆的直径,取 d=30mm;

[∑0]──圆环容许应力,取[∑0]=100N/mm2。

经过计算得∑0=3.24×8000×100/303=96N/mm2。

由于圆环的弯曲应力96.00(N/mm2,不大于圆环容许应力100(N/mm2),所以满足要求!

整体吊环计算:

整体吊环计算:

1.在横杆中点截面的弯矩M1和拉力P1按下式验算:

其中:

式中: P──作用于整体吊环上的荷截 P=8000N;

l──横杆跨度,取 l=150mm;

x──转角处到横杆中线的距离,取 x=40mm;

α──吊环两斜杆间的夹角,取α=15度;

经过计算得 P1=8000×tg(0.26/2)/2=526.34N;

M1=8000×150/6+526.34×40=221053.60N.mm。

2.在吊环转角处截面中(A点)的弯矩M2按下式计算:

经过计算得 M2=8000×150/13=92307.69N.mm。

3.在斜杆中的拉力 P2按下式计算:

经过计算得 P2=8000/(2×cos(0.26/2))=4034.48N;

4.横杆中点截面的最大拉应力∑1按下式计算:

式中: F1──横杆中点截面面积 F1=400N;

W──横杆中点抗弯截面抵抗矩 W=2000mm3;

经过计算得到∑1=221053.60/2000+526.34/400=111.84N/mm2;

由于横杆中点截面的最大拉应力111.84(N/mm2),不大于容许应拉力150(N/mm2),所以满足要求!

5.斜杆中点截面的拉应力∑2按下式计算:

式中: F2──横杆中点截面面积 F2=300N;

经过计算得到∑2=4034.48/300=13.45N/mm2。

由于斜杆中点截面的拉应力13.45(N/mm2),不大于容许应拉力150(N/mm2),所以满足要求!

绳卡计算:

绳卡计算:

1.马鞍式,抱合式绳卡数量可按下式计算:

其中: n1──马鞍式,抱合式绳卡需用数量(个);

P──钢丝绳上所受综合计算荷载,取 P=25.5(N);

T──栓紧绳卡螺帽时,螺栓所受的力,取 T=15.19(N)。

经计算得 n1=1.667×25.5/(2×15.19)=2个;

2.骑马式绳卡数量可按下式计算:

其中: n2──骑马式绳卡需用数量(个);

经计算得 n2=2.5×25.5/15.19=5个。

塔器吊装计算书

塔器吊装计算书-CAL-FENGHAI.-(YICAI)-Company One1

附录5 计算说明书 一、受力分析及绳扣选择 设备主吊简图如下: 图1 图2 图1是塔器下端各分段主吊简图,图2是塔器上段主吊简图。件1为管式吊耳,件2和件4为吊装绳扣,件3为平衡梁,件5为板式吊耳,件6为吊装绳扣。 图1所示模型以苯塔Ⅰ段为例进行校核,图2所示模型以白土塔为例进行校核,件3平衡梁单独进行校核,其它各段不逐一校核。 1.苯塔Ⅰ段校核(直立状态受力最大) 设备重量G=吨,件1选用φ273×10无缝钢管(20#),长度为 L=200mm=20cm(见下图),件2选用φ39mm×18m钢丝绳扣,件4选用φ39mm×20m钢丝绳扣,α为吊装绳扣与水平方向夹角。

1)主吊耳强度校核 Gj=K*G=×56=,K=为动载系数; Q=1/2 Gj=1/2×==31700Kg; 弯矩为M=Q*L/2=31700*20/2=×105kg.cm φ273×10无缝钢管的抗弯模量为: W=πD3[1-(d/D)4]/32=×[1-()4]/32=523.84cm3弯曲应力 σ=M/W=×105/= kg/ cm2<[σ]=1700 Kg/cm2; 其中,[σ]=1700 Kg/cm2为20#无缝钢管许用弯曲应力。剪应力 τ=Pcosα/A(此处α=0) =31700/ =384 Kg/cm2<[τ]=1000 Kg/cm2 组合应力 [τ2+(σM2+σN2)]1/2

=[3842+]1/2 =716Kg/cm2<[σ]=1000 Kg/cm2; 故件1强度满足要求。 2)吊装绳扣强度校核 件2选用钢丝绳扣φ39mm×18m一对,每根四股使用(每根工作绳数按3根绳计算)。 每根绳扣受力为:P1=Q=1/2Gj=1/2×==31700Kg; 单根φ39mm钢丝绳破断拉力为S=52d2=52×392=79092 Kg 钢丝绳扣使用安全系数为:n=3S/P=3×79092/31700=≥[n]=6 [n]=6为吊装钢丝绳扣许用安全系数。 故件2强度满足要求。 图3 件4选用钢丝绳扣φ39mm×20m一对,每根四股使用(每根工作绳数按3根绳计算)。 cosα=5,α=°,几何关系如图3所示; 每根绳扣受力为:P2=Q/sinα==31700/°=35706Kg; 单根φ42mm钢丝绳破断拉力为S=52d2=52×392=79092 Kg 钢丝绳扣使用安全系数为:n=3S/P=3×96148/35706=≥[n]=6 其中[n]=6为吊装钢丝绳扣许用安全系数。 故件4强度满足要求。 3.白土塔校核(直立状态受力最大) 主吊耳见下图:

吊车吊装计算

8.1、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ4.2m 设备高度:21.71m 设备总重量:52.83T 附:上塔(上段)吊车臂杆长度和倾角计算简图 (2)主吊车吊装计算 ①设备吊装总荷重: P=P Q +P F =52.83+3.6 =56.43t 式中:P Q—设备吊装自重P Q =52.83t P F—设备吊装吊索及平衡梁的附加重量,取P F =3.6t ②主吊车性能预选用为:选用260T履带吊(型号中联重科QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 履带跨距:7.6 m 臂杆形式:主臂形式吊装采用特制平衡梁

钩头选用160t/100t吊钩,钩头重量为2.8吨吊车站位:冷箱的西面③臂杆倾角计算: α=arc cos(S-F)/L = arc cos(16-1.5)/53 =74.12°

式中:S —吊车回转半径:选S=16m F —臂杆底铰至回转中心的距离,F=1.5m L —吊车臂杆长度,选L=53m ④净空距离A的计算: A=Lcosα-(H-E)ctgα-D/2 =53cos74.12°-(36.5-2) ctg74.12°-5/2 =2.1m 式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H=36.5m E —臂杆底铰至地面的高度,E=2m D —设备直径:D=4.2m,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=56.43/67=84.22% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算

连续钢箱梁运输与吊装施工方案

内环线川西段快速化改建工程(金沙江路段)8标 主线K25~K28连续钢箱梁 运输与吊装 专 项 评 审 方 案 甲基础设施有限公司 2009年4月

目录 第一章、工程概况 一、工程范围 二、钢箱梁结构特点 三、周边环境地形 第二章、施工总体方案概述 一、钢箱梁分段方案 二、钢箱梁吊装流程 三、吊装设备的选择 四、工程特点、难点及对策 第三章、施工准备工作 一、技术准备 二、分段厂内制作要求 三、人员准备 四、物资准备 五、场地基础、道路准备 第四章、运输方案 一、运输要求 二、运输车辆选择 三、运输道路 四、钢箱梁在工地内的路线和停车位置 五、钢箱梁的装车与固定 六、车辆行驶 第五章、钢箱梁的吊装 一、现场测量和划线

二、吊装顺序 第六章、钢箱梁工地焊接工艺 一、焊接材料及辅助材料 二、焊接工艺 三、焊缝检验 第七章、钢结构涂装工艺 一、涂装配套及膜厚 二、涂装基本要求 三、涂装检验 第八章、项目人员和管理组织机构 第九章、施工机械设备 第十章、施工进度计划和劳动力使用计划 一、施工进度计划 二、吊装劳动力使用计划 第十一章质量保证措施 一、项目检验制度 二、施工前准备阶段 三、施工过程 第十二章、保证职业健康、安全生产、文明施工的技术措施 一、职业健康安全管理的一般规定 二、安全教育 三、安全检查 四、安全设施 五、安全用电 六. 安全防火

第一章、工程概况 一、工程范围 内环线川西段快速化改建工程(金沙江路段)8标位于川西内环线金沙江路段,东起罗山路立交桥,西至银宵路与7标相接,主线为沿原金沙江路建高架道路,其中主线K25~K28四跨为连续钢箱梁,跨距分别为35m+55m+50m+30m,总长170米。本工程范围为该四跨连续钢箱梁的现场吊装,包括钢箱梁的运输、吊装、装配、焊接和涂装。(本工程范围见平面图)该工程总包方为甲基础公司,监理单位为乙监理公司,钢结构制作和吊装为丙造船集团有限公司。 二、钢箱梁结构特点 连续钢箱梁共有四跨,自西向东跨距分别为35m+55m+50m+30m,总长170 m。钢箱梁为箱形结构,主体宽从24至,中间设有7道纵向腹板;沿长度方向每隔2m设一道横向加强结构,横向加强结构有T型框架结构和实肋板两种形式;桥面板和桥底板上纵向全长均设有U型槽和球扁钢加强材。箱梁中心高从至过渡变化,结构中心线为缓和曲线与圆弧相接。(钢箱梁结构见设计图) 钢箱梁材料为Q345qD,钢结构总重量约为2300吨。 三、周边环境地形 1、工地西南角为金沙江路地铁站和磁悬浮站,东北角为新国际博览中 心,车流和人流密集,为交通繁忙区域。 2、本工程工地位于原金沙江路道路中央,现两侧临时道路均已通车, 且车流量极大。 3、原金沙江路道路中央为绿化带,地面未做硬化处理。 4、在平行道路中心线两侧5m处埋设有雨水管道,在K25跨南侧有一 处顶管施工井,且该井与钢箱梁吊装同时施工。

计算书大师软件使用教程之缆索吊装计算(主索、起重索、牵引索、扣索)

之缆索吊装计算 软件使用教程之缆索吊装计算 “计算书大师”软件使用教程 1、软件简介 计算书大师软件(Calculation Sheets Master),英文简称CSM,最新版本CSM2013,该软件具备结构设计、施工计算的相关功能,包括:钢筋混凝土柱偏心受压配筋计算,缆索吊装计算,钢材压杆稳定计算,混凝土受冲切承载力计算,混凝土局部承压计算,喷射混凝土搅拌站基础计算,隧道通风设计计算,桩基相关计算,挡土墙计算,普通梁配筋计算,风荷载计算,钢结构连接(对接焊缝、角焊缝、螺栓)设计计算,新浇混凝土对模板侧压力计算(公路规范和铁路规范),滚石冲击力计算,工字钢抗弯、抗剪、抗压自动计算,线性内插计算,材料体积面积计算、截面特性计算等等,对部分规范中的参数采用数据库自动查询的办法,比如不同截面类型的钢柱受压稳定系数查表,混凝土抗拉、压强度设计值查规范,贝雷梁截面特性及杆件尺寸重量等参数查询等等,省去了查询相关规范和书籍的麻烦,同时也省去了您将计算书录入Word的麻烦,计算一步到位,完全自动化。对结构设计人员及施工技术人员来讲,CSM软件是一位很好的“技术帮手”,“计算书大师软件”为工程技术人员快速化决策提供有力的技术支撑,大大节约了您编制计算书的时间! CSM软件由石家庄铁道大学2010届本科毕业生胡帮义开发,在开发的过程中得到了石家庄铁道大学硕士生导师、博士--黄羚教授的大力支持,同时得到相关同学的帮助,在此对他们表示诚挚的感谢! 2、软件功能介绍 计算功能 缆索吊装计算功能 2.1缆索吊装 2.1.1开发目的 在拱桥施工中经常要使用缆索吊机,缆索吊机的结构安全是保证施工安全的重要方面,结构安全的保证很大程度上需要对结构进行力学计算。故设计人员需经常对相关索进行施工工况下计算,以确保满足施工受力要求。在缆索主索计算中,有个索张力方程,方程相当复杂,还需要解一元3次方程试算。计算工作量巨大,为了快速、方便、准备地进行该项计算,并生成Word版本计算书,特开发该项计算功能以减轻技术人员的劳动强度。

塔器吊装计算书(务实运用)

附录5 计算说明书 一、受力分析及绳扣选择 设备主吊简图如下: 图1 图2 图1是塔器下端各分段主吊简图,图2是塔器上段主吊简图。件1为管式吊耳,件2和件4为吊装绳扣,件3为平衡梁,件5为板式吊耳,件6为吊装绳扣。 图1所示模型以苯塔Ⅰ段为例进行校核,图2所示模型以白土塔为例进行校核,件3平衡梁单独进行校核,其它各段不逐一校核。 1.苯塔Ⅰ段校核(直立状态受力最大) 设备重量G=57.5吨,件1选用φ273×10无缝钢管(20#),长度为L=200mm=20cm(见下图),件2选用φ39mm×18m钢丝绳扣,件4选用φ39mm×20m钢丝绳扣,α为吊装绳扣与水平方向夹角。

说明 5、焊接完毕后着色探伤合格。 3、所有焊缝满焊,焊脚高度为相焊件中较薄者厚度。 4、在不影响吊装的前提下,吊耳焊接方位可根据现场实际情况进行调整。苯塔Ⅰ段主吊耳图 500 件3 件1件222216MnR 20#数量材质?273×10?425δ=14规格213无缝钢管挡圈补强板批准审核设计 序号名称中油七建独山子项目经理部 备注附图8 90° 270° 16MnR 200 2、吊耳焊接顺序:件2与筒体焊接→件1与件2焊接→件3与件1焊接。450×450δ=161、件1与筒体焊接按筒体弧度预制开55°外坡口,件2按筒体弧度预制,对称开4个?50塞焊孔,件3中心开透气孔。 1)主吊耳强度校核 Gj=K*G=1.1×56=63.3t ,K=1.1为动载系数; Q=1/2 Gj=1/2×63.3=31.7t=31700Kg ; 弯矩为M=Q*L/2=31700*20/2=3.17×105kg.cm φ273×10无缝钢管的抗弯模量为: W=πD 3[1-(d/D )4]/32=3.14×27.33[1-(25.3/27.3)4]/32=523.84cm 3 弯曲应力 σ=M/W=3.17×105/523.84=605.2 kg/ cm 2<[σ]=1700 Kg/cm 2; 其中,[σ]=1700 Kg/cm 2为20#无缝钢管许用弯曲应力。 剪应力 τ=Pcos α/A (此处α=0) =31700/82.6 =384 Kg/cm 2<[τ]=1000 Kg/cm 2 组合应力

钢管支架计算书630

钢管支架计算书 天津海河大桥钢箱梁吊装时,需在M19节段吊装过程中搭设钢管移动支架,下面根据支架搭设方案进行计算: 1、荷载计算 M19节段重量为187.08T,整体受力。 2、计算钢管支架的轴力 据提供的数据:P总=1870.8KN,钢管支架自重为450KN,则最下面钢管所承受的最大轴力为:N=2320.8KN,取N=2400KN进行控制计算 3、验算钢管的强度(4Φ720,D=10MM) 钢管支架的强度验算由下式计算:N/A m <[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 而[б]=170Mpa=17 KN/cm2,故安全。 4、整体稳定性验算 钢管支架的整体稳定性由下式计算: N/A m <ψ[б] (1)截面力学特性(如下图) 钢管支架截面力学特性计算图(尺寸单位:cm) 如图所示,立柱由4Φ720,d=10mm的钢管组成,查表有 A m =223cm2,I X /=140579.2cm4 A m =194.7cm2,I X /=93639.59cm4 I X =4×(I X /+A m ×r 2 2)=4×(140579.2+3102×223) =86283516.8cm4 I X =4×(I X /+A m ×r 2 2)=4×(93639.59+3102×194.7) =75217238cm4

(2):计算整体稳定性折减系数 计算构件的长细比λ h : 由《钢结构设计手册》查得格构式压弯杆件的长细比计算公式: λ h =(λ 2+27A d /A q )1/2 λ h =(λ 2+27A d /A q )1/2 λ 0 =L /i=3600/25.1=143.42 λ =L /i=3600/21.93=164.16 26948.5056 51273.76 A d =1218.4cm2 A d =83390.66cm2 35887.76 A q =2×4800=864cm2 A q =71706.72cm2 代入计算有λ h =143.4 代人计算有λ h =164.2 查《钢结构设计手册》附表,得ψ 1=0.339 ψ 1 =0.273 (3)立柱的整体稳定性验算由公式有: N/A m <ψ[б] б=N/A m =2400/(4×223)=2.69KN/cm2 б=N/A m =2400/(4×194.7)=3.08KN/cm2 ψ[б]=0.273×170=46.4Mpa=4.6KN/cm2 而ψ[б]=0.339×170=57.6Mpa=5.6KN/cm2,故安全。 (4)单根立柱的整体稳定性验算 A m =223cm2, I X /=140579.2cm4 回转半径i=(I X / A m )0.5=25.1cm λ =L /I=1500/25.1=39.8(以15m设置一道 横联计算) λ 0 =L /I=800/25.1=31.9 查《钢结构设计手册》附表,得ψ 1=0.883 ψ 1 =0.936 由公式有:N/A m <ψ[б] б=N/A m =2400/4/223=2.69KN/cm2 б=N/A m =2400/4/194.7=3.08KN/cm2 而ψ[б]=0.883×170=150.11Mpa=15KN/cm2,故安全。 ψ[б]=0.936×170=159.12Mpa=15.9KN/cm2,

缆索吊装系统计算书

缆索吊装系统计算书 简介:此缆索吊装系统用于吊装两岸T 梁及钢桁梁。左岸采用万能杆件拼装成双柱门式索塔,锚碇为用万能杆件拼装成的重力式锚碇;右岸不设索塔,直接在岩体上打锚洞,索鞍放在洞口,锚碇为在锚洞内埋型钢卧梁。整套天线系统分上、下游两组。每组由一组主绳 和两组工作绳组成。主绳由4根φ47.5mm 钢绳组成,工作绳由1根φ47.5mm 钢绳组成。工作绳兼作压塔绳。 基本资料拟定: 跨径L =333m ;工作垂度:f max =L/12=333/12=27.75m ; 21.5

方案一:按照左岸T梁(20.22m)重量进行计算T梁吊装采用上、下游两组吊点抬吊方式进行起吊 一、主索受力计算: 1、基本数据: 1)钢绳自重(主索、起吊索、牵引索) g=(31.716+3.2760+5.536)=40.528kg/m=0.040528t/m 2)作用在主索上的集中荷载为: a)T梁自重:p1=45t b)T梁超重:p2=5%p1=2.25t c)吊具重(包括配重、自重):p3=8t(两个吊点) 即:p=(p1+p2)/2+p3=31.63t b=19m f max=27.75m 2、钢绳的拉力T max计算: 1)水平力H max计算: p(L-b) gL2 H max=————+—— 4f max8 f max 31.63×(333-19) 0.040528×3332 =————————+—————— 4×27.75 8×27.75 =89.46+20.24=109.7t 2) 水平夹角φ: f max 27.75 φ=arctg ——=arctg————=100

25吨汽车吊吊装方案

白银城区地下综合管廊工程 25吨汽车吊吊装方案 建设单位:白银市城市综合管廊管理有限公司 设计单位:北京市市政工程设计研究总院技术有限公司 监理单位:甘肃工程建设监理公司 施工单位:中国一冶集团有限公司 编制时间:年月日 编制人:

目录 一、工程概况...................................................................................... - 2 - 二、施工准备...................................................................................... - 2 - 三、起重机施工.................................................................................. - 3 - 四、安全生产措施.............................................................................. - 4 - 五、安全保证措施.............................................................................. - 5 - 六、汽车吊使用注意事项 .................................................................. - 6 - 七、汽车吊参数................................................................................ - 10 -

中交四公局钢箱梁支架计算书分解

东二环跨线桥钢箱梁吊装 专项施工方案计算书 1、工程概况 1.1工程简介 本工程位于呼和浩特市南二环东延伸段与南二环相交处,桥梁起桥桩号KO+261.000,终桥桩号K1+116.000,桥梁总长855.0m,桥梁范围内最大纵坡3.5%,桥梁总面积22230.0㎡。桥梁横向分A、B两幅布置,中间中央分隔带留2m空档。 上部结构为预应力钢筋混凝土连续箱梁、连续钢箱梁及简支钢箱梁。按与线路交叉情况依次分为:跨腾飞路、跨东二环地道及跨鄂尔多斯东街钢箱梁。本桥斜交角度为正交。 A幅桥桥梁跨径布置为5×30m+50m+4×30m+3×30m+2×25m+(38+58+54)m+3×25m+50m+4×30m,B幅桥桥梁跨径布置为5×30m+50m+4×30m+3×30m+2×25m+(54+58+38)m+3×25m+50m+4×30m,30m和25m标准跨径均采用预应力混凝土连续箱梁(简支变连续结构),跨腾飞路、鄂尔多斯东街采用50m单跨简支钢箱梁,跨南二环地道采用三跨连续钢箱梁。本桥斜角角度为正交。 1.2施工平面图(见图1.2-1)

东二环跨线桥平面布置图图1.2-1

1.3主要工程数量 2、总体施工方案 2.1总体吊装方案 考虑到运输、架设各种因素影响,钢箱梁采取在工厂分节段加工,经验收合格后采用汽车陆地运输至施工现场拼装成型。总体拼装方案如下: 钢梁分段运至施工现场后,采用吊车将钢梁分段吊装到现场搭设的临时支架上进行拼装作业;根据各联钢箱梁在加工方案中分段最大重量和拼装时最大起重高度,钢梁拼装临时支架采用钢管立柱支架进行搭设,钢箱梁节段吊装选用260t履带吊吊装。钢梁拼装时均采用全断面焊接进行连接。 2.2钢箱梁节段划分方案 结合现场实际情况及钢结构设计特点,同时经过与设计单位沟通,最终确定了钢箱梁节段划分。 钢箱梁节段划分如下(见下图):

缆索吊装系统计算分析

春晓大桥缆索吊装系统计算书 1 主索验算 1.1缆索吊机主索概述 本桥缆索吊机主索的计算跨径布置为224+336+224mm,采用各跨连续布置,中间转点支撑于塔架的索鞍上,两端锚固在锚碇装置上,鞍座顶与锚碇的竖直距离为126m,主索在施工中的最大垂度垂跨比为1/13(25.8m)。主索分两组,每组由8φ56mm(CFRC8×36SW)满充钢丝绳组成。缆索吊机的设计吊重为4×87.5t,吊点纵向间距9m。 1.2计算荷载参数 1.2.1结构参数 表1 结构计算特征参数 1.2.2荷载参数 (1)均布荷载 单组主索8根,本桥不采用承索器,均布荷载只考虑主索自重,单根索自重 W=14.98kg/m。单组主索每延米重量为119.84kg。 (2)集中荷载(单位:t) 本桥跨中2号节段重量为265.3t,靠近塔端最重12节段重量为338.1t。因缆索系统主索张力在吊重荷载位于跨中时最大,计算中施工控制荷载的选取以跨中2号

节段为准,以靠近塔端最重12节段重量为施工验算荷载对主索进行验算。 表2 集中荷载组成 设计吊重工况:选取设计吊重荷载为350t ,采用双吊点起吊,平均到单根主索,每个吊点:P=10.9375t 。 施工验算工况:验算吊重荷载422t ,采用双吊点起吊,平均到单根主索,每个吊点:P=13.1875t 。 1.3计算假定 为简化计算,对主索计算做如下假定: (1)不计塔顶的水平位移影响; (2)塔顶索力在索鞍两侧连续,即索力满足在索鞍两侧相等的条件; (3)承重索的自重恒载沿索为恒量,承重索在自重作用下呈悬链线,且满足线性应力应变关系; (4)在缆索吊装系统计算中,忽略滑轮直径和滑轮摩擦力的影响; (5)吊重集中荷载由4个吊点平均分担。 1.4计算理论 1.4.1悬链线基本方程 自重作用下的柔性索曲线可表示为左端水平力H 、左端竖向力V 分量和无应力索长S 0的方程。 [] ))(ln()ln(200220H WS V WS V H V V W H EA HS X +-+--+++= (1) ))((1 22220220 2 0H WS V H V W EA VS WS Y +--+- -= (2)

钢筋笼吊装计算书

笼吊装计算书 一 计算说明 豫园站围护体系地下连续墙最大深度为29.5m ,为节省施工时间并减少因分节制作带来的不利影响,故决定对钢筋笼采用一次吊装入槽。 在钢筋笼吊放时,拟采用两台大型起重设备,分别作为主吊、副吊,同时作业,先将钢筋笼水平吊起,再在空中通过吊索收放,使钢筋笼沿纵向保持竖直后,撤出副吊,利用主吊吊装钢筋笼入槽。 根据设计要求,拟沿钢筋笼纵向布置四道桁架筋,使得钢筋笼起吊时横向均匀受力,同时使纵向保持良好的抗弯刚度。 计算依据:《起重吊装常用数据手册》 《建筑施工计算手册》 《钢结构设计规范》 (GB50017-2003) 二 吊装步骤 钢筋笼吊装过程进,双机停置在钢筋笼的一侧的施工便道,主、副机双机抬吊,主机吊钩吊钢筋笼的顶部范围,副机吊钩起吊钢筋笼底部范围,主、副机均采用铁扁担穿滑轮组进行工作。主、副吊机同时工作,使钢筋笼缓慢吊离地面,并逐渐改变笼子的角度使之垂直。拆下副吊钢丝绳,由主机吊车将钢筋笼移到已挖好槽段处,对准槽段中心按设计要求槽段位置缓慢入槽,并控制其标高。钢筋笼放置到设计标高后,利用钢板制作的铁扁担搁置在导墙上。 三 吊点布置 1)钢筋笼横向吊点布置:按钢筋笼宽度L ,布置4道; 2)钢筋笼纵向吊点布置:按钢筋笼长度方向,布置7道,主吊吊机设四点,副吊吊机设五点。具体布置参见附图。 四 设备选用 1)主吊选用:QYU 型100t 履带式起重机,主臂长度17m~63.0m ,主要性能见下表: 2)副吊选用:QYU 型50t 履带式起重机,主臂长度54.85m ,主要性能见下表: 五 双机抬吊系数K 验算 按标准幅6m ,笼长29.5m 进行验算。 主要计算内容包括:钢丝绳强度验算、主、副吊扁担验算、主吊把杆长度验算、吊攀验算、卸扣验算。 计算依据:《起重吊装常用数据手册》。 (1)钢丝绳强度验算 钢丝绳采用6×37+1,公称强度为1700MPa ,安全系数K 取6。 1)主吊扁担上部钢丝绳验算

吊车吊装计算

吊车吊装计算 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

、主冷箱内大件设备的吊装计算 (一)下塔的吊装计算 (1)下塔的吊装参数 设备直径:φ 设备高度: 设备总重量: (2)主吊车吊装计算 ① 设备吊装总荷重: P=P Q +P F =+ = 式中:P Q — 设备吊装自重 P Q = P F — 设备吊装吊索及平衡梁的附加重量,取P F = ② 主吊车性能预选用为:选用260T 履带吊(型号中联重科 QUY260) 回转半径:16m 臂杆长度:53m 起吊能力:67t 附:上塔(上段)吊车臂杆长度

履带跨距: m 臂杆形式:主臂形式吊装采用特制平衡梁钩头选用160t/100t吊钩,钩头重量为吨吊车站位:冷箱的西面③臂杆倾角计算: α=arc cos(S-F)/L = arc cos()/53 =° 式中:S —吊车回转半径:选S=16m F —臂杆底铰至回转中心的距离,F= L —吊车臂杆长度,选L=53m ④净空距离A的计算: A=Lcosα-(H-E)ctgα-D/2 =°-°-5/2 = 式中:H —设备吊装时距臂杆最近的最高点b至地面的高度,选H= E —臂杆底铰至地面的高度,E=2m D —设备直径:D=,取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=67=% 经过校核,选用的主吊车能够满足吊装要求。 (3)溜尾吊车的吊装计算

①受力计算 F= (9-1)×= ②溜尾吊车的选择 辅助吊车选用为:75T汽车吊 臂杆长度:12m; 回转半径:7m; 起吊能力:36t; 吊装安全校核:因为〈36t,所以75T汽车吊能够满足吊装要求。(二)、上塔(上段)的吊装计算 (1)上塔上段的吊装参数 设备直径:φ设备高度:设备重:安装高度:45米

35+50+35米钢箱梁计算书

目录

1.工程概况 本项目跨径组合为35+50+35 米。上部结构箱梁梁高米(箱梁内轮廓线高度)。顶面全宽米,两侧各设米宽挑臂,箱梁顶底板设%横坡,腹板间距布置为++ 米。箱梁顶板厚16 毫米,下设“U”形和板式加劲肋,“U”形加劲肋板厚8 毫米,板式加劲肋160×14 毫米;箱梁底板厚14 毫米,设“T”形加劲肋,加劲肋腹板120×8 毫米,翼缘100×10 毫米,间距300 或350 毫米;腹板厚12 毫米,设三道140×14 毫米板式加劲肋,各加劲肋除支承隔板处断开与支承隔板焊连外,其余加劲肋均穿过横隔板或挑臂并与之焊连。普通横隔板间距约3 米,厚10 毫米,中部挖空设100×10 毫米翼缘。桥台简支处支撑隔板板厚20 毫米,桥墩连续处支撑隔板板厚30 毫米,支撑隔板为围焊。简支处隔板四角不设焊缝通过的切口,保证整个钢箱梁安装完成后的气密性;其他横隔板四角均设置焊缝通过的切口。挑臂为“T”形截面,腹板厚10 毫米,下翼缘300×14 毫米。 2.结构计算分析模型 2.1.主要规范标准. (1)《城市桥梁设计规范》(CJJ 11-2011) (2)《公路桥涵设计通用规范》(JTG D60-2004) (3)《公路圬工桥涵设计规范》(JTG D61-2005) (4)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) (5)《公路桥涵地基与基础设计规范》(JTG D63-2007) (6)《公路桥梁抗震设计细则》(JTG/T B02-01-2008) (7)《混凝土结构设计规范》(GB50010-2010) (8)《公路桥涵施工技术规范》(JTG/T F50-2011) (9)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008) (10)《公路桥涵钢结构及木结构设计规范》(JTJ025—86) (11)《钢结构工程施工质量及验收规范》(GB50205-2001) (12)《铁路桥梁钢结构设计规范》(TB )

缆索吊系统施工方案

缆索吊系统施工方案

第一部分缆索吊系统施工方案 一、概述 缆索吊装系统主要由2根主索,一套搬运小车,一套起重索,一套牵引索,两端塔架,塔底卷扬机,索锚等分系统组成,两侧吊塔均采用万能杆件拼装而成,万能杆件之间采用高强螺栓联结,全桥设一付索道,利用移动式索鞍根据需要进行移动对位固结好后再进行吊装。主索道承重索由2根Φ52钢丝绳(结构为6×37S+IWR)组成,索锚采用主锚和后正风锚合二为一,前正风锚利用主桥台。索塔基础及索锚均采用C20钢筋混凝土。缆索吊系统的整体布置见所附施工设计图。 索吊系统主要参数: 1.跨度:296.6m; 2.起重量:20t; 3.起升高度:120m; 4.塔高(万能杆件并装高度):北26m,南31.4m; 5.起升平均速度:20m/min; 6.牵引平均速度:40m/min; 7.承重索最大偏角:3.3°; 8.工作风压:不超过6级; 9.设计承重时挠度:22m; 10.同组主索间距:1.5m。 二、安装准备 在安装索吊系统前,必须配备索吊本身设

15 滑车5t单门套4 塔身拼装用 16 滑车10t单门套4 塔身拼装用 17 滑车1t单门套4 摇头扒杆用 18 绳夹骑马式绳夹个28 1.材料设备的验收、存放、发放: 索吊系统所需的材料设备数量巨大,规格复杂,现场的材料管理应严格遵守验收、存放及发放制度。 材料设备的验收应着重验收以下内容:材料炉号、批号、型号、化学成分和金属力学性能、合格证、使用说明书及有关图纸、外观质量、数量等,尤其是数量及外观质量的检查。 材料设备的存放保管应按不同型号、规格、材质等内容分开存放,并考虑便于运输。索吊系统中的主要材料万能杆件应按要求排放整齐,最好就是在由方木或型钢组成的支柱架中。不同的材料应存放不同的格内,并有明显标牌标注。钢丝绳应整盘存放,并标识清楚。卷扬机及滑车要分型号存放于垫木上,挂上标识牌后等待领用。所有材料设备均应防雨、防锈,并保持设备的润滑。 材料设备的发放实行认领登记制度并做到“标记移植”,这样才能保证产品的可追溯性。 万能杆件的搬运过程应轻拿轻放,严禁抛掷。 三、安装施工

吊车吊装方案计算样本

8.1、主冷箱内大件设备的吊装计算 ( 一) 下塔的吊装计算 ( 1) 下塔的吊装参数 设备直径: φ4.2m 设备高度: 21.71m 设备总重量: 52.83T 附: 上塔( 上段) 吊车臂杆长度 ( 2) 主吊车吊装计算 ①设备吊装总荷重: P=P Q +P F =52.83+3.6 =56.43t 式中: P Q—设备吊装自重P Q =52.83t P F—设备吊装吊索及平衡梁的附加重量, 取P F =3.6t ②主吊车性能预选用为: 选用260T履带吊( 型号中联重科QUY260)

回转半径: 16m 臂杆长度: 53m 起吊能力: 67t 履带跨距: 7.6 m 臂杆形式: 主臂形式吊装采用特制平衡梁 钩头选用160t/100t吊钩, 钩头重量为2.8吨吊车站位: 冷箱的西面 ③臂杆倾角计算: α=arc cos( S-F) /L = arc cos( 16-1.5) /53 =74.12° 式中: S —吊车回转半径: 选S=16m F —臂杆底铰至回转中心的距离, F=1.5m L —吊车臂杆长度, 选L=53m ④净空距离A的计算: A=Lcosα-( H-E) ctgα-D/2 =53cos74.12°-(36.5-2) ctg74.12°-5/2 =2.1m 式中: H —设备吊装时距臂杆最近的最高点b至地面的高度, 选H=36.5m E —臂杆底铰至地面的高度, E=2m D —设备直径: D=4.2m, 取D=5 m 以上计算说明所选的吊车性能能满足吊装需求 ⑤主吊车吊装能力选用校核: 吊装总荷重/起吊能力=P/Q=56.43/67=84.22% 经过校核, 选用的主吊车能够满足吊装要求。

钢箱梁

第十章、钢箱梁施工监理实施细则 1.0钢箱梁施工监理工作内容 钢箱梁施工监理包括施工方案的审批、钢箱梁外委厂家资质考察及审批、钢箱梁加工过程质量检查、临时支墩、支座安装质量、钢梁吊装、现场施工质量和安全控制及监控测量、防腐涂装的质量控制等内容。 2.0施工方案的审批 包括钢箱梁施工方案的审批和防腐涂装施工方案的审批。 1.钢箱梁施工方案的审批 承包人应提交钢箱梁施工方案,监理工程师应对其申报的施工工艺流程、材料试验报告(钢筋及钢材、预应力钢筋、桥梁支座、剪力钉、高强螺栓、焊条、焊接和焊剂及混凝土配合比设计报告等),安装与桥面系施工方案,安装方案应对安装所用的吊机起重能力,钢立柱、钢桁架、导梁等架梁的临时设施进行承载力及稳定性验算,并有完整的计算书,对安装程序以及安装中安全保障措施均应有详细的说明,桥面系施工方案应详细说明桥面连续体系转换,湿接缝等施工工艺,桥面砼的浇筑及养护措施,施工安全保障措施等,监理工程师对施工方案进行严格审查,尤其对大型预制梁的安装方案在必要时可会同有关专家共同审核。

2.防腐涂装施工方案的审批 3.0适用范围 本细则适用本工程中的钢混叠合梁。 4.0钢梁的加工及吊装 4.1 选定加工单位。 钢梁加工单位应选信誉良好,技术实力雄厚,硬件设施齐全,加工质量可靠,并经总监办(驻地办)审批的单位。 4.2 图纸会审 总监办、驻地办、总包单位、加工单位都要派专人对钢混梁的图纸进行会审,会审主要的方向是:设计尺寸是否有误;未来钢梁上部施工与钢梁主体连续是否存在施工问题;钢混梁中是否有新工艺;如有新工艺如何实施;钢混梁中是否存在工程施工难点。 4.3 钢梁(加工过程)检查 4.3.1 原材料的检查 材料型号是否符合设计要求。材料铭牌标识是否清楚,原材料是否有破损、污染;原材、焊条、防腐漆、高强螺栓、剪力钉等主要材料的复试是否合格;焊接材料与母材的搭配是否满足规范要求。检验单位是否满足要求(应采用第三方检测)。 4.3.2 底胎的检查 每个加工单位的方法是不同的,但底钢板的尺寸是相同的。底钢板铺设完成后,要对底钢板进行检查。主要包括长度、宽度、焊缝质量、焊缝高度、对接范围的尺寸是否正确,有无底板厚度变化?厚度

缆索吊塔架设计计算书(A3)..

宁波市东外环甬江大桥工程缆索吊设计说明书 一、工程概况 甬江大桥主拱拟采取缆索吊装方案。由于桥址处航空限高为107m,为减小缆索吊跨中垂度、 保证主跨拱肋安装,在主拱中部加设一座临时索塔,根据本桥钢箱拱肋的结构形式和最大节段重量, 甬江大桥吊装系统采取150m+217m+217m+150m跨径组合的连续四索跨吊装系统。 整个缆索吊系统共设三个索塔。索塔采用门形全钢结构,塔柱横桥向中心距28m,顶宽42m(边 索塔为41.8m)。边索塔为双柱式门形结构,分别设在P3、P4主墩承台顶面,采用缆索、扣索合二 为一的方式,索塔底部与主墩承台固结;中索塔为四柱式门形结构,设在主跨跨中位置,仅布置有缆索系统,索塔底部与临时承台固结。 主索长度820多米,采用两组主索。单组主索由8根φ70mm、公称抗拉强度为1470MPa的密封钢丝绳组成,每根钢丝绳最小破断拉力为4976kN(《密封钢丝绳》GB/T 352-2002)。单组主索设计吊重1800kN,两组主缆索总设计吊重能力为3600kN,主索安全系数≥3.5。两组索道均采用独立的起重、牵引、跑车及上、下挂系统,全桥共四套。 每组主索起重系统由4台16t卷扬机、12线φ32mm起重钢丝绳和4台1000kN主索跑车系统组成。跑车牵引系统由φ32mm钢丝绳,4台16t卷扬机组成。 主索道内侧设2套工作索系统,全桥共4套。工作索主要用于临时风撑、吊杆等吊装起重作业。工作索道分别用2φ56mm普通钢丝绳组成,最大设计吊重20t。 缆索系统总体布置见图1-1

二、缆索系统设计 1.主缆系统设计 计算模型:主缆跨度实际布置为:150m +217m +16m +217m +150m ,中间16m 跨对主缆受力影响很小,可忽略不计,即简化为双跨缆索系统:150m +217m +217m +150m 。 (1) 主索荷载: 单组主索拟采用8φ70mm-1470MPa 密封钢丝绳,作用于主索上均布荷载总重: G =521kN 跑车、吊具及起重牵引索分配重量等空载集中力:Q 0=280kN 最大节段ZN1重1800kN ,采取与中索塔抬吊安装,因此取第二大节段ZN9作为设计吊装荷载,跨中设计吊重:Q 吊=1620kN 则:Q m =Q 0+ Q 吊=1900kN (2) 设计吊重下主索张力 设计吊重下跨中垂度取f m =12.5m (矢跨比:1/17.36) 则主索水平分力: kN a L f Q f GL H m m m m 8921)12217(5 .1241900 5.128217521)(48=-?+??=-+= 此时,主索张力:kN H T m m 8921 =≈ 一组主索(8φ70mm-1470MPa 密封钢丝绳)破断拉力: kN T n 3423586.049768=??= 主缆安全系数:384.38921 34235 >=== m n T T K .5,满足设计要求。 (3) 空缆初始张力和垂度 两等跨主缆张力方程为: })],,,(),,,([48{ ' '''2 23m m m m m m m m m m k x x H a x G Q U a x G Q U H F E H H -++ )],,,(),,,([48 ' '''x x x x x x x x k a x G Q U a x G Q U F E += 式中: x m H H ,——分别为初始状态和终末状态主缆水平张力; F E k ——主缆刚度,取:kN N F E k 6951025.31025.383385102.1?=?=???= ),,,(m m m m a x G Q U ——与代梁剪力内积有关的函数,当L a m <<时,其表达式为: 2 24)()1(12 ),,,(m m m m m m m m m m m m Q L a G G Q Q L x L x a x G Q U -++-= 该函数的参数的意义如下: Q ——集中荷载总量,共有4个总量Q ,分别为本跨和另一跨,初始状态和终末状态。下 标为m 时表示初始状态,为x 时表示终末状态,上标’表示另一跨,不带上标表示本跨。其它参数的上下标也具有类似意义; G ——均布荷载总量,G =gL ; x ——集中荷载Q 的位置; a ——集中荷载的间距。 跑车间距12m ,本跨和邻跨跑车位于跨中时: 221900217 412 521)5211900(1900)211(2112),,,(?-++??-?=m m m m a x G Q U 271040.1kN ?= )12,5.108,521,280(),,,(),,,(),,,(' '''''''U a x G Q U a x G Q U a x G Q U x x x x x x x x m m m m === 22280217 412 521)521280(280)211(2112??-++??-?= 251043.9kN ?= 则张力方程的二次项系数为: kN A 3 572 61081.38921]1043.91040.1[8921 481025.3?=-?+???= 常数项为: kN B 11556 1028.1]1043.91043.9[48 1025.3?=?+??= 代入张力方程有: 112331028.11081.3?=?+x x H H 解得:kN H x 4030= 空载垂度: m H a L Q H GL f x x x 06.74030 4) 12217(280403082175214)(80=?-?+??=-+= (4) 塔前15m 时的主索张力及垂度(吊装ZN1拱肋节段)

30米箱梁吊装计算书

30米箱梁安装计算书 1、作业吊车 30m箱梁吊装选用汽车吊吊装施工,桥梁横跨高速公路,地质条件较好,经处理后能满足汽车吊施工要求。 以30m箱梁为验算对象,边梁吊装重量为35.4m3×2.6t/m3=92.04吨 (1)本工程30m箱梁采用双机抬吊机作业。(Q主+Q副)K≥Q 1+Q 2 根据设计图纸计算中梁最重按92.04吨,即Q 1=92.04吨,考虑索具重量Q 2 =2.0吨,K为起重机降低系数,取0.75。即:Q主+Q副≥125.39吨。 (2)起重高度计算 H≥H1+H2+H3+H4 式中 H——起重机的起重高度(m),停机面至吊钩的距离; H1——安装支座表面高度(m),停机面至安装支座表面的距离; H2——安装间隙,视具体情况而定,一般取0.2~0.3m; H3——绑扎点至构件起吊后底面的距离(m); H4——索具高度(m),绑扎点至吊钩的距离,视具体情况而定。 取H1=7米,H2=0.2米,H3=0.95米,H4取3米。选用起重机的起重高度H≥11.15米,起重高度取11.5m。 (3)起重臂长度计算: l≥(H+h0-h)/sinα 式中 l——起重臂长度(m);

H——起重高度(m); h0——起重臂顶至吊钩底面的距离(m); h——起重臂底铰至停机面距离(m),本工程取1m; α——起重臂仰角,一般取70°~77°,本工程取70°。 l≥(11.5-1)/sin(70°)=11.17。 (4)吊车工作半径取6m,参考150吨汽车起重机起重性能表,可得(Q主+Q 副)K≥Q 1 +Q 2 ,即(80.3+80.3)×0.75=120.45>94.04,所有综合考虑1)、2)、 3)及起重机的工作幅度,选用两台150吨汽车吊满足施工要求。

缆索吊装计算书实例

缆索吊装计算书 一、主索计算 1、主索荷载 (1)均布荷载 主索均布荷载集度q=0.44875KN/m 均布荷载重力G=ql=0.44875×258=115.777KN (2)集中荷载 主索集中荷载由四部分组成: 行车及定滑轮重力: P1=30KN 吊点动滑轮及配重重力:P2=30KN 起重索重力: P3=1.5912KN 拱肋重力: P4=211KN 总集中重力:P=P1+ P2+P3+P4=272.591KN 2、主索最大张力和相应的垂度 当跑车吊重位于跨中时,主索张力最大,控制主索的设计,取控制主索张力的安全系 数K=3.5,求主索的容许张力T max 和相应的跨中垂度f 。 T max =Tn K =58293.5 =1665.429KN 取H≈T max 则跨中垂度

f=L 4H (G 2 +P)=2584×1665.429 (115.7772 +272.591)=12.799m 则相对垂度 f L =12.799258 =120.16 3、主索安装张力和安装垂度 为了保证假设的主索在吊重时的最大张力不超过容许值,则须求出主索的按装张力H0及安装垂度f0,以便用f0控制主索的张力和标高。 这时,作用于主索上的集中荷载为不计拱肋重力和跑车空载重力P0,位于跨中的主索张力由张力方程求得 H 3 0 +H 2 0 {E k A n cos 2 β 24H 2 [3P(P+G)+G 2 ]-H}- x(L-x)2L 2 P 0 (P 0 +G)E k A n cos 2 β -G 2 E k A n cos 2 β 24 =0 式中E k 为主索弹性模量,E k =75.6GPa 主索截面面积A n =4182.48mm2 主索容许拉力H max =1665.429KN P 0 =P 1 +P 2 +P 3 =30+30+1.5912=61.5912KN

相关文档