文档库 最新最全的文档下载
当前位置:文档库 › LWIP-API 函数

LWIP-API 函数

LWIP-API 函数
LWIP-API 函数

UDP Raw API functions

API function Description

udp_new Creates a new UDP PCB.

udp_remove Removes and de-allocates a UDP PCB.

udp_bind Binds a UDP PCB with a local IP address and port.

udp_connect Sets up a UDP PCB remote IP address and port.

udp_disconnect Removes a UDP PCB remote IP and port.

udp_send Sends UDP data.

udp_recv Specifies a callback function which is called when a datagram is received.

Pbuf API functions

API function Description

pbuf_alloc Allocates a new pbuf.

pbuf_realloc Resizes a pbuf (shrink size only).

pbuf_ref Increments the reference count field of a pbuf.

pbuf_free Decrements the pbuf reference count. If it reaches zero, the pbuf is deallocated.

pbuf_clen Returns the count number of pbufs in a pbuf chain.

pbuf_cat Chains two pbufs together (but does not change the reference count of the tail pbuf chain). pbuf_chain Chains two pbufs together (tail chain reference count is incremented).

pbuf_dechain Unchains the first pbuf from its succeeding pbufs in the chain.

pbuf_copy_partial Copies (part of) the contents of a packet buffer to an application supplied buffer.

pbuf_take Copies application supplied data into a pbuf.

pbuf_coalesce Creates a single pbuf out of a queue of pbufs.

..\inc;..\..\..\..\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F2xx;..\..\..\..\Libraries\STM32F2xx_StdPeriph_Driver\inc;..\..\..\..\Libraries\STM32F2x7_ETH_Driv er\inc;..\..\..\..\Utilities\STM32_EVAL\Common;..\..\..\..\Utilities\STM32_EVAL\STM322xG_EVAL;..\..\..\..\Utilities\Third_Party\lwip_v1.3.2\src\include;..\..\..\..\U tilities\Third_Party\lwip_v1.3.2\src\include\lwip;..\..\..\..\Utilities\Third_Party\lwip_v1.3.2\src\include\netif;..\..\..\..\Utilities\Third_Party\lwip_v1.3.2\src\include\ipv4 ;..\..\..\..\Utilities\Third_Party\lwip_v1.3.2\port\STM32F2x7;..\..\..\..\Utilities\Third_Party\lwip_v1.3.2\port\STM32F2x7\FreeRTOS;..\..\..\..\Utilities\Third_Party\Fre eRTOS_v6.1.0portable\MDK-ARM\ARM_CM3;..\..\..\..\Utilities\Third_Party\FreeRTOS_v6.1.0\include;

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

构造辅助函数证明微分中值定理及应用

构造辅助函数证明微分中值定理及应用 摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。 关键字:辅助函数,微分方程,微分中值定理 Constructing auxiliary function to prove differential median theorem and its copplications

Abstract: Constructing auxiliary function is the important method to prove median theorem. This paper gives several ways of constructing auxiliary function:Differential equation, Constant K, Geometry law, Primary function law, Determinant law;and Gives some specific examples to illustrate how to constructing. Key words: Auxiliary function; Differential equation; Differential median theorem 目录 一:引言 (4) 二:数学分析中三个中值定理 (4) 三:五种方法构造辅助函数 (6) 1:几何直观法 (6)

2:行列式法…………………………………………………………………… .第7页 3:原函数法 (8) 4:微分方程法 (10) 5:常数k值法 (13) 四:结论 (15) 参考文献 (15) 致谢 (16) 一:引言 微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础,这部分内容理论性强,抽象程度高,所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命

求函数解析式的几种常用方法

求函数解析式的几种常 用方法 -CAL-FENGHAI.-(YICAI)-Company One1

求函数解析式的几种常用方法 一、高考要求: 求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力. 重难点归纳: 求解函数解析式的几种常用方法主要有: 1.待定系数法,如果已知函数解析式的构造时,用待定系数法; 2.换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法; 3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f (x ); 另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法. 二、题例讲解: 例1.(1)已知函数f (x )满足f (log a x )= )1 (1 2x x a a --.(其中a >0,a ≠1,x >0),求f (x )的表达式. (2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求f (x )的表达式. 命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力. 知识依托:利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域. 错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错. 技巧与方法:(1)用换元法;(2)用待定系数法. 解:(1)令t=log a x (a >1,t >0;01,x >0;0

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

自相关函数

自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等 同于自协方差(autocovariance)。 统计学 R(k) = \frac{E[(X_i - \mu)(X_{i+k} - \mu)]}{\sigma^2} 信号处理 R_f(\tau) = f(\tau) * f^*(-\tau)= \int_{-\infty}^{\infty} f(t+\tau)f^*(t)\, dt = \int_{-\infty}^{\infty} f(t)f^*(t-\tau)\, dt,其中“*”是卷积算符,(\cdot)^*为取共轭。 同一时间函数在瞬时t和t+a的两个值相乘积的平均值作为延迟时间t 的函数,它是信号与延迟后信号之间相似性的度量。延迟时间为零时,则 成为信号的均方值,此时它的值最大。 编辑本段 自相关函数的性质 以下以一维自相关函数为例说明其性质,多维的情况可方便地从一维 情况推广得到。 对称性:从定义显然可以看出R(i) = R(?i)。连续型自相关函数为偶 函数 当f为实函数时,有: R_f(-\tau) = R_f(\tau)\, 当f是复函数时,该自相关函数是厄米函数,满足: R_f(-\tau) = R_f^*(\tau)\, 其中星号表示共轭。 连续型实自相关函数的峰值在原点取得,即对于任何延时τ,均有 |R_f(\tau)| \leq R_f(0)。该结论可直接有柯西-施瓦兹不等式得到。离 散型自相关函数亦有此结论。 周期函数的自相关函数是具有与原函数相同周期的函数。 两个相互无关的函数(即对于所有τ,两函数的互相关均为0)之和 的自相关函数等于各自自相关函数之和。 由于自相关函数是一种特殊的互相关函数,所以它具有后者的所有性质。 连续时间白噪声信号的自相关函数是一个δ函数,在除τ = 0 之外 的所有点均为0。 维纳-辛钦定理(Wiener–Khinchin theorem)表明,自相关函数和功 率谱密度函数是一对傅里叶变换对: R(\tau) = \int_{-\infty}^\infty S(f) e^{j 2 \pi f \tau} \, df

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

相关协方差相关函数内积点击等概念

>> temp1=[1 2 3]; >> temp2=[3 4 1]; >> xtemp=temp1.*temp2 %matlab所谓的向量点击,结果还是向量!!!!!!! xtemp = 3 8 3 >> te=temp1*temp2' %这是数学上两个向量点击,然后在matlab里面的计算方法,结果就是一个值了,含义是两个向量的相似度!!不过没有归一化(没有 按照方差归一) te = 14 >> 2.相关和协方差的关系:如函数: function rou=calcuateSimilary(Beye,data_new) %Beye,data_new前者是去噪前的18*751的数据,后者去去噪后的18导的 %%下面是用概率论里面的相关系数来做的,分别计算比如18导各自的相关系数,结果是18*1的向量 [m,n]=size(Beye); rou=zeros(m,1); for i=1:m temp=cov(Beye(i,:),data_new(i,:));%没有办法,cov函数不像数学公式,matlab的cov函数得到的一定是一个协方差矩阵 %所以对两个向量而言,取反斜对角的任何一个(对称的)就是他们两个的方差。然后按照下面的其实是一个归一化公式 %就是得到了两个向量的相关系数,也其实是衡量的两个变量的相似程度(而且是归一化以后的,否者不好衡量),注意 %注意和信号处理里面的相关函数区分,相关函数在0点的值就是两个变量没有归一化的协方差也就是上面的那个temmp值(如果去了均值,内积就是协方差 %见信号处理里面的什么交流功率和直流功率和相关函数的关系那个图),而相关函数在其它点的值是为了衡量信号如果错位后的相似程度。如果错位后两个 %信号居然达到最大的值,那表示这两个信号时间上延迟后才最像或者说有可能是同一个信号的延迟再现,所以用在衡量寻找信号的潜在周期嘛。 rou(i)=temp(1,2)/(sqrt(cov(Beye(i,:)))*sqrt(cov(data_new(i,:)))); end

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

常见的几个函数

几种常见的函数及其应用 1.迭代函数 例1 若()f x = 1()()f x f x =,1()(())n n f x f f x +=,求()n f x 的表达式。 例2已知()1x f x x = +,0x ≥,若1()()f x f x =,1()(())n n f x f f x +=,n N +∈,则 2014()f x 的表达式为 . 2.高斯函数:(取整函数)用[]x 表示不超过x 的最大整数,例如[]1.21=,[]00=, []1.42-=-,则()f x 例 设x R ∈,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立.... ,则正整数n 的最大值是 A .3 B .4 C .5 D .6 8.(2013湖北卷文科)x 为实数,[]x 表示不超过x 的最大整数,则函数 ()[]f x x x =-在R 上为 A.奇函数 B.偶函数 C.增函数 D.周期函数 3.取小数部分函数 例 对任意x R ∈,函数{}[]()f x x x x ==-,例如{}[]1.2 1.2 1.2 1.210.2=-=-=, {}333330=-=-=,{}[]1.2 1.2 1.2 1.2(2)0.8-=---=---=,则()f x 的图像是 4.符号函数:10()sgn 0010x f x x x x >?? ===??-

例 设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >?? ==??-

几种构造辅助函数的方法及应用

几种构造辅助函数的方法 及应用 The Standardization Office was revised on the afternoon of December 13, 2020

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例 说明了寻求辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 “逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=210 21dx x xf f ,证明在][1,0内至少有一点θ,使()() θ θθf f - ='.

证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将() () θ θθf f '变为()()0='?+θθθf f ,联想到 ()[]()()θθθθ f f x xf x '?+='=,可考虑辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得 ()0='θF 即:()() θ θθf f - ='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积 分因子),为简便起见,可将积分常数取为零; (4)移项,将等式一边为零,则等式的另一边为所求的辅助函数. 例2: ()[]() (),0,0,,>>a f a b a b a x f 且内可导,其中上连续,在在设 ()()()ξξ ξξf a b f b a '?-=?∈?,,证明: 分析: ()()ξξ ξf a b f '?-=

作业4-回归模型的函数形式 (1)

习题4 回归模型的函数形式 姓名:____万瑜________;学号:______1157120_________ 9.下面的模型是参数线性的吗?如果不是用什么方法可以使他们成为参数线性模型? A .i i X B B Y 211 += b .221i i i X B B X Y += 14表5-13给出了德国1971年~1980年消费者价格指数Y (1980年=100)及货币供给X (10亿德国马克)的数据。 A 做如下回归: 1.Y 对X 2.lnY 对lnX 3。lnY 对X 4.Y 对lnX 解: 1.Y 对 X 2.lnY 对 lnX

3. lnY 对X 4.Y 对lnX 解:1.X Y ??=1 ?β斜率说明X 每变动一个单位,Y 的绝对变动量;

2. E X X Y Y =??=//?1 β斜率便是弹性系数; 3. X Y Y ??=/?1 β斜率表示X 每变动一个单位,Y 的均值的瞬时增长率; 4,. X X Y /?1 ??=β斜率表示X 的相对变化对Y 的绝对量的影响。 C 对每一个模型求Y 对X 的变化率 解:1. 2609.0?1=??=X Y β; 2. X Y X Y X Y 5890.0?1=?=??β; 3. Y Y X Y 0028.0?1=?=??β; 4. X X X Y /2126.54/?1==??β. D 对每一个模型求Y 对X 的弹性,对其中的一些模型,求Y 对X 的均值弹性。 解:1. Y X Y X X X Y Y E 2609.0?//1 =?=??= β; 均值弹性=5959.096.41176 220.19 2609.02609.0=?=?Y X 2. 5890.0?//1 ==??= βX X Y Y E ; 3. X X X X Y Y E 0028.0?//1=?=??=β; 均值弹性=6165.0220.190028.00028.0=?=?X 4. Y Y X X Y Y E /2126.54/?//1==??= β. 均值弹性=5623.096.41176 1 2126.5412609.0=?=?Y . E 根据这些回归结果,你将选择那个模型?为什么? 解:无法判断,因为只有当模型的解释变量的类型相同时,才可比较拟合优度检验数2 R ,对模型的选择还取决于模型的用途。 25表5-16给出了1995~2000年间Qualcom 公司(数字无线电信设计和制造公司)每周股票价格的数据。 a 做收盘价格对时间的散点图。散点图呈现出什么样的模式?

中值定理构造辅助函数.docx

微分中值定理证明中辅助函数的构造 1原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数, 主要思想分为四点:(1)将要证的结论中的§换成兀;(2)通过恒等变形将结论化为易消 除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取 积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数F ⑴. 例1:证明柯西中值定理. 分析:在柯西中值定理的结论酬筒中令…,得 '先变形为衞喘伯")再两边同时积分得 尸(兀)=/(兀)_ /丫)一/"" g (x )为所求辅助函数. g@)-g ⑷ 例2:若兔,q , $,…,色是使得&)+” + ¥ +…+上、=0的实数.证明方程 2 3 n + \ 兔+q 无+匕2兀2 +…+匕“"=0在(0, 1)内至少有一实根. 证: 由于[*(&)+。]兀 + 偽〒 ++ a n x n )dx = a^x-^ — x 1 +—x 3 +??? + -^—兀"° +C 」 ? 2 3 n +1 并且这一积分结果与题设条件和要证明的结论有联系,所以设 F (x ) = a {}x + — x 2 + —x 3 +??? + -^-x"J (取C = 0 ),贝!J 2 3 n + 1 1) F (x )在[0, 1]上连续 2) F (x )在(0, 1)内可导 3) F (0)=0, 尸⑴二勺+色+纟+…+厶二。 2 3 n + \ 故尸(尢)满足罗尔定理的条件,由罗尔定理,存在e (0,1)使F@) = 0,即 (。()兀+号■兀2 + 守兀‘+…+上穿兀处):=卍=0亦即€z 0+a,^ + ^2 +???+qg" = 0? /(b)-/⑺) g(b)-g(a) g(x) = /(Q + C ,令 C = 0 /(毎 g(坍 /(>

微积分学中辅助函数的构造

微积分学中辅助函数的构造 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

编号:08005110137 南阳师范学院2018届毕业生 毕业论文<设计) 题目:微积分学中辅助函数的构造 完成人:司玉会 班级: 2008-01 学制:4年 专业:数学与应用数学 指导教师:葛玉丽 完成日期:2018-03-31 目录 摘要(1> 0引言(1> 1构造辅助函数的原则(1> 1.1将未知化为已知(2> 1.2 将复杂化为简单(2> 1.3 利用几何特征(3> 2构造辅助函数的方法探讨(3> 2.1常数变易法(3> 2.1.1罗尔定理应用举例(3> 2.1.2构造辅助函数证明积分不等式(4> 2.2原函数法(4> 2.3微分方程法(6> 2.4积分法(6>

2.5函数增量法(7> 2.6参数变易法(7> 3构造辅助函数在微分中值定理证明中的应用分析(8> 3.1辅助函数构造在拉格朗日定理中应用(8> 3.1.1应用举例(9> 4结束语(10> 参考文献(10> Abstract(11>

微积分学中辅助函数的构造 作者:司玉会 指导教师:葛玉丽 摘要:构造辅助函数是数学分析中解决问题的重要方法,在解决实际问题中有广泛应用.通过研究微积分学中辅助函数构造法,构造与问题相关的辅助函数,从而得出欲证明的结论.本文介绍了构造辅助函数的概念及其重要性,分析了构造辅助函数的原则,归纳了构造辅助函数的几种方法,并研究了构造辅助函数在微积分学中的重要作用和应用.b5E2RGbCAP 关键词:原函数法;辅助函数;常数变易法;函数增量法 0引言 当某些数学问题使用通常办法按定势思维去考虑而很难奏效时,可根据题设条件和结论特征、性质展开联想,进而构造出解决问题的特殊模式——构造辅助函数.辅助函数构造法是数学分析中一个重要的思想方法,在数学分析中具有广泛的应用.构造辅助函数是把复杂问题转化为已知的容易解决问题的一种方法,在解题时,常表现为不对问题本身求解,而是构造一个与问题有关的辅助问题进行求解[1-2].p1EanqFDPw 微积分学中辅助函数的构造是在一定条件下利用微积分中值定理求解数学问题的方法.通过查阅现有的大量资料发现,现在国内外对微积分学中辅助函数构造法的研究比较多,其中有一部分研究的是辅助函数构造法的思路[3],但大部分研究的是辅助函数的构造在微积分学解题中的应用[4].DXDiTa9E3d 通过构造辅助函数,可以解决数学分析中众多难题,尤其是在微积分学证明题中应用颇广,且可达到事半功倍的效果.RTCrpUDGiT 1构造辅助函数的原则

不等式证明中辅助函数的构造方法与技巧

大庆师范学院 本科生毕业论文 不等式证明中辅助函数的构造方法与技巧 学院教师教育学院 专业数学与应用数学 研究方向数学教育 学生姓名刘雨琳 学号201101051311 指导教师姓名李秀丽 指导教师职称副教授 2015年5月25日

摘要 不等式的证明问题是高等数学学习中一类很重要的问题,有些不等式的证明问题可以运用我们所学的基础知识直接解决,但有些不等式成立需要借助于构造辅助函数,构造辅助函数证明不等式成立的方法有很多。本文简单介绍了几种在证明不等式时可以运用的构造辅助函数的方法和技巧,并且给出了在常见的几种不等式类型中这些方法的应用,主要就是通过构造出适合的辅助函数,将复杂的问题转变为基础的、简单的问题,提高解题的效率。 关键词:不等式;构造;辅助函数;方法;技巧;

Abstract Proving inequalities is a class of very important problems in learning Higher Mathematics. The proof of some inequalities can be solved directly using what we have learned the basic knowledge , but some inequalities can be established by constructing an auxiliary function , constructing an auxiliary function that inequality into the established method has much . This article simply introduces the methods and skills of several in proving inequalities can be used to construct the auxiliary function , and gives the application of these methods in several common types of inequality , mainly is by constructing a suitable auxiliary function , transformation of the complex issues as basis , a simple problem , improve their problem solving efficiency . Keywords: inequality; structure; auxiliary function; methods; techniques;

均生函数与自回归模型的详细介绍

一、自回归模型定义 以上介绍的回归模型是根据与其它变量之间的关系来预测一个变量的未来的变化,但是在时间序列的情况下,严格意义上的回归则是根据该变量自身过去的规律来建立预测模型,这就是自回归模型。自回归模型在动态数据处理中有着广泛的应用。 自回归模型的一个最简单的例子是物理中的单摆现象。设单摆在第个摆动周期中最大 摆幅为,在阻尼作用下,在第()个摆动周期中的最大摆幅将满足关系式 ,(3-7-1) 其中为阻尼系数。如果此单摆还受到外界环境的干扰,则在单摆的最大幅值上叠加一个新的随机变量,于是(3-7-1)式为 ,(3-7-2) 上式称为一阶自回归模型。当式中满足时,为平稳的一阶自回归模型。将这些概念推广到高阶,有自回归模型 (3-7-3)

式中为模型变量,为模型的回归系数,为模型的随机误差,为模型阶数。 二、自回归模型参数的最小二乘估计 设有按时间顺序排列的样本观测值,阶自回归模型的误差方程为 …… , 记 ,,,, 得 ,(3-7-4) 的最小二乘解为 (3-7-5)

三、自回归模型阶数的确定 建立自回归模型,需要合理地确定其阶数,一般可先设定模型阶数在某个 范围内,对此范围内各种阶数的模型进行参数估计,同时对参数的显著性进行检验,再利用定阶准则确定阶数,下面采用的§2-4的线性假设法来进行模型定阶。其原理是: 设有观测数据,先设阶数为,建立自回归模型, (3-7-6) 再考虑模型,将 (3-7-7) 作为(3-7-6)式的条件方程,联合(3-7-6)、(3-7-7)两式,就是模型。 先对(3-7-6)式单独平差,可求得模型参数估计及其残差平方和,记为 ,再联合(3-7-6)、(3-7-7)两式,也就是对阶模型进行平差,求得 阶模型参数估计及其残差平方和,记为。按线性假设法的(2-4-14)式,它们的关系可写成 (3-7-8) 在§2-4线性假设法中已证明,在假设成立时,可作分布统计量为

勒让德(legendre)多项式及其性质

勒让德(legendre )多项式及其性质 一. 勒让德多项式 勒让德多项式是由勒让德方程的通解推导出来的,所以我们首先引入勒让德方程,以及勒让德方程的幂级数解,勒让德方程的表达式如下: 2'''(1)2(1)0x y xy n n y --++= 其中n 为非负实数 (1.1) 它的幂级数解如下: 12y y y =+ (1.2) 其中: 224 1200 (1)(2)(1)( 3) [1]2!4! k k k n n n n n n y a x a x x ∞ =+-+ +==-+ ???∑ (1.3) 21 35 22110 (1)(2)(1)(3)(2)(4)[]3!5! k k k n n n n n n y a x a x x x ∞ ++=-+--++==-++???∑ (1.4) 由达朗贝尔判别法可知,当0n ≥不为整数时,这两个级数的收敛半径为 1,在(1.3)式和 (1.4)式中,0a 与1a 可以任意取值,它们起着任意常数的作用,显然,在区间(-1,1)内1y 和 2y 都是方程(1.1)的解,所以(1.2)是(1.1)的通解。 上面(1.3)和(1.4)幂级数当||1x <时级数收敛,此外级数是发散的。并且,我们发现,当 n 取非负整数时,1y 和2y 中有一个便退化为n 次多项式,它就是方程(1.1)在闭区间[-1,1]上的有界解。此时,适当的选定这个多项式的最高次幂系数n a ,所得的多项式称为n 阶勒让德多项式或第 一类勒让德函数,记作()n P x ,下面我们来推导勒让德多项式()n P x 的表达式。 ① 当 n 为正偶数时 1y 退化为n 次多项式。为求得()n P x 的表达式, 在1y 中我们通过n a 来表示其它各项的系数。为此,将系数递推关系式改写成下列形式: 2(2)(1)()(1) k k k k a a k n k n +++=-++ (1.5) 在(1.5)式中取2k n =-,得:

第十九章:勒让德多项式 球函数

第19 勒让德多项式 球函数习题及解答 ———————————————————————————— 19.1 试证明 1 1 P ()d 0 n x x -=? ,其中1,2,3,n = . 19.2 计算 1221 P ()d I x x x -=?. 【答案 0,2/3; 2,4/15; n I n I n I ====≠=】 19.3求积分 1 P ()d l I x x =?. 【答案 0,1; 1,1/2; 2,1,0;(21)!! 21,1, (1)(22)!! k l I l I l k k I k l k k I k =====≥=-=+≥=-+】 19.4 求积分 1 P ()d l I x x x =?. 【答案 1 20,1/2; 1,1/3; 21,1, 0;(22)!!2,1, (1)2(1)!(1)! k k l I l I l k k I k l k k I k k +=====+≥=-=≥=--+】 19.5 证明: 31 332()()55x P x P x =+ 19.6 证明:1 1 110 (1)()d ()d m m n n m n x P x x m x P x x --++=?? 19.7 证明:1 221 2(21) (1)[()]d ,0,1,2,. 21n n n x P x x n n -+'-= =+? 19.8 计算 111 1 (1) =P ()d ; (2) =(23)P ()d n n I x x x I x x x --+?? 【答案 (1)1,2/3;1,0;(2)0,4;1,2,0,1,0n I n I n I n I n I ==≠=====≠=】 19.9 求球内的调和函数u ,使得它满足边界条件 2 1|cos r u θ==. 【答案 2 212 (,)(cos )33u r P r θθ=+】 19.10 求下列定解问题 222 2111()(sin )0, (01)sin |cos 2cos r u u r r r r r r u θθθθθ=?????+=<

从自协方差数出发, 建立MA(2)模型如下

从自协方差函数()()4.3,664.2,4084.7,,210-=γγγ出发, 建立MA(2)模型如下: 0102030405060708090100 -8 -6-4-202468 10 02468 101214161820 Lag S a m p l e A u t o c o r r e l a t i o n Sample Autocorrelation Function (ACF)

⒈ 利用公式 ??? ? ??∏-???? ??=???? ??C A b b 212211 γγσ 20T C C σγ=-∏ 其中1 lim T k k k k -→∞ ∏=ΩΓΩ,0100A ??= ???,10C ?? = ???,1212k k k k γγγγ+??? Ω= ???L L 计算出0000.42 =σ 和)8500.0,3600.0(),(21-=b b 。 ⒉所要求的模型为21*85.0*36.0--+-=t t t t X εεε t Z ∈,其中{}t ε是)4,0(WN 。 附:Matlab 程序 A=[0 1;0 0;]; C=[1;0]; gamma=[-2.664;3.4]; k=50; Omega=zeros(2,k); Omega(1,1)=-2.664; Omega(2,1)=3.4; Omega(1,2)=3.4; Gamma=zeros(k,k); for i=1:k Gamma(i,i)=7.4084; end for i=2:k Gamma(i,i-1)=-2.664; Gamma(i-1,i)=-2.664; end for i=3:k Gamma(i,i-2)=3.4;

相关文档
相关文档 最新文档