文档库 最新最全的文档下载
当前位置:文档库 › 第三章二阶矩过程的均方微积分

第三章二阶矩过程的均方微积分

高等数学测试及答案(第三章)

高等数学测试(第三章) 一. 选择题(每小题3分,共30分) 1.下列函数在[1,1]-上满足罗尔定理条件的是( ) A .x y e = B .ln y x = C .21y x =- D .2 1 1y x = - 2.曲线3(y x = 3.已知函数f A .一个 4.设函数(f x ) A 5.如果0()f x 'A .0()f x C .0()f x 6A . C . 7.若在[]1,1-A 8.曲线1=y 9.设()x f '在点0x 的某个邻域内存在,且()0x f 为()x f 的极大值,则()() =-+→h x f h x f h 000 2lim ( ) A .0 B .1 C .2 D .-2 10.设()x f 在点3=x 的某个邻域内有定义,若()() () 133lim 2 3 -=--→x f x f x ,则在3=x 处( )

A . ()x f 的导数存在且()03≠'f B . ()x f 的导数不存在 C . ()x f 取得极小值 D . ()x f 取得极大值 二. 填空题(每小题3分,共15分) 11.函数ln(1)y x =+在[0,1]上满足拉格朗日定理的ξ=________. 12.函数4 y x = 13.函数()f x 14.曲线()f x 15.函数()f x 三. 计算题(16.(5 18.(5,讨论其

四. 应用题(每题10分,共20分) 20.(10分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成咋样的长方形才能使这间小屋的面积最大? 21.(10 是多少? 五. 证明题( 22.(10

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

微积分曹定华版课后题答案习题详解

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列 x n =(-1)n ,说明上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2221 11(1) (2)n n n ??+++ ?+??=0; (2) lim n →∞2! n n =0. 证:(1)因为 22222 2111 112 (1) (2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=, 所以,由夹逼定理得

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

微积分第三章答案

习题 3-1 1. 验证函数()f x =在区间[0,4]上满足罗尔定理的条件,并求出使得结 论成立的点ξ。 解:显然函数()f x =[0,4]上连续,在(0,4)上可导,且有(0)(4)0f f == 所以函数在区间[0,4]上满足罗尔定理,则有()0 f ξ'= =,83 ξ= 。 2. 验证函数3 ()1f x x =-在区间[1,2]上满足拉格朗日中值定理的条件,并求出使 得结论成立的ξ。 解:函数3 ()1f x x =-在区间[1,2]上连续,在(1,2)上可导,则满足拉格朗日中值定理,则 有2(2)(1) 321 f f ξ-=-,即ξ= 3. 函数4 ()1f x x =-与2 ()g x x =在区间[1,2]上是否满足柯西中值定理的所有条 件,如满足,求出满足定理的数值ξ。 解:函数4 ()1f x x =-与2 ()g x x =在区间上连续,在区间(1,2)上可导,则满足柯西中值 定理,则有3 (2)(1)4(2)(1)2f f g g ξξ -=-,即ξ= 4. 若4次方程432 012340a x a x a x a x a ++++=有4个不同的实根,证明 3201234320a x a x a x a +++= 的所有根皆为实根。 证明:设432 01234()f x a x a x a x a x a =++++,()0f x =的四个实根分别为1234,,,x x x x , 且1234x x x x <<<,则函数()f x 在1[,](1,2,3)i i x x i +=上满足罗尔定理的条件,则在 1(,)i i x x +内至少存在一点i ξ,使得()0i f ξ'=。 这说明方程32 01234320a x a x a x a +++=至少有3个实根,而方程为3次方,则最多也只

高等数学课后习题答案第三章

第三章习题 3-1 1、对函数x y sin ln =在区间]6 5,6[ π π上验证罗尔定理 解答:(1、区间]6 5,6[ π π上连续 ; (2)函数x y sin ln =在区间)6 5,6(π π上可导; (3)、2ln 6sin ln )6(-==π πf ,2ln 6 5sin ln )65( -==π πf 所以满足Rolle 定理的条件。且由0sin cos == 'x x y 解得)6 5,6(4π ππξ∈= 2、证明:函数02=++=r qx px y 在任意区间上应用lagrange 中值定理求得的点ξ总是该区间的中点 证明:(1)02=++=r qx px y 在任意],[b a 上连续 ;02=++=r qx px y 在),(b a 上可导;所以满足lagrange 定理的条件。且由02=+='q px y 解得),(2 b a b a ∈+=ξ 所以求得的点ξ总是该区间的中点 3、证明:方程033 =+-c x x 在区间]1,0[内不可能有两个不同的实数根 证明:用反证法,设方程033 =+-c x x 在区间]1,0[内有两个不同的实数根21,x x (1)、函数c x x x f +-=3)(3在],[2x x x 连续 ;(2)、函数c x x x f +-=3)(3 在),(2x x x 可导;(3)、0)()(21==x f x f , 所以满足Rolle 定理的条件,于是存在]1,0[),(21?=∈x x ξ。使0)(='ξf 但是由033)(2 =-='x x f 解得根为),(121x x x ?±=。矛盾 所以方程033 =+-c x x 在区间]1,0[内不可能有两个不同的实数根 4、若函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 b x x x a <<<<21,证明:在),(31x x 内至少存在一点ξ,使得0)(=''ξf :证明:由于函数)(x f 在),(b a 内具有二阶导数,且)()()(321x f x f x f ==,其中 b x x x a <<<<21,所以函数)(x f 分别在区间],[21x x 与],[32x x 上满足Rolle 定理的条 件,于是存在),(21x x ∈λ。使0)(='λf ,也存在),(32x x ∈?。使0)(='?f

2014年北京邮电大学随机信号分析与处理期末考试试题

北京邮电大学随机信号分析与处理综合练习题 一、判断题: 1. 设()X t 和()Y t 是相互独立的平稳随机过程,则它们的乘积也是平稳的。 2.()X t 为一个随机过程,对于任意一个固定的时刻i t ,()i X t 是一个确定值。 3.设X 和Y 是两个随机变量,X 和Y 不相关且不独立,有()()()D X Y D X D Y +=+。 4.一般来说,平稳正态随机过程与确定性信号之和仍然为平稳的正态过程。 5.设()X t 是不含周期分量的零均值平稳随机过程,其自相关函数为()X R τ,从物 理概念上理解,有lim ()0X R ττ→∞ =。 6. 对于线性系统,假设输入为非平稳随机过程,则不能用频谱法来分析系统输出随机过程的统计特性。 7. 若随机过程X (t )满足,与t 无关,则X (t )是广义平稳(宽平稳)过程。 8. 随机过程的方差表示消耗在单位电阻上瞬时功率的统计平均值。 9. 广义循环平稳的随机过程本身也是一种广义平稳的随机过程。 10. 高斯白噪声经过匹配滤波器后仍然为高斯白噪声。 二.选择填空 1.对于联合平稳随机过程()X t 和()Y t 的互相关函数()XY R τ,以下关系正确的是 (1)。 (1)A .()()XY XY R R ττ-= B.()-()XY YX R R ττ-=

C.)()(ττYX XY R R =- D.)()(ττXY XY R R -=- 2.随机过程X(t)的自相关函数满足1212(,)()()0X X X R t t m t m t =≠,则可以断定1()X t 和2()X t 之间的关系是(2)。 (2)A.相互独立B.相关C.不相关D.正交 3.两个不相关的高斯随机过程)(t X 和)(t Y ,均值分别为X m 和Y m ,方差分别为2X σ和2Y σ,则) (t X 和)(t Y 的联合概率密度为(3)。 (3)A .2222()()(,)22X Y X Y x m y m f x y σσ????--??=-+?????????? B.2222()()1 (,)exp 222X Y X Y X Y x m y m f x y πσσσσ????--??=-+?????????? C.2222()()(,)2()X Y X Y x m y m f x y σσ??-+-=-??+?? D.2222()()1 (,)exp 22()X Y X Y X Y x m y m f x y πσσσσ??-+-=-??+?? 4.设()sin()()c X t A t n t ω=+,其中()()cos()()sin()c c s c n t n t t n t t ωω=-是零均值平稳窄带高斯噪声,A 是不等于0的常数,则()X t 的包络服从(4),()X t 的复包络服从(5)。 (4)A.莱斯分布B.瑞利分布C.高斯分布D.均匀分布 (5)A.莱斯分布B.瑞利分布C.高斯分布D.均匀分布 5.设()N t 是平稳随机过程,其功率谱密度为()N G ω,定义()0()()sin X t N t t ωθ=+,θ在0到2π之间均匀分布,则()X t 的平均功率谱密度为(6)。

随机过程习题及答案

第二章 随机过程分析 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程 (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程 (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(),,() (2 - 5) =≤≤≤L L L F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程 (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x )() (2 - 6)?=???L L L L L F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程 (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程 (t )在任意给定时刻t 的取值 (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

第三章 导数与微分 习题及答案

第三章 导数与微分 同步练习 一、填空 1、若[]1cos 1)0()(lim =--→x f x f x x ,则)0(f '= 。 2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。 3、若)(x e f y -=,且x x x f ln )(=',则 1 =x dx dy = 。 4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。 5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。 6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。 7、已知x x y ln =,则)10(y = 。 8、已知2arcsin )(),232 3( x x f x x f y ='+-=,则:0 =x dx dy = 。 9、设1 111ln 2 2++-+=x x y ,则y '= 。 10、设方程y y x =确定y 是x 的函数,则dy = 。 11、已知()x ke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dy x d 。 二、选择 1、设f 可微,则=---→1 ) 1()2(lim 1 x f x f x ( ) A 、)1(-'-x f B 、)1(-'f C 、)1(f '- D 、)2(f ' 2、若2)(0-='x f ,则=--→) ()2(lim 000 x f x x f x x ( ) A 、 41 B 、4 1 - C 、1 D 、-1 3、设?? ???=≠=0001arctan )(x x x x x f ,则)(x f 在0=x 处( ) A 、不连续 B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 3 2+= B、x x y sin =

高等数学第三章课后习题答案

1 / 10 第三章 中值定理与导数的应用 1. 验证拉格朗日中值定理对函数x x f ln )(=在区间[]e ,1上的正确性。 解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足 拉格朗日中值定理的条件。又x x f 1 )(= ',解方程,111,1)1()()(-=--= 'e e f e f f ξξ即得),1(1e e ∈-=ξ。因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。 2.不求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明方程0)(' =x f 有几个实根,并指出它们所在的区间。 解:函数上连续,分别在区间[3,4][2,3],2],,1[)(x f 上在区间(3,4)(2,3),2),,1(可导, 且(1)(2)(3)(4)0f f f f ====。由罗尔定理知,至少存在),2,1(1∈ξ),3,2(2∈ξ ),4,3(3∈ξ使),3,2,1( 0)(=='i f i ξ即方程'()0f x =有至少三个实根。又因方程 '()0f x =为三次方程,故它至多有三个实根。因此,方程'()0f x =有且只有三个实根, 分别位于区间(1,2),(2,3),(3,4)内。 3.若方程 011 10=+++--x a x a x a n n n Λ有一个正根,0x 证明: 方程0)1(1211 0=++-+---n n n a x n a nx a Λ必有一个小于0x 的正根。 解:取函数()1 011n n n f x a x a x a x --=+++L 。0()[0,]f x x 在上连续,在0(0,)x 内可导, 且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程 12011(1)0n n n a nx a n x a ---+-++=L 必有一个小于0x 的正根。 4.设,11<<<-b a 求证不等式: .arcsin arcsin b a b a -≥-

高等数学(同济大学版)第三章练习(含答案)

第三章 微分中值定理与导数的应用 一、要求: 1、罗尔定理,拉格朗日定理应用; 2、洛必达法则; 3、函数单调性、极值、最值、凹凸性、拐点的判断,函数图形的描绘; 4、简单不等式证明; 5、最值在实际问题中的应用。 二、练习 1. 在区间 [ 1,1] 上满足罗尔定理条件的函数是 ( ). A. 1 B. f ( x ) | x | C. f ( x) 1 x 2 D. f ( x ) x 2 2 x 1 . f ( x) x 2 2. 函数 f ( x) arctan x 在 [ 0 ,1] 上满足拉格郎日中值定理的 值是 ( ). A. 4 B. 4 1 C. 1 D. 4 . 1 1 3. 4 设函数 f ( x ) ( x 1)( x 2)( x 3) ,则方程 f ( x ) 0 有 个零点,这些零点 所在的范围是 ;. 3. 设函数 f ( x ) ( x 1)( x 2)( x 3) ,则方程 f ( x ) 0 有 个零点,这些零点所在 的范围是 . 4. 函数 f ( x ) ln x x 2在(0, ) 内的零点的个数为 . e 5. 曲线 6. 函数 y xe x 的拐点 ,凹区间 ,凸区间 . y ln x 1 x 2 的单调 区间 . 7. 曲线 f ( x) e x 的渐近线为 . x 1 8. 计算: 5 x 4 x 1 1 (1 2 (2) lim ( cos x ) (1) lim x 1 x x ) (3) lim tan 2 x x 1 x e 1 x 0 arctan x x (1 x 2 )1 / 3 1 ; 1 ( 4) lim ; (5) lim (6) lim (csc x ) ; x 0 x ln(1 2 x 2 ) x cos x 1 x 0 x ( 7) lim x 3 (sin 1 1 sin 2 ) ;( ) lim (tan x ) 2 x ;( 9) lim x ; e x x 2 x 8 x ln x x 2 9. 证明 2 arctan x arcsin 2 x x 1 . 2 1 x

几种常用的随机过程

第十讲 几种常用的随机过程 10.1 马尔可夫过程 10.1.1马尔可夫序列 马尔可夫序列是指时间参数离散,状态连续的马尔可夫过程。 一个随机变量序列x n (n=1,2,…),若对于任意的n 有 )|(),...,,|(112 1 x x F x x x x F n n X n n n X ---= (10.1) 或 )|(),...,,|(112 1 x x f x x x x f n n X n n n X ---= (10.2) 则称x n 为马尔可夫序列。x n 的联合概率密度为 ) ()|( ) |()|(),...,,(1 1 2 2 11 2 1 x f x x f x x f x x f x x x f X X n n X n n X n X ??---= (10.3) 马尔可夫序列有如下性质: (1) 一个马尔可夫序列的子序列仍为马尔

可夫序列。 (2) ) |(),...,,|(1 21x x f x x x x f n n X k n n n n X -+++= (10.4) (3) )|(),...,|(111x X x x X n n n n E E --= (10.5) (4) 在一个马尔可夫序列中,若已知现在, 则未来与过去相互独立。即 ) |() |()|,(1 x x f x x f x x x f r s X n n X r s n X -= ,n>r>s (10.6) (5) 若条件概率密度)|(1 x x f n n X -与n 无关, 则称马尔可夫序列是齐次的。 (6) 若一个马尔可夫序列是齐次的,且所 有的随机变量X n 具有同样的概率密度,则称该马尔可夫序列为平稳的。 (7) 马尔可夫序列的转移概率满足切普曼 —柯尔莫哥洛夫方程,即 ) |()| ()|(x x f x x f x x f s r X r n X s n X ? ∞ ∞ -= , n>r>s (10.7) 10.1.2马尔可夫链 马尔可夫链是指时间参数,状态方程皆

高等数学第三章课后习题答案

第三章 中值定理与导数的应用 1. 验证拉格朗日中值定理对函数x x f ln )(=在区间[]e ,1上的正确性。 解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足 拉格朗日中值定理的条件。又x x f 1 )(= ',解方程,111,1)1()()(-=--= 'e e f e f f ξξ即得),1(1e e ∈-=ξ。因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。 2.不求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明方程0)(' =x f 有几个实根,并指出它们所在的区间。 解:函数上连续,分别在区间[3,4][2,3],2],,1[)(x f 上在区间(3,4)(2,3),2),,1(可导, 且(1)(2)(3)(4)0f f f f ====。由罗尔定理知,至少存在),2,1(1∈ξ),3,2(2∈ξ ),4,3(3∈ξ使),3,2,1( 0)(=='i f i ξ即方程'()0f x =有至少三个实根。又因方程 '()0f x =为三次方程,故它至多有三个实根。因此,方程'()0f x =有且只有三个实根, 分别位于区间(1,2),(2,3),(3,4)内。 3.若方程 011 10=+++--x a x a x a n n n 有一个正根,0x 证明: 方程0)1(1211 0=++-+---n n n a x n a nx a 必有一个小于0x 的正根。 解:取函数()1 011n n n f x a x a x a x --=++ +。0()[0,]f x x 在上连续,在0(0,)x 内可导, 且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程 12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根。 4.设,11<<<-b a 求证不等式: .arcsin arcsin b a b a -≥-

随机过程期末试题答案A卷(10年12月)

一.填空题(每空2分,共20分) 1.设随机变量X~U(a,b),则X 的特征函数为 itb ita e e i(b-a)t -。 2.设随机过程X(t)=Asint,-0,且 12P ()= 3 ω,21P ()= 3 ω,则这个随机过程的状态空间I=[]a,a -。 6.马氏链{}n X ,n 0≥,状态空间I ,记初始概率i 0p P(X =i)=,绝对概率j n p (n )P(X =j)=,n 步 转移概率(n) ij p ,则j p (n )= (n)i ij i I p p ∈∑ 7.设{} n X ,n 0≥为马氏链,状态空间I ,记初始概率i 0p P(X =i)=,一步转移概率{}ij n+1n p p X j X i ===,则{}0011n n P X =i ,X =i ,,X i == 00112n-1n i i i i i i i p p p p 8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥ (n) ij ij n=1 f f ∞ = ∑,若ii f 1=,称状态i 为_常返____________。 9.遍历状态的定义为不可约非周期的正常返状态。 10.如果状态j 非常返或零常返,则(n) ij n lim p →∞ =__0_____,i I ?∈。 二.证明题(每题6分,共24分) 1.概率空间(,,P)ΩF ,事件序列{}n E ,n 1≥单调,证明:n n n n lim P(E )=P(lim E )→∞ →∞ 。 证明:不妨设{}n E ,n 1≥单调增加,则n n n n=1 lim E E ∞ →∞ =?,令11F =E ,n n n-1F =E E -(n 2≥),

高等数学第三章习题课答案

第三章 微分中值定理习题课 一、判断题(每题3分) 1.函数)(x f 在0x 点处可导,且在0x 点处取得极值,那么0)(0='x f .(√) 2.函数)(x f 在0x 点处可导,且0)(0='x f ,那么)(x f 在0x 点处取得极值.(× ) 3.若0x 是()f x 的极值点,则0x 是()f x 的驻点. ( ×) 4.函数()x f 在区间()b a ,内的极大值一定大于极小值 . (×) 5.若()0,(,)f x x a b ''>∈,则()f x '在(,)a b 内单调增加 . ( √ ) 6.0()0f x '=且0()0f x ''<是函数()y f x =在0x 处取得极大值的充要条件.( ×) 7.函数()arctan f x x x = 的图形没有拐点. ( √ ) 8.因为函数y = 0x =点不可导,所以()0,0点不是曲线y = .( × ) 二、选择题(每题3分) 1.下列函数中,在闭区间[-1,1]上满足罗尔定理条件的是( D ). A .x e B .ln x C .x D .21x - 2.对于函数()2 11f x x =+,满足罗尔定理全部条件的区间是(D ). (A )[]2,0-; (B )[]0,1; (C );[]1,2- (D )[]2,2- 3. 设函数()()()12sin f x x x x =--,则方程()0f x '=在 (0,)π内根的个数( D ) (A) 0个 ; (B)至多1个; (C) 2个; (D)至少3个. 4.已知函数3 ()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的条件,使得该定理成立的ξ=( D ). (A )1 3 (B 1(C ) 12 (D 1 5.若函数)(),(x g x f 在区间),(b a 上的导函数相等,则该两函数在),(b a 上( C ). A.不相等 B .相等 C.至多相差一个常数 D.均为常数 6.arcsin y x x =- 在定义域内( B ).

北邮-概率论与随机过程-年期末试题A标准答案

北邮-概率论与随机过程-年期末试题A答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 北京邮电大学2009——2010学年第二学期 《概率论与随机过程》期末考试试题(A ) 考试注意事项:学生必须将答题内容做在答题纸上,做在试题纸上一律无效 一. 填空 (每小题4分,共40分) 1. 若321,,A A A 相互独立,且3,2,1,)(==i p A P i i ,则321,,A A A 这3个事件至少有一个发生的概率为 )1)(1)(1(1321p p p ---- . 2. 设连续型随机变量X 的分布函数为 ????? >+=-他其, 0; 0,)(22 x be a x F x 则b a ,分别为 1,-1 . 3. 设),(Y X 的概率密度为 )]2(1[1Φ---πe ?? ?>>=+-他其, 0; 0,0,),()1(y x xe y x f y x 则=>-}1{Y X P (用标准正态分布的分布函数表示). 4. 设),(Y X 的概率密度为 ?? ???<<<-= ,其它 , 0, 10 ,11 ),(y x x y x f 则对任意给定的)10(<

4 10 . 6. 设随机变量X 与Y 相互独立,且都服从]1,0[上的均匀分布,则 Y X Z -=的分布函数?? ? ??≥<≤-<=1,110,20, 0)(2z z z z z z F Z . 7. 设{(),0}W t t ≥是参数为2σ的维纳过程,)0()()(2≥+=t t t W t X ,则)(t X 的相关函数=),(t s R X 222),m in(t s t s +σ . 8. 设平稳过程)(t X 的均值为8,且)()(t X t Y '=,则)(t Y 的均值为 0 . 9. 设随机过程t Z Y t X +=)(,t ∈T =(-∞,+∞),其中Y ,Z 是相互独立的服从N (0,1)的随机变量,则?t ,)(t X 服从 )1,0(2t N + 分布(写明参数). 10. 设马氏链},2,1,0,{Λ=n X n 的状态空间为}2,1{=E ,转移概率矩阵为 ,32313132 ???? ? ? ??则=∞→)(11 lim n n p 1/2 . 二.(10分)某保险公司多年的统计表明:在索赔户中被盗索赔户占20%, 以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数。(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户,且不多于30户的概率的近似值. [附表]设)(x Φ是标准正态分布的分布函数 x 0.5 1.0 1.5 2.0 2.5 )(x Φ 0.692 0.841 0.933 0.977 0.994 解 (1))2.0,100(~b X ,即

微积分(曹定华)(修订版)课后题答案第三章习题详解

第三章 习题3-1 1. 设s = 12gt 2,求2 d d t s t =. 解: 2 2221 2 1 4()(2) 2lim lim 2 2 t t t g g ds s t s dt t t t →→=- ?-==-- 2 1 lim (2)22 t g t g →=+= 2. 设f (x )= 1 x ,求f '(x 0) (x 0≠0). 解:1 211()()()f x x x x --'''=== 0020 1 ()(0)f x x x '=- ≠ 3.(1)求曲线2y x =上点(2,4)处的切线方程和法线方程; (2)求过点(3,8)且与曲线2y x =相切的直线方程; (3)求x y e =上点(2,2 e )处的切线方程和法线方程; (4)求过点(2,0)且与x y e =相切的直线方程。 解:略。 4. 下列各题中均假定f ′(x 0)存在,按照导数定义观察下列极限,指出A 表示什么: (1) 0 lim x ?→00()() f x x f x x -?-?=A ; (2) f (x 0)=0, 0 lim x x →0() f x x x -=A ; (3) 0lim h →00()() f x h f x h h +--=A . 解:(1)0000000()()[()]() lim lim ()x x f x x f x f x x f x f x x x →-→--+--'=-=-- 0()A f x '∴=- (2)0 00000 ()()() lim lim ()x x x x f x f x f x f x x x x x →→-'=-=---

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

北邮概率论与随机过程2009-2010期末试题B答案

北京邮电大学2009——2010学年第2 学期 3《概率论与随机过程》期末考试答案(B ) 考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效。 一. 填空题(45分,每空3分) .1 设两两独立的事件,,A B C 满足,()()()1/2ABC P A P B P C =?==<,且 ()9/16P A B C ??=,求()P A = 1/4 2. 袋中有5个球,其中1个红球,每次从中任取1个球,取出后不放回,问前3次取到 红球的概率为3/5 3. 设平面区域D 由1,0,x y y x ===围成,平面区域1D 由2 ,y x y x ==围成。现向D 内 依次随机投掷质点,问第3次投掷的质点恰好第二次落在1D 内的概率是 4/27 4. 设随机变量X 的概率分布函数为2 2 ,0,()0,0,x A Be x F x x - ??+>=??≤? ,问B = -1 5. 随机变量k 在(5,5)-上服从均匀分布,即(5,5)k U - ,则方程 2 4420x k x k +++=有实根的概率为 7/10 6.设随机变量序列{,1,2,}n X n = 独立同分布于(3,3)-上的均匀分布,即(3,3)U -, 则11lim 0n i n i P X n →∞ =?? <=???? ∑ 1/2 7. 已知随机变量(0,1)X N ,定义函数2 2 ()x u g x e du - -∞ = ?,求()Y g X =的密度函数 ()Y f y = 1,2)()0, Y y f y ?∈? =? ??其他 8. 设随机变量(,)X Y 服从区域{(,):01,01}D x y x y =<<<<上的均匀分布,求

相关文档
相关文档 最新文档