文档库 最新最全的文档下载
当前位置:文档库 › 001a - Philip Lowe

001a - Philip Lowe

Towards European electricity highways for a fully integrated European energy market
Philip Lowe
Director General “Connecting renewable energy to the grid” conference
London, 08/02/2011

EU Energy policy objectives
Treaty on the Functioning of the European Eunion New Art. 194 on energy: Internal market
. . . .
Union policy on energy shall aim, in a spirit of solidarity, to: Ensure the functioning of the internal market; Ensure security of supply; Promote energy efficiency and the development of renewable forms of energy; Promote the interconnection of energy networks Objectives: 20-20-20 by 2020
Security of Supply
Sustainability
2

Energy policy development
Regulation on security of gas supply Third Internal Energy Market Package Energy Strategy 2020
Energy Efficiency Plan Energy Infrastructure Legislative Proposal
External Energy Policy Communication
EEPR
Energy Infrastructure Package
Energy 2050 Roadmap
2009
2010
2011
3

Energy infrastructure challenges and drivers
Electricity: ? ? ? ? ? Increasing demand Growing share of RES Smart grid applications Large-scale storage Higher voltage - longdistance transmission Gas: ? Stable share, growing import dependency ? Role as back-up fuel – need for more flexibility ? Single-source dependency in Eastern Europe – need for diversification Oil: Security of supply of landlocked countries in CentralEastern Europe
CO2 transmission: Co-ordinated planning for future optimised deployment
In addition, the modernisation of district heating and cooling networks can enhance energy efficiency.
4

European infrastructures priorities – electricity by 2020
Baltic energy market interconnection plan Interconnections in South West Europe Interconnections in Central-South East Europe Offshore grid in the Northern Seas and connection to Northern and Central Europe
Smart grids in the EU
5

EU renewable energy potential
Wind energy onshore Solar energy Wave energy Bioenergy
Simplified Map
6

Electricity highways: what are we talking about?
. . .
An electricity highway is:
?
an electricity transmission line with significantly more capacity to transport power than existing high-voltage transmission grids, both in terms of the amount of electricity transmitted and the distance covered by this transmission.
New technologies will have to be developed, allowing notably direct current (DC) transmission and voltage levels significantly higher than 400 kV. In the longer term, several electricity highways should link together into a European electricity highway system.
7

? Electricity Highways Platform ?
. . .
Objective: establish a long-term modular development plan by 2013/2014, which should feed into the short-term Ten-Yeat Network Development Plan (TYNDP)
? ? ? ? ? ?
Commissioning of first electricity highways planned by 2020 Generation development scenarios Pan-European grid architecture options Socio-economic and industrial policy consequences Research and development needs Legal, regulatory and organisational framework
Electricity Highways Platform to discuss:
ENTSO-E to present ? Electricity Highways Roadmap ? at the next Florence Forum in May 2011.
8

Outlook
Many open questions we have to deal with first… ? Europe’s future energy mix will be a major driving force to
be addressed through the Florence Forum Platform and the Commission’s Energy 2050 Roadmap
. .
?
RES integration, smart grids, storage; future grid designs, technology options FP7 projects on various grid aspects
Priorities and actions identified for the Energy Infrastructure Package form solid basis for further discussions: ? North Sea Offshore Grid as ? incubator ? for large European
electricity highway system
?
Regulatory proposals on permit granting procedures and cross-border cost allocation will be key for developing panEuropean grid architecture
9

Thank you for your attention!
10

Low-E玻璃的特点及功能

Low-E玻璃的特点及功能 太阳辐射能量的97%集中在波长为0.3-2.5um范围内,这部分能量来自室外;100 C以下物体的辐射能量集中在2.5um以上的长波段,这部分能量主要来自室内。若以室窗为界的话,冬季或在高纬度地区我们希望室外的辐射能量 进来,而室内的辐射能量不要外泄。若以辐射的波长为界的话,室内、室外辐射能的分界点就在2.5um这个波长处。因此,选择具有一定功能的室窗就成为关键。 普通透明玻璃对太阳辐射能具有88 %左右的透过率,白天来自室外的辐射能量可大部分透过;但夜晚或阴雨天气,来自室内物体热辐射能量的89 %被其 吸收,使玻璃温度升高,然后再通过向室内、外辐射和对流交换散发其热量,故无法有效地阻挡室内热量泄向室外。 Low-E中空玻璃对太阳能辐射具有选择性透过率,白天来自室外辐射能量 可大部分透过,但夜晚和阴雨天气,来自室内物体的热辐射约有50 %以上被其 反射回室内,仅有少于15 %的热辐射被其吸收后通过再辐射和对流交换散失,故可有效地阻止室内的热量泄向室外。Low-E玻璃的这一特性,使其具有控制 热能单向流向室内的作用。LOW-E玻璃需控制以下指标: 1辐射率(E)是某物体单位面积辐射的热量同单位面积黑体在相同 温度,相同条件下辐射热量之比。辐射越低,其吸收热量的能力越低,反射热量能力越强。低辐射率镀膜能良好地反射 2.5-4.0mm范围的远红外线,阻止接 近室温的物体发射的远红外线辐射透过。 2可见光透射比(Tvis)在可见光谱(380nm至780nm)范围内,透过玻璃的光强度对入射光强度的百分比。 3 可见光反射比(Rvis) 在可见光谱( 380nm 至780nm )范围内,玻璃反射的光强

在线、离线LOW-E镀膜玻璃对比

在线、离线LOW-E镀膜玻璃对比 徐兵中国南玻集团吴江南玻华东工程玻璃有限公司 江苏·吴江(215222) 摘要:本文通过生产工艺、产品性能,市场应用三方面对在线、离线LOW-E镀膜玻璃进行对比,整体上阐述在线和离线这两大类LOW-E镀膜玻璃的市场定位,以此判断LOW-E镀膜玻璃的应用方向。 关键词:在线LOW-E镀膜玻璃,离线LOW-E镀膜玻璃,市场分析 前言 自1965年开始,大板面玻璃镀膜加工因新工艺和新设备的出现逐步得到了发展。Libby Owens Ford(LOF)建起了第一条大规模真空镀膜生产线。之前,建筑玻璃的镀膜采用需要将玻璃基片加热的气相沉积法,该法会引起玻璃变形,或者采用化学沉积法,该法生产的膜层均匀性、耐久性差。1973年,Airco发明了磁控溅射镀膜工艺。1977年10月, Airco为Guardian公司建造了第一条磁控溅射镀膜线。1982年,美国Guardian公司率先推出了银基低辐射膜层。之后,Low-E玻璃(即辐射率ε≤0.15的镀膜玻璃)逐渐成了优级窗的标准配置。1987年,LOF 推出了在线Low-E镀膜玻璃产品,至此,Low-E镀膜玻璃生产正式发展成为在线、离线两种工艺方式。 以下,将从生产工艺、产品性能,市场应用对在线、离线Low-E镀膜玻璃进行分析,确定这两类产品的市场现状及未来趋势。 一.生产工艺 “在线”系指在浮法玻璃生产线上利用高温热解法生产镀膜玻璃,高温热解法又分为热喷涂和化学汽相沉积法(CVD),目前多采用CVD法。镀膜实施的部位,可以在浮法玻璃生产线的锡槽、过渡辊合或退火窑前端,反应的温度在400~700℃之间,如图1所示。一般在热的浮法玻璃表面要镀多层膜,这些膜包括介质膜和功能膜。多层膜的复合使低辐射镀膜玻璃既有低辐射功能,又不产生干涉虹

Low-E玻璃行业市场分析研究报告

Low-E玻璃行业市场分析报告

一、Low-E玻璃介绍 Low-E玻璃,即LowEmissivityGlass的简称,即低辐射玻璃。Low-E玻璃在上海耀皮公司引进第一条生产线之前主要依赖欧美进口,近两年来开始在国内生产和应用,正成为当代建筑玻璃的首选。 Low-E玻璃通过技术解决了传统玻璃隔热性能与采光性能的矛盾,同时解决了传统玻璃的绝症—“光污染”的问题。Low-E玻璃具有夏季隔热、冬天保温的性能。Low-E玻璃在玻璃界的影响非常巨大,行业内甚至流传“21世纪是Low-E玻璃的世界”的说法。它具有良好的采光性,同时没有“光污染”由于其具备良好的隔热和防紫外线功能,是真正意义上的绿色、节能、环保玻璃建材。 Low-E玻璃是镀膜玻璃的一种,其表面是由电介质和金属为主构成的金属膜层。Low-E玻璃本质是玻璃表面附着一层透明的金属膜层,对可见光具有良好的透光性,对红外线和紫外线具有很高的反射性。 Low-E玻璃具有两个显著特点:(1)极低的表面辐射率,(2)极高的远红外(热辐射)反射率。从技术原理上讲,即可阻挡玻璃吸热升温后以辐射形式从膜面向外散热,也可直接反射远红外热辐射。low-E膜的以上两个特性与中空玻璃对热的对流传导的阻隔作用相配合,便构成了U值极低的low-E中空玻璃。它可阻隔热量从热的一端向冷的一端传递。即冬季阻挡室内的热量泻向室外,夏季

阻挡室外热辐射进入室内。 Low-E玻璃技术原理 图1 1、Low-E玻璃的优点 1.1节能方面的优势 1.1.1冬季的节能 Low-E玻璃,它能阻止室内的辐射能量泄向室外,从而维持室内的温度,一般的中空玻璃热传导系数为2.3左右,Low-E玻璃中空玻璃热传导系数为1.9左右,两相比较很明显这种Low-E玻璃的节能效果要高出30%以上,从而制热所需的费用减少了近1/3,使成本大大下降。 1.1.2夏季的节能 夏季空调负荷中的很大一部分是来自透过窗户直接进入室内

在线玻璃和离线玻璃区别

在线与离线镀膜玻璃比较 1. 产品档次和引进历史 离线镀膜玻璃是在真空磁控溅射镀膜玻璃生产线上,将金属、金属化合物根据使用性能的不同(隔热性、颜色、反光率等),组合成多层薄膜而构成的,一般镀膜层由2-3层薄膜组成,并可根据需要配置膜层产生不同的颜色。这种生产工艺决定了在其产品的高性能和多颜色选择性,因此属于高档产品。 在线镀膜玻璃是在浮法玻璃生产过程中,在热玻璃的表面上喷涂Sn的化学溶液或粉末,形成土灰色的单层化合物薄膜而制成的。产品多以有色玻璃为基片,颜色主要靠有色玻璃本身的颜色决定的。这种生产工艺决定了在线镀膜玻璃的性能较差和低档产品的属性。 既然在线镀膜是低档产品,我国为何还会发展呢? 上世纪80年代中期,我国在引进镀膜玻璃生产技术时曾对国外镀膜玻璃的生产工艺、产品档次和市场发展趋势作了详细的调研,调研结果显示:在线镀膜玻璃的市场份额年增长率仅为约20%,而离线镀膜玻璃的市场份额年增长率则接近120%。调研结果还反映了这两种产品的用户群体不同,在线镀膜产品主要面向民用住宅和小型公建项目,大型公建项目极少采用,而离线镀膜产品则主要用于公共建筑项目。此项调研结果确定了我国的引进政策,即跨过低档的在线镀膜工艺而直接引进先进的离线镀膜工艺技术,因此当时我国引进的镀膜玻璃生产线(20多条)都是离线的。 约在90年代中期,台湾玻璃制造商进入中国市场并带来了在线镀膜生产线,尽管在线镀膜产品的性能较差,但其制造成本极低,正好适合我国的经济水平现状,因此我国的一些厂家开始补课,引进了在线镀膜生产工艺,从而形成在线和离线共存的局面。 2. 产品特性比较 离线镀膜玻璃:膜层中含有金属层,因此可以有效反射太阳光中的热辐射,节能效果十分明显。由于镀膜层的总厚度仅约为100纳米,镀膜过程是以原子线度为单位控制的,因此膜层厚度的均匀性极好,颜色极为均匀,在单片产品上、或每批产品之间都不会出现颜色差,即便在无色玻璃上也是如此。此外,由于膜层中金属的作用,其反射率可调、外观清亮明晰,能充分显示出玻璃的质感。 在线镀膜玻璃:膜层仅由单层氧化物构成,不能有效反射太阳热辐射,节能性较差,其节能性主要靠有色玻璃体现。由于镀膜层的总厚度约为数千纳米,镀膜过程是以分子集团为单位控制的,因此膜层厚度的均匀性极差,在单片玻璃的不同部位存在颜色差别,每一生产批次的颜色更是难以控制,因此在大型项目上常会出现颜色不一致的情况,这种现象已被许多工程现实所证实。此外,氧化物膜层的反射率不可调整,导致玻璃的外观效果呆板,颜色取向性过强,缺乏玻璃的质感。 3. 市场使用现状

LOW-E玻璃生产流程

什么是LOW-E玻璃及生产流程 玻璃是重要的建筑材料,随着对建筑物装饰性要求的不断提高,玻璃在建筑行业中的使用量也不断增大。然而,当今人们在选择建筑物的玻璃门窗时,除了考虑其美学和外观特征外,更注重其热量控制、制冷成本和内部阳光投射舒适平衡等问题。这就使得镀膜玻璃家族中的新贵——Low-E玻璃脱颖而出,成为人们关注的焦点。 Low-E玻璃又称低辐射玻璃,是在玻璃表面镀上多层金属或其他化合物组成的膜系产品。其镀膜层具有对可见光高透过及对中远红外线高反射的特性,使其与普通玻璃及传统的建筑用镀膜玻璃相比,具有以下明显优势: 优异的热性能 外门窗玻璃的热损失是建筑物能耗的主要部分,占建筑物能耗的50%以上。有关研究资料表明,玻璃内表面的传热以辐射为主,占58%,这意味着要从改变玻璃的性能来减少热能的损失,最有效的方法是抑制其内表面的辐射。普通浮法玻璃的辐射率高达0.84,当镀上一层以银为基础的低辐射薄膜后,其辐射率可降至0.1以下。因此,用Low-E玻璃制造建筑物门窗,可大大降低因辐射而造成的室内热能向室外的传递,达到理想的节能效果。 室内热量损失的降低所带来的另一个显著效益是环保。寒冷季节,因建筑物采暖所造成的CO2、SO2等有害气体的排放是重要的污染源。如果使用Low-E玻璃,由于热损失的降低,可大幅减少因采暖所消耗的燃料,从而减少有害气体的排放。 良好的光学性能 Low-E玻璃对太阳光中可见光有高的透射比,可达80%以上,而反射比则很低,这使其与传统的镀膜玻璃相比,光学性能大为改观。从室外观看,外观更透明、清晰,即保证了建筑物良好的采光,又避免了以往大面积玻璃幕墙、中空玻璃门窗光反射所造成的光污染现象,营造出更为柔和、舒适的光环境。 Low-E玻璃的上述特性使得其在发达国家获得了日益广泛的应用。我国是一个能源相对匮乏的国度,能源的人均占有量很低,而建筑能耗已经占全国总能耗的27.5%左右。因此,大力开发Low-E玻璃的生产技术并推广其应用领域,必将带来显著的社会效益和经济效益。 Low-E玻璃的应用与发展 在美国及欧洲,低辐射(Low-E)(译称娄义)镀膜玻璃由于其优越的性能,得到了极大的关注。特别是德国的Wsc hvo法规,使Low-E玻璃有迅猛的发展。 欧洲的制造商是在60年代末开始实验室研究"Low-E"的。1978年,美国的英特佩(interqane)成功地将"Low-E"玻璃应用到建筑物上。 "Low-E"的优越性是无可质疑的。从1990年开始,"Low-E"的用量在美国以年5%的速度递增。将来,"Low-E"是否成为窗玻璃的主导地位还不得知,但是业主和门窗公司都非常重视节能型的门窗。而且,今年的建筑物绝大多数是用它的节能效果来评定优劣的。 目前的两种Low-E玻璃生产方法 在线高温热解沉积法:

Low-E玻璃市场分析报告

Low-E玻璃市场调研 一、Low-E玻璃介绍 Low-E玻璃,即Low Emissivity Glass 的简称,即低辐射玻璃。Low-E玻璃在上海耀皮公司引进第一条生产线之前主要依赖欧美进口,近两年来开始在国内生产和应用,正成为当代建筑玻璃的首选。 Low-E玻璃通过技术解决了传统玻璃隔热性能与采光性能的矛盾,同时解决了传统玻璃的绝症—“光污染”的问题。Low-E玻璃具有夏季隔热、冬天保温的性能。Low-E玻璃在玻璃界的影响非常巨大,行业内甚至流传“21世纪是Low-E玻璃的世界”的说法。它具有良好的采光性,同时没有“光污染”由于其具备良好的隔热和防紫外线功能,是真正意义上的绿色、节能、环保玻璃建材。 Low-E玻璃是镀膜玻璃的一种,其表面是由电介质和金属为主构成的金属膜层。Low-E玻璃本质是玻璃表面附着一层透明的金属膜层,对可见光具有良好的透光性,对红外线和紫外线具有很高的反射性。 Low-E玻璃具有两个显著特点:(1)极低的表面辐射率,(2)极高的远红外(热辐射)反射率。从技术原理上讲,即可阻挡玻璃吸热升温后以辐射形式从膜面向外散热,也可直接反射远红外热辐

射。low-E膜的以上两个特性与中空玻璃对热的对流传导的阻隔作用相配合,便构成了U值极低的low-E中空玻璃。它可阻隔热量从热的一端向冷的一端传递。即冬季阻挡室内的热量泻向室外,夏季阻挡室外热辐射进入室内。 Low-E玻璃技术原理 图1 1、Low-E玻璃的优点 1.1节能方面的优势 1.1.1冬季的节能 Low-E玻璃,它能阻止室内的辐射能量泄向室外,从而维持室内的温度,一般的中空玻璃热传导系数为2.3左右,Low-E玻璃中空玻璃热传导系数为1.9左右,两相比较很明显这种Low-E玻璃的节能效果要高出30%以上,从而制热所需的费用减少了近1/3,使

镀膜玻璃生产方法

在线镀膜玻璃和离线镀膜玻璃生产方法 目前两种LOW-E玻璃生产方法: 1)在线高温热解沉积法:在线高温热解沉积法“LOW-E”玻璃在美国有多家公司的产品。如PPG公司的Surgate200,福特公司的Sunglas H.R“P”。这些产品是在浮法玻璃冷却工艺过程中完成的。液体金属或金属粉沫直接喷射到热玻璃表面上,随着玻璃的冷却,金属膜层成为玻璃的一部分。因此,该膜层坚硬耐用。这种方法生产的“LOW-E”玻璃具有许多优点:它可以热弯,钢化,不必在中空状态下使用,可以长期储存。它的缺点是热学性能比较差。除非膜层非常厚,否则其“u”值只是溅射法“LOW-E”镀膜玻璃的一半。如果想通过增加膜厚来改善其热学性能,那么其透明性就非常差。 2)离线真空溅射法:离线法生产LOW-E玻璃,是目前国际上普遍采用真空磁控溅射镀膜技术。用溅射法可以生产“LOW-E”玻璃的厂家及产品有北美的英特佩公司的“LnplusNetetralR”,PPG公司的Sungatel00,福特公司的SunglasHRS等。和高温热解沉积法不同,溅射法是离线的。且据玻璃传输位置的不同有水平及垂直之分。溅射法工艺生产“LOW-E”玻璃,需一层纯银薄膜作为功能膜。纯银膜在二层金属氧化物膜之间。金属氧化物膜对纯银膜提供保护,且作为膜层之间的中间层增加颜色的纯度及光透射度。垂直式生产工艺中,玻璃垂直旋转在架子上,送入10-1帕数量级的真空环境中,通往适量的工艺气体(惰性气体Ar或反应气体O2、N2),并保持真空度稳定。将靶材Ag、Si等嵌入阴极,并在阴极垂直的水平方向置入磁场从而构成磁控靶。以磁控靶为阴极,加上直流或交流电源,在高电压的作用下,工艺气体发生电离,形成等离子体。其中,电子在电场和磁场的共同作用下,进行高速螺旋运动,碰撞气体分子,产生更多的正离子和电子;正离子在电场的作用下,达到一定的能量后撞击阴极靶材,被溅射出的靶材沉积在玻璃基片上形成薄膜。为了形成均匀一致的膜层,阴极靶靠近玻璃表面来回移动。为了取得多层膜,必须使用多个阴极,每一个阴极均是在玻璃表面来回移动,形成一定的膜厚。水平法在很大程度上是和垂直法相似的。主要区别在玻璃的放置,玻璃由水平排列的轮子传输,通过阴极,玻璃通过一系列销定阀门之后,真空度也随之变化。当玻璃到达主要溅射室时,镀膜压力达到,金属阴极靶固定,玻璃移动。在玻璃通过阴极过程中,膜层形成。目前,国产和绝大部分进口磁控溅射镀膜生产线的目标均是以镀制单质膜和金属膜为主的阳光控制膜玻璃。这类由于有多种金属靶材选择,及多种金属靶材组合,因此,溅射法生产“LOW-E”玻璃可有多种配置。在颜色及纯度方面,溅射镀也优于热喷镀,而且,由于是离线法,在新产品开发方面也较灵活。最主要的优点还在于溅射生产的“LOW-E”中空玻璃其“u”值优于热解法产品的“u”值,但是它的缺点是氧化银膜层非常脆弱,所以它不可能像普通玻璃一样使用。它必须要做成中空玻璃,且在未做成中空产品以前,也不适宜长途运输。

low-e玻璃介绍

7)Low-E中空玻璃 1)low-E玻璃的简介 在20世纪70年代中期,人们发现双层玻璃窗热传递的大部分,是从一层玻璃向另一层玻璃的红外辐射交换产生的。因此,只要减小双层玻璃中任何一个表面的发射率,就能大大减少辐射热的传递。这就是Low-E玻璃的来由。 Low-E玻璃,即Low Emissivity Glass的简称,即低辐射玻璃。Low-E玻璃,一种镀膜玻璃,是在优质浮法玻璃表面,用真空磁控溅射的方法,镀数层低辐射材料及其它金属化合物薄膜而形成。这种玻璃不但可见光透过率高,而且具备很强地阻隔红外线的特点,能够发挥自然采光和隔热节能的双重功效。使用后可以有效地减少冬季室内热量的外散流失,在夏季也能阻隔室外物体受太阳照射变热后的二次辐射,从而发挥节能降耗目的。同时,Low-E玻璃在可见光波段具有较高的透过率,可以使室内更多地利用自然采光。 2)low-E玻璃的分类 Low-E玻璃有多种不同类型,Low-E玻璃系列产品主要有:单银Low-E玻璃、双银Low-E 玻璃。根据遮阳效果又分为:高透型Low-E玻璃、遮阳型Low-E玻璃。 3)Low-E玻璃的特点 ①具有极低的表面辐射率——优异的热性能。 普通玻璃的表面辐射率在0.84左右,而Low-E玻璃的表面辐射率在0.25以下。外门窗玻璃的热损失是建筑物能耗的主要部分,占建筑物能耗的50%以上。有关研究资料表明,玻璃内表面的传热以辐射为主,占58%,这意味着要从改变玻璃的性能来减少热能的损失,最有效的方法是抑制其内表面的辐射。普通浮法玻璃的辐射率高达0.84,当镀上一层以银为基础的低辐射薄膜后,其辐射率可降至0.1以下。因此,用Low-E 玻璃制造建筑物门窗,可大大降低因辐射而造成的室内热能向室外的传递,达到理想的节能效果。也就说明了室内热量损失的降低所带来的另一个显著节能效果。 ②极高的远红外(热辐射)反射率 既可阻挡玻璃吸热升温后以辐射形式从膜面向外散热,也可直接反射远红外热辐射。低碳、功能、安全幕墙29 这种不到头发丝百分之一厚度的低辐射膜层对远红外热辐射的反射率很高,能将80%以上的远红外热辐射反射回去,而普通透明浮法玻璃、吸热玻璃的远红外反射率仅在12%左右,所以Low-E玻璃具有良好的阻隔热辐射透过的作用。 ③LOW-E玻璃对可见光部分则有较高的透过率。 与热反射镀膜玻璃相比,当两者具有相同遮阳作用时(Sc相等),Low-E玻璃可获得较高的可见光透过率,可避免室内白天无谓的人工照明和室外所谓的"光污染"。3mm 厚的普通透明玻璃对太阳辐射能具有87%的透过率,白天来自室外的辐射能量可大部分透过;但夜晚或阴雨天气,来自室内物体热辐射能量的89%被其吸收,使玻璃温度升高,然后再通过向室内、外辐射和对流交换散发其热量,故无法有效地阻挡室内热量泄向室外,Low-E玻璃的可见光反射率一般在11%以下,与普通白玻相近,低于普通阳光控制镀膜玻璃的可见光反射率,可避免造成反射光污染,换句话说,当两者可见光透过率相等时,Low-E玻璃比热反射镀膜玻璃有更好的遮阳效果(Sc 低30%左右)。

Low-E玻璃的使用误区

Low-E玻璃的使用误区 误区一:离线Low-E玻璃的膜层破坏是因为氧化而引起在许多场合我们的一些专家学者或工程技术人员把离线Low-E玻璃膜层被破坏的原因归结为膜层中的银与空气中的氧气发生氧化反应的结果。实际上一般情况下这个氧化作用并不快,其实其大多数的破坏来自硫化作用。 由于离线Low-E玻璃采用银为功能层,银与硫之间有很大的亲和力,银在空气中遇到硫化氢气体或硫离子时很容易生成一种极难溶解的银盐(Ag2S)(银盐就是辉银矿的主要成分)。这种化学变化可以在极微量的情况下发生,银在空气中只要遇上几万亿至几十万亿分之一的硫化氢气体或硫离子,就会发生下列化学反应;4Ag+2H2S+O2=2Ag2S(黑色产物)+2H2O 这种化学反应要远比单纯的氧化反应强烈得多,快速得多。这才是大多数情况下导致膜层性能降低的主要原因。另外离线Low-E玻璃在储运、切割、磨边、清洗、加工、使用等过程中未及时清除的残留和吸附的水分存在,更加速这一化学反应。因为水可以大量吸附空气中的硫化物,富积的硫化物浓度比空气中的浓度高数百倍,导致硫化反应更加强烈,膜层性能劣化更加快速。所以离线Low-E玻璃的加工应该放在大气环境条件比较好的地区加工,才能最大限度地保证膜层性能。 误区二:厚玻璃的K值比薄玻璃显著降低,夹层玻璃K值比同厚度玻璃显著降低对于普通浮法玻璃来说单片玻璃厚度的增加对建筑物的保温性能提高并不大,如厚度为12.1mm 的玻璃与厚度为5.7mm的玻璃相比较,玻璃的厚度增加1.12倍,玻璃的重量也增加了1.12倍,但其K值只降低7.59%.采用这两种玻璃各自组成12mm厚的充氩中空玻璃,两者相比K值只下降3.24%.所以单纯通过增加玻璃厚度来提高玻璃的保温性能是很不经济的。从后面的玻璃性能计算可知5mmC+0.76PVB+5mmC夹层玻璃其厚度为10.1mm,K值为5.58W/m2K比9.9mm厚的单片白玻K值降低1.8%,扣除厚度影响夹层玻璃对玻璃实际K 值的降低也就在1%多一点。所以通过夹层玻璃的方法是不能大幅度降低玻璃K值的。 误区三:中空玻璃气体层越厚,其节能效果越好答案当然是否定的。中空玻璃内部充填的气体除空气以外,还有氩气、氪气等惰性气体,由于气体的导热系数很低(空气0.024W/mK、氩气0.016W/mK、氪气0.0087W/mK),因此极大地提高了中空玻璃的热阻性能。常用的中空玻璃间隔层厚度为6mm、9mm、12mm、16mm等。气体层从1mm增加到9mm时,白玻充填空气时K值下降37%,Low-E充填空气时K值下降53%,充氩气下降59%.从9mm增加到12mm时,下降速度都开始变缓。14mm以后,充氩气的玻璃K值反而有轻微的回升。气体间隔层的厚薄与传热阻的大小有着直接的联系。 在玻璃材质、密封构造相同的情况下,气体间隔层越大,传热阻越大。但当气体层厚度增达到一定程度后,气体在玻璃之间温差的作用下就会产生一定的对流过程,从而减低了气

如何正确鉴别Low-E玻璃

如何正确鉴别Low-E玻璃 随着建筑节能工作的不断深入与发展,Low-E玻璃以其优越的节能性能越来越受到建筑市场的青睐。2006年,全国Low-E玻璃的产量预计超过800万平方米,并且还将在今后保持高速的增长态势。由于销售量的增加和制造水平的日趋成熟,产品价格也有所降低,应用的范围从最初的高档公共建筑快速扩展到了普通的民用建筑。随着Low-E玻璃的普及,越来越多的人对如何正确鉴别Low-E玻璃提出疑问。实际应用中,如果已经知道是Low-E玻璃,判别Low-E膜面的位置比较简单,但由于Low-E玻璃的特殊性,一般人员仅从外观上很难区分与普通镀膜玻璃甚至是非镀膜玻璃的差异。 光度计测量法鉴别Low-E玻璃最准确的方法是使用远红外分光光度计测量玻璃表面辐 射率。按照GB/T18915.2-2002《低辐射镀膜玻璃》标准进行判定,离线Low-E玻璃辐射率≤0.15,在线Low-E玻璃辐射率≤0.25.这也是权威玻璃检测机构所使用的方法。但由于只能检测小块的单片玻璃,所以中空玻璃必须被拆解成单片玻璃后才能进行。同时,由于远红外分光光度计价格昂贵,所以这种方法并不适用于加工及使用现场的快速判定。 在适用于现场的判定方法中,单片Low-E玻璃是最好判别的。目前国内市场上单片Low-E 的应用主要是耀华在线Low-E玻璃,它可以像普通玻璃一样进行钢化、热弯、夹层等深加工。这种玻璃可以用便携式表面辐射率测量仪测量玻璃表面的辐射率并判定,但更为简单实用的方法是表面电阻测量法。 导电测量法由于Low-E玻璃的热反射作用实际上是膜层自由电子与电磁波作用的结果,所以Low-E玻璃的表面是导电的。普通的非镀膜玻璃表面电阻值为无穷大,阳光控制镀膜玻璃依据所镀的膜层材料不同,表面电阻值会有所下降,但依然很高。Low-E玻璃表面的方块电阻值一般会在20欧姆以下。利用这一特性我们可以快速地进行鉴别。玻璃表面的方块电阻值应使用四探针测试仪测量,将测量头放在干燥清洁的玻璃表面就可以测出方块电阻,方块电阻能够通过相关的公式转化成辐射率,从而判定是否为Low-E玻璃。使用普通万用表也可以简单判定,将万用表笔尖放置在玻璃表面,正负笔尖间距1厘米左右,此时如果显示的电阻值在几十欧姆时,就可以判定是Low-E玻璃膜面了,如果是100欧姆以上则不是Low-E 玻璃膜面。但此种方法易受笔尖间距和接触压力及接触面积影响,所以应多测几点综合判定。 由于合成中空玻璃时,Low-E膜面是放在中空玻璃里面,所以判定中空玻璃是否使用Low-E比较困难。虽然Low-E中空玻璃比普通中空玻璃的传热系数低很多,但想在现场快速测出玻璃传热系数却不是件容易的事。目前,在不破坏中空玻璃的前提下,相对简单的办法还是使用Low-E玻璃的导电性原理。利用电磁线圈或者是电容制造出一个弱电磁场,当镀有导电膜的Low-E玻璃靠近这个电磁场时,会改变电磁场的状态,从而影响输出电流或输出电压。依据这一原理便可以检测出中空玻璃内部是否有Low-E膜,并可以依据变化的大小得知Low-E膜距离是远还是近。目前市场上技术比较成熟的Low-E膜面测试仪便是基于此原理,将手持式Low-E测试仪紧贴中空玻璃的表面放置,按下测试按钮,依据指示灯闪亮的状态便可以判别出是否有low-E膜面。这种方法快速简单,不用拆解中空玻璃,因而具有良好的推广价值。但如果中空玻璃面积太小,检测结果易受到边部铝条或窗框的影响,其检测结果也

LOW-E玻璃性能

LOW-E玻璃的性能及其应用与发展LOW-E为英文~Low emissivity的简称,为低辐射镀膜玻璃,是相对热反射玻璃而言的,是一种节能玻璃。 玻璃是重要的建筑材料,随着对建筑物装饰性要求的不断提高,玻璃在建筑行业中的使用量也不断增大。然而,当今人们在选择建筑物的玻璃门窗时,除了考虑其美学和外观特征外,更注重其热量控制、制冷成本和内部阳光投射舒适平衡等问题。这就使得镀膜玻璃家族中的新贵——Low-E玻璃脱颖而出,成为人们关注的焦点。 优异的热性能 外门窗玻璃的热损失是建筑物能耗的主要部分,占建筑物能耗的50%以上。有关研究资料表明,玻璃内表面的传热以辐射为主,占58%,这意味着要从改变玻璃的性能来减少热能的损失,最有效的方法是抑制其内表面的辐射。普通浮法玻璃的辐射率高达0.84,当镀上一层以银为基础的低辐射薄膜后,其辐射率可降至0.15以下。因此,用Low-E玻璃制造建筑物门窗,可大大降低因辐射而造成的室内热能向室外的传递,达到理想的节能效果。 室内热量损失的降低所带来的另一个显著效益是环保。寒冷季节,因建筑物采暖所造成的CO2、SO2等有害气体的排放是重要的污染源。如果使用Low-E玻璃,由于热损失的降低,可大幅减少因采暖所消耗的燃料,从而减少有害气体的排放。[1] 透过玻璃的热量是双向的,热量即能由室内传递到室外,反之亦然,并且是同时进行的,只是传递热量差的问题。在冬天的时候,室内的温度比室外高,要求保温。夏天室内温度比室外的低,要求玻璃能隔热,就是室外热量尽量少的传递到室内。LOW-E玻璃能够实现冬天和夏天的要求,既能保温又能隔热,起到环保低碳的效果。 良好的光学性能 Low-E玻璃的可见光透过率从理论上的0%-95%(6mm白玻很难做到)不等,可见光透过率代表室内的采光性。室外反射率从10%-30%左右,室外反射率就是可见光反射率,代表反光强度或者耀眼程度,目前为止,中国要求幕墙的可见光反射率不大于30%。 Low-E玻璃的上述特性使得其在发达国家获得了日益广泛的应用。我国是一个能源相对匮乏的国度,能源的人均占有量很低,而建筑能耗已经占全国总能耗的27.5%左右。因此,大力开发Low-E玻璃的生产技术并推广其应用领域,必将带来显著的社会效益和经济效益。 Low-E玻璃在生产中,因材质特殊性,在经过清洗机时,对清洗毛刷有较高的要求。刷丝必须是高档的尼龙刷丝如PA1010、PA612等,丝直径在0.1-0.15mm为佳。因刷丝柔软性好,弹性强,耐酸碱,耐温,能够轻易的清除玻璃表面上的尘埃,且不会对表面造成刮痕。 Low-E玻璃的应用与发展 在美国及欧洲,低辐射(Low-E)(译称娄义)镀膜玻璃由于其优越的性能,得到了极大的关注。特别是的Wschvo法规,使Low-E玻璃有迅猛的发展。 欧洲的制造商是在60年代末开始实验室研究"Low-E"的。1978年,美国的英特佩(interqane)成功地将"Low-E"玻璃应用到建筑物上。 "Low-E"的优越性是无可质疑的。从1990年开始,"Low-E"的用量在美国以年5%的速度递增。将来,"Low-E"是否成为窗玻璃的主导地位还不得知,但是业主和门窗公司都非常重视节能型的门窗。而且,今年的建筑物绝大多数是用它的节能效果来评定优劣的。

镀膜玻璃常见的术语解释

镀膜玻璃常见的术语解释 1、热反射镀膜玻璃 (1)什么是可见光透过率、反射率? 在可见光谱范围(380纳米至780纳米)内,透过玻璃光强度的百分比为可见光透过率,而被玻璃反射光强度的百分比为可见光反射率。 (2)什么是太阳能透过率、反射率? 在太阳能光谱范围(300纳米至2500纳米)内,紫外线、可见光和红外光透过玻璃的百分比为太阳能透过率,而紫外光、可见光和红外光被玻璃反射的百分比为太阳能反射率。 太阳能光谱包括了可见光。 (3)什么是ASHRAE标准? ASHRAE是英文American Society of Heating,Refrigerating and Air-conditioning Engineers的缩写,即美国采暖制冷空调工程师协会。 (4)什么是U值? ASHRAE标准条件下,由于玻璃的热传递和室内外的温差,所形成的空气到空气的传热量。U值越低,透过玻璃的传热量越低。公制单位为W/m2K(瓦每平方米每开氏温度)。 (5)什么是冬季U值条件、夏季U值条件? 冬季U值的条件:室外空气温度为-18℃(0℉),室内空气温度为21℃(70℉),室外空气流速为24Km/h(6.7m/S、15mph),室内空气自然对流,阳光强度为0 W/m2(无阳光)(夜间) 夏季U值的条件:室外空气温度为32℃(90℉),室内空气温度为24℃(75℉),室外空气流速为12Km/h(3.4m/S、7.5mph),室内空气自然对流,阳光强度为783W/m2(白天)。 (6)什么是相对热增益?

即太阳能透过玻璃的瞬间总增热,其中包括阳光辐射增热(遮阳系数Sc)和传导增热(传热系数U值),相对增热值越低,性能越好。按照ASHRAE标准,在夏季白天,阳光强度为630W/m2,室内外温差为8℃,则相对增热RHG=8*U夏+630*Sc(W/m2)。 (7)什么是热应力破裂? 热应力破裂的产生来自于玻璃不同部位的温度不均匀。镀膜玻璃暴露在阳光直照下,主要吸收阳光的红外光和部分可见光,在玻璃本体内转换为热量,使玻璃本体产生热膨胀,而处于铝框结构内部玻璃部分却不能受到相同的太阳辐射,因此导致玻璃本体整体受热不均匀,内部热应力形成,玻璃中区的热膨胀使玻璃边区产生张应力,此张应力超过边区抗张强度,就会导致玻璃破裂。玻璃由于热应力而破裂的现象是玻璃的边缘破裂口整齐,且与玻璃边缘成直角,裂口数量少,玻璃中区的裂痕为弧形而非直线。 (8)影响热应力的因素有哪些? 建筑物朝向、气候条件、玻璃尺寸和形状、暖通设施位置、窗框系统、室内外遮蔽和玻璃本体吸收。 (9)什么是热反射玻璃? 热反射玻璃就是通常所说的镀膜玻璃,就是在浮法玻璃表面镀上金属膜及金属氧化物或氮化物薄膜,使玻璃的遮阳系数Sc从0.99(6mm透明玻璃)降低到0.2~0.6形成的。 (10 热反射玻璃的特性是什么? 减弱紫外线透过、多种反射色调、理想的可见光透过率和反射率、高红外热射线反射率、低太阳能获得率、理想的遮阳系数。 (11)单向透明玻璃的应用? 主要应用于隐蔽性观察窗,采用真空磁控溅射设备在玻璃表面镀膜。膜面必须朝着光源明亮的被观察室,必须创造适当的光照度比,以达到理想的效果。 (12)什么是风荷载能力?

LOW-E玻璃知识

了解LOW-E玻璃的保温隔热原理就可以理解膜能不能起到作用在20世纪70年代中期,人们发现双层玻璃窗热传递的大部分,是从一层玻璃向另一层玻璃的红外辐射交换产生的。因此,只要减小双层玻璃中任何一个表面的发射率,就能大大减少辐射热的传递。这就是LOW-E玻璃的来由。 对于没有镀覆任何涂层的两片白玻璃来说,相互间的长波辐射交换程度很高,约为通过此间层热量的总交换60%。在玻璃表面镀覆Low-E涂层,两片玻璃之间的长波辐射交换将大幅度降低。由此可见,LOW-E做成双层才效果好,且保温效果比单层玻璃更为优秀,非常适用于冬季寒冷的北方。 有数据表明:白玻璃的发射率为0.84,镀有发射率为0.2的涂层后,其辐射交换率就降低了3/4,因此传热系数值也随之降低了。在玻璃厚度为4mm,空气厚度为12mm时,双层玻璃的传热系数约为2.8W/(m2*k),如果镀覆LOW-E后,传热系数降低为1.8W/(m2*k)。 LOW-E的优点很明显,由于镀覆的膜很薄,它对短波辐射是基本透明的,使紫外线和可见光基本通过,而对长波红外线辐射是不透明的。也就是说,冬天保持室内热能,使其难以向外散发,而夏天将室外高温散发出的大量热辐射反射回去,使其难以进入室内,做到“冬暖夏凉”。 LOW-E分为在线和离线两类。一般来说在线LOW-E质量比较稳定,不象离线那样容易氧化失效,寿命比较长,缺点在于隔热效果不如离线好,如果想通过加厚镀覆层来提高隔热效果,则玻璃颜色会迅速加深,透光率大幅度降低。离线LOW-E隔热效果好,必须双层使用,并且生产后需要马上加工成双层,如果工艺不到位,镀覆层容易氧化,造成透明度下降。在线和离线是各有优缺点。 优质LOW-E一般使用寿命可以达5年以上,但是与建筑几十年的寿命相比还是过于短暂。特别是离线的LOW-E,易氧化也怕氧化,因为不管是更换玻璃还是更换玻璃框都会给建筑物的日常使用带来非常大的麻烦。据悉在美国有最新技术,通过在每片玻璃上打个小孔注入化学剂,来延长LOW-E的使用寿命,工艺复杂,成本高。但是不管如何,LOW-E的更换和维护明显不如膜和涂剂来得简单。 早期人们对玻璃的要求仅是透光、平整和外观质量好。随着能源及环境政策的不断深入落实,节能建筑、绿色建筑、环境友好性建筑等概念日益得到了人们的认可,并迅速发展起来。这些类型的建筑都对玻璃提出了越来越多的光学热工性能指标要求,由此也诞生了更多的新型玻璃品种。在实际选购玻璃时,一方面建筑设计师会提出多项指标要求企业加工玻璃产品,另一方面玻璃企业也会尽可能全面地标示出自己产品的光学热工性能供客户选择。准

Low-e玻璃的选型和应用

Low-E玻璃及选型使用 摘要:介绍了Low-E玻璃相关的慨念和常见品种,对Low-E玻璃的安装使用提出一建议。 关键词:Low-E玻璃 U值遮阳系数选型 1、概述 Low-E玻璃又称低辐射玻璃,是镀膜玻璃的一种,是在玻璃上镀上不同材质的膜层形成的,其中具有低辐射、远红外高反射性质的膜层是金属银。 U值和遮阳系数是Low-E玻璃节能程度的两个重要指标,本文通过对Low-E 玻璃的U值、遮阳系数等相关概念的介绍,并结合目前国内外出现的常见Low-E 品种,详细介绍了每个品种Low-E的u值及遮阳系数的特点,并结合这些特点对Low—E玻璃的选型作了一些建议。 2、与Low-E(低辐射)有关的几个概念 2.1、U值 欧洲用U值来表达物体热传导能力,可用DINEn673来计算U值。该U值的计算基准为:假设玻璃内外两侧的温度差为15℃,平均温度为10℃。中空玻璃的U值,可以用下列方法计算: 1/U=1/he+1/ht+1/hi(1) 式中:he和hi分别为室外侧和室内侧传热系数; ht为玻璃组件的传热系数。 根据DlN EN673或GB/T2680-94,he为23w/m2·K,hi为8w/m2·K 1/h=1/hs+Dglass+Rglass(2) 式中:Rglass=1.0m·k/w;Dglass是各片玻璃的总厚度(m),Dglass×Rglass 数值很小可省略,所以1/ht=1/hs 中空玻璃气体层的热传递系数h。为: Hs=hr+hg(3) 式中:hr为中空内腔的辐射传热。 Hr=β/(1/ε2+ε3-1)(4) 对于一般正常的冬季和夏季使用温度,β/值取5.14w/m2·k。 中空内腔的对流传导热H为:

lowe玻璃的优势

现代建筑设计倾向于使用大面积玻璃自然采光,然而普通的单片玻璃夏季无法阻挡阳光中的热能向室内传递,冬季也无法阻挡室内热能的外泄,保持室内适宜的温度的代价只能是大量消耗能源,例如:空调、暖气等。由此导致的直接后果是整个建筑的节能性的极大损失。如何在保证室内采光良好的前提下,将玻璃能量损失减至最低。由此,低辐射镀膜玻璃(即Low-E玻璃,为LowEmissivity Glass 的简称)应上述功能而开发使用,并取得了良好的效果,成为当今玻璃市场上的主要发展的产品之一。 就我国情况而论,我国纬度跨度较大,北方地区冬天气候严寒,南方地区夏热冬暖。我国建筑能耗占总体能耗的35%,建筑节能滞后,能耗高,污染重,成为制约我国经济可持续发展的突出问题。中国建筑外墙热损失是加拿大和北美同类建筑的3-5倍,窗的热损失在2倍以上;门窗面积占建筑面积的20%-30%,玻璃占门窗面积70%-80%;建筑能耗的70%是通过门窗流失的,其中1/3是通过玻璃流失的;辐射传热是热传导的主要方式,占60%。 低辐射镀膜玻璃根据用途主要分为以下类型: ①高透型低辐射镀膜玻璃 这种玻璃具有传热系数低和反射远红外热辐射的特点,它可将冬季室内暖气、家用电器和人体发出的热量反射在室内,并降低玻璃的热传导,从而获得极佳的保温效果。适用于北方寒冷地区使用的这种玻璃还具有较高的太阳能透过率,可使太阳中近红外热辐射进入室内而增加室内的热量,从而有效地降低暖气的能耗。 ②遮阳型低辐射镀膜玻璃 这种玻璃除具有传热系数低和反射远红外热辐射的特点外,还具有反射太阳中近红外热辐射的特性。这种玻璃只允许太阳光中的可见光进入室内而阻挡其中的热辐射,因而特别适合于南方地区和过渡地区使用。使用这种玻璃后,即使有太阳照射也不会有热感,它既能保证冬季室内的热能不外泄,又可保证阻挡夏季阳光中的热能进入室内。 ③双银Low-E玻璃 双银Low-E玻璃是目前最高级的环保节能型产品,它突出地强调了玻璃对太阳热辐射的遮蔽效果,将玻璃的高透光性与太阳热辐射的低透过性巧妙地结合在一起,在可见光透过率相同的情况下,它比普通Low-E玻璃具有更低的太阳能透过率,即具有更低的遮阳系数SC。换句话说,它最大限度地将太阳光过滤成冷光源,解决了高可见光透过率与低太阳能透过率不能兼顾的矛盾,为追求外观通透性的设计提供节能性的保障。 Low-E玻璃按生产制造工艺方式分为离线Low-E玻璃和在线Low-E玻璃两种。

低辐射镀膜玻璃(Low-E玻璃)性能

低辐射镀膜玻璃(Low-E玻璃)性能 低辐射镀膜玻璃又称Low-E玻璃,是一种对红外线具有较高反射比、对可见光具有较高透射比的镀膜玻璃。按生产工艺的不同,分为离线低辐射镀膜玻璃和在线低辐射镀膜玻璃两种。 GB/T18915.2-2002《镀膜玻璃第2部分:低辐射镀膜玻璃》标准中规定了Low-E 玻璃的技术要求。离线Low-E玻璃重要项目有光学性能、颜色均匀性、辐射率;在线Low-E玻璃重要项目有光学性能、颜色均匀性、辐射率、耐磨性、耐酸性、耐碱性;其中的关键项目是辐射率和光学性能,它决定了Low-E玻璃的节能性能。GB/T18915.2-2002标准规定,离线低辐射镀膜玻璃的辐射率应低于0.15,在线低辐射镀膜玻璃的辐射率应低于0.25;光学性能有紫外线透射比、可见光透射比、可见光反射比、太阳光直接透射比、太阳光直接反射比和太阳能总透射比。在建筑工程验收规范中,对幕墙玻璃有传热系数、遮阳系数、可见光透射比、中空玻璃露点的要求;对建筑外窗有气密性、保温性能、中空玻璃露点、玻璃遮阳系数和可见光透射比的要求。 在线低辐射(LOW-E)镀膜玻璃是对中远红外辐射具有较高反射率的新型节能镀膜玻璃。该产品是在锡槽和退火窑内,采用CVD和MOCVD工艺将镀膜原料在高温下连续热解,沉积在移动的玻璃表面,制成低辐射镀膜玻璃。由于在高温下连续成膜,无需升温、清洗、干燥等环节,因此生产规模很大,生产成本较低,膜层与玻璃结合牢固。能单片使用并可进行热加工,是实现建筑节能必选的幕墙、窗体材料。 在线低辐射(LOW-E)镀膜玻璃分为两类,一是净色低辐射镀膜玻璃,既保持了无色透明玻璃的可见光高透性能,同时具有优良的低辐射功能。二是彩色低辐射镀膜玻璃,既具有良好的透光性和遮阳性,又具有优良的低辐射功能。 隔热、遮阳、低辐射都是节能概念的良好体现,承载着节能概念的各类产品的多种组合,为中空玻璃加工选择提供了可能,是实现建筑节能标准的良好基础。 产品特点: 高效的节能环保性:良好的保温隔热性能,是理想的节能环保材料。 优良的采光性:可见光透射比高,具有良好的采光效果。 化学性能稳定:可单片使用,可长期存放,充分发挥深加工企业的自身优势。 热加工性能稳定:可任意进行钢化、热弯、夹层等各类深加工。 机械性能稳定:膜层牢固、耐磨性好、不易划伤。 在进行中空加工时,无需除掉边部膜层。 采用在线、连续生产工艺,规模大、生产效率高。 品种多样化,可生产多种颜色。

三银Low_E玻璃(详细介绍)

三银Low_E玻璃(详细介绍) Low_E玻璃又称低辐射镀膜玻璃,具有极低的表面辐射率,是在玻璃表面镀上多层金属或其他化合物组成的膜系产品。其镀膜层具有对可见光高透过及对中远红外线高反射的特性,使其与普通玻璃及传统的建筑用镀膜玻璃相比,具有优异的隔热效果和良好的透光性。 南玻作为国内第一家生产镀膜玻璃的企业,一直致力于研究节能玻璃的发展,自1997年首次成功推出单银以来,到目前镀膜玻璃已经发展到了第三代——三银Low_E玻璃,也称红外线屏蔽玻璃,它的显著优点有: ▲透光率高:自然采光好,节省照明能耗 ▲太阳红外热能总透射比极低 ▲透光不透热,遮阳性能极好 ▲将太阳过滤成冷光源,西晒不热 ▲降低空调能耗、减少空调设备投资 ▲传热系数K值低:提高保温性能 ▲舒适性好:夏季室内环境更加凉爽,冬季更加温暖 我们来看看Low_E膜层的基本结构

根据膜层里含有的银层数量,因此得名单银Low_E、双银Low_E、三银Low_E,三银Low_E优异的性能我将通过以下个几个方面来比较: 1、在透过率相同的情况下,三银、双银、单银的太阳光谱透过曲线的比较

●在太阳热辐射区域,单银的包容面积最大,双银次之,三银的包容面积最小,也就是透过三银玻璃的热量最少。 2、在透过率相同的情况下,三银、双银、单银的光热性能参数的比较 ●光热比LSG:可见光透射比与太阳能总透射比的比值

●透光率相同时,三银Low_E玻璃的K值和Sc值更小,光热比值更大,更节能 3、在相同遮阳系数的情况下,三银、双银、单银的太阳光谱透过曲线的比较 ●在遮阳系数相同的情况下,三银的透过反而更高,在屏蔽了红外热能的同时,提高了室内自然光的采集,提高室内照明舒室度,减少能耗,即透过了可见光(采光),又挡住了红外线(隔热)。 4、在相同遮阳系数的情况下,三银、双银、单银的光热性能参数的比较

LowE玻璃类型

低辐射镀膜玻璃(又称LOW-E玻璃),是在玻璃表面镀上多层金属或其他化合物组成的膜系产品。该产品对可见光有较高的透射率,对红外线(尤其是中远红外)有很高的反射率,具有良好的隔热性能。信义从德国VACT公司引进LOW-E生产线采用先进的真空磁控溅射镀膜工艺,是目前国内产量、品种、技术含量领先的低辐射镀膜生产线。美国的最新技术中频旋转阴极可提高膜的溅射率、膜层的致密度让膜层更牢固;采用纯度高、致密性好的进口靶材和在线光度计监测膜面颜色的均匀度来保证膜层的均匀性。我司生产的各种镀膜产品在膜层物理、化学耐久性能均达到国际一流水平,具备连续生产大批量订单的能力,并根据不同地区节能的实际需要,为顾客提供不同型号的LOW-E玻璃:高透型LOW-E玻璃,遮阳型LOW-E玻璃和双银LOW-E玻璃。 高透型LOW-E玻璃 产品特性: 1、较高的可见光透射率:采光自然,效果通透; 2、较高的太阳能透过率,透过玻璃的太阳热辐射多; 3、极高的中远红外线反射率:优良的隔热性能,较低V值(传热系数)。 适用范围: 1、寒冷的北方地区。冬季太阳热辐射透过玻璃进入室内增加室内的热能,而室内的暖气、家电、人体等发出的远红外被阻隔反射回室内,有效地降低暖气能耗; 2、适用于外观设计透明、通透、采光自然的建筑物,有效避免“光污染”危害; 3、制作成中空玻璃(膜面在第3面)使用节能效果更加优良。 遮阳型LOW-E玻璃 产品特性: 1、适宜的可见光透过率,对室外的强光具有一定的遮蔽性; 2、较低的太阳能透过率,有效阻止太阳热辐射进入室内; 3、极高的中远红外线反射率,限制室外的二次热辐射进入室内。 适用范围: 1、适用于南方地区及北方地区。该产品不仅冬季限制部分太阳热能进入室内,在夏季则能限制更多的太阳能进入室内,因为冬季太阳能的强度仅为夏季的1/3左右,因而保温性能并未受到影响。从节能效果看,遮阳型不低于高透型; 2、其丰富的装饰性能起到一定的室外实现的遮蔽作用,适用于各类型建筑物; 3、制作成中空玻璃节能效果更加明显。 双银LOW-E玻璃 产品特性:双银LOW-E玻璃,因其膜层中有双层银层面而得名,其属于LOW-E玻璃膜系结构中较复杂的一种,是高级LOW-E玻璃。它突出了玻璃对太阳热辐射的遮蔽效果,将玻璃的高透光性与太阳热辐射的低透过性巧妙地结合在一起,因此与普通LOW-E玻璃比较,在可见光透射率相同的情况下具有更低太阳能透过率。 适用范围:不受地区限制,适合于不同气候特点的广大地区。 可异地加工LOW-E玻璃 普通LOW-E玻璃的膜系结构中,金属膜层是其主功能膜层,其质地较软,与其他膜层结合力较弱,因此要求在成膜后短时间内必须合成中空玻璃使用。信义玻璃通过改良LOW-E玻璃

相关文档