文档库 最新最全的文档下载
当前位置:文档库 › 5组-数字示波器

5组-数字示波器

5组-数字示波器
5组-数字示波器

数字示波器

摘要:本系统基于示波器原理,以单片机作为控制核心,充分发挥FPGA的数据处理能力,利用了FPGA的逻辑阵列和嵌入式阵列,将双口RAM写入到FPGA内部,实现了对被测信号的采样、存储与回放.系统采用高速A/D对待测信号进行采集,并使用内触发方式,既实现了普通示波器的实时采样与实时显示,又增加了等效采样功能.极大的提高了系统的测量范围系统实现自校准,然后用X-Y模式在示波器显示屏上显示。该系统由程控放大、A/D采样、D/A变换、过零比较、触发电平产生电路等部分构成,实现了信号的数字化存储、电平触发显示等功能,同时提供了液晶显示和键盘操作,界面友好。

关键词:数字存储、示波器、等效采样

一、 方案论证与选择

在实现该系统中要求输入阻抗为1M Ω,这可以通过在信号的输入端加

一级由输入阻抗驱近于无穷大的射极跟随器,由于射极跟随器的输入阻抗很高,在其同相输入端并接一个1M Ω的电阻即可满足输入阻抗1M Ω的要求;要求采用上升沿触发、触发电平可调,这可以通过将信号先进行整形,然后在上升沿进行触发,触发的基准电平通过电路进行设定;三档扫描速度20ms/div 、2us/div 、100ns/div 可以通过改变信号采样的速率来实现,由于频率范围为10Hz ~10MHz ,且要求每格有20点以上,因此信号采样的速率要高于1MHz 才能够满足要求,而A/D 采样速率要保证在1MHz 以内,故需要选择实时采样与等效采样;三档垂直灵敏度1V/div 、0.1V/div 、2mV/div 可以通过程控放大来实现。具体方案的选择如下: 1、触发电平的调节方式选择

方案一:数字调节方式。该方式主要通过软件来实现,即通过按键来调节触发电平的大小。该方案不需要外围电路,实现简单,但操作不直观,且触发电平只能离散变化。

方案二:模拟调节方式。使用可调电位器调节某点电压,并用ADC 采样量化到控制部分,依次作为触发电平调节的基准电平。该方案需要模拟电路配合,电路虽有点复杂,但操作直观。

为了得到连续可调的触发电平,故我们采用方案二。 2、频率测量的方案选择

方案一:非等精度测量:

非等精度测量又叫脉冲填充法或测周法,其基本原理是用已知频率的基准信号(0f )对待测信号(x f )的高电平部分或低电平部分或单个周期部分进行计数,设计数值为N ,则待测信号的频率为:N f f x 2/0=。但这种方案的精度不稳定,因为计数时存在一个脉冲的误差,即N 有N +1和N -1两种情况,这样x f 的误差会随N 的大小有较大的变化,N 越小即x f 越大时,x f 的误差就越大,故这种方案只适用于测量远小于0f 的信号频率。

方案二: 等精度测量法:

即在预定的闸门时间0T 内,分别用计数器1和计数器2同时对被测信号

x f 和基准信号0f 进行计数,设所得值为x N 和0N ,则被测信号的频率为:

00/N f N fx x ?=

基准源0f 待测源x f 闸门 T0

计数器0N

计数器x N

图1 等精度测量法原理图

在测量中,闸门的开启和关闭都由被测信号的上升沿(或下降沿)来控制,因而与x N 的计数保持同步,因而x N 不存在误差,但是对于基准信号0f 来说,闸门的开启和闭合仍然是随机的,因而0N 存在±1的误差,测频的最大相对误差为:

)//(/0000f f N N f f x x ?±?±=?

由上式看出,测频精度与被测信号频率没有关系,只要0N 和0f 足够大,系统可以满足很高的精度要求。因此,参考计数器的最高计数频率的限制,选取合适的基准信号频率和恰当的闸门开启时间,便可以在1Hz~15MHz 的范围内使测频精度不变,即等精度测量。

根据以上分析比较,由于题目要求的待测频率范围为10Hz~10MHz ,测量误差要小于5%,故选择方案二,所选用的基准频率为40MHz 。 3、比较整形电路的方案选择

在该系统的实现中,所要求信号的频率上限高达10MHz ,比较整形电路的性能直接决定了整个系统各个功能实现的效果,因此,必须要使该整形电路能够性能稳定,得到的方波要标准。

方案一:开环放大整形。如

右图2所示,该方法就是将输入信号经过一级运放的开环放大到截止状态,再用施密特触发器对截止信号进行整形来实现的。本方案可以将信号较好的整形为方波,实现电路也很简单,但是由于此方法要求运放开环放大,增加了电路的不稳定性,同

时,受到运放增益带宽积的限制,要能够对兆赫兹级信号进行整形,运放的增益带宽积要高达上百兆,效费比较低。

方案二:使用集成比较器芯片。该方法就是将输入信号与所提供的基准信号进行比较,高于基准电平的信号部分在集成比较芯片的处理下会变

为高电平,而低于基准电平的信号部分则会变为低电平,从而实现信号的整形。该方法实现简单,同时能够根据需要选择不同的基准,从而实现触发电平可调的上升沿触发。该方法的实现中可以采用LM311,如右图3所示,但受到LM311比较性能的限制,待比较信号不能很高;也可以采用MAX913,该芯片性能优良,在13MHz以内可以较好的实现信号的整形。

根据以上的分析比较,故采用方案二,用MAX913来实现信号的比较整形。

4、100K校准方波的产生方案选择

题目要求系统能提供频率为100kHz的方波校准信号,且幅度值为0.3V ±5%,频率误差≤5%。信号的实现有以下几种实现方案:

方案一:采用DDFS方案实现。该方案的实现方法是通过D/A读取FPGA 给出的方波波表,从而产生出峰峰值为5V的方波信号,然后将该方波信号送放大倍数小于1的放大电路,将信号的峰值降到0.3V。此方法实现简单,而且电路对运放的要求不是很高,但是用DDFS产生频率为100K的方波,受D/A转换芯片性能限制,信号的波形有比较大的毛刺。

方案二:采用FPGA直接生成。即将单片机最小系统板的40M的时钟信号直接进行400分频。此方法得到的方波频率很稳定,频率稳定度与晶振一致,可以完全满足频率误差≤5%的要求,且方波的幅度为标准的5V,通过电阻分压也可以得到很好的峰值0.3V的方波信号,幅度稳定度可以达到要求,同时此方法实现简单,所需电路较少。

根据以上的分析比较,故选用方案二。

二、系统设计与理论分析

1、系统总体设计与整体框图

整个系统的总体实现方法是:输入信号经过阻抗匹配电路,进入由OPA637构成的程控放大器,根据不同的垂直分辨率对信号进行相应倍数的放大,将放大后的信号通过采样保持电路后输出到A/D转换器。A/D转换器采用MAX114,在其流水线工作模式下,最高采样时钟为1Msps。根据用户设定的水平分辨率,可相应设置MAX114的采样速率从而达到相应的分辨率要求。MAX114的工作时序完全由FPGA进行控制,通过与FPGA内部RAM 相配合可实现自动采样与存储。采样时钟根据实时采样和等效采样具有两种产生算法,在实时采样方式下,用户通过键盘设定水平分辨率,系统根据该分辨率计算出相应的采样频率;在等效采样方式下,FPGA对信号进行测周T,进而确定A/D转换器的采样周期为T+5ns,从而等效采样的频率为200Msps,可对高频信号进行测量。显示部分采用X-Y模式,通过DAC0800将从RAM读出的A/D转换器数据转换为模拟信号输出,同时采用分时复用的原理,显示X,Y坐标轴,方便用户观察波形。此外系统中还可以在实时显示方式下,存储当前信号波形,并可随时调出显示;同时系统具备内触发电路,触发电平可调,可工作于单次触发模式。

系统的整体框图如下图4所示:

图4 系统整体框图2、软件设计思想与软件流程图

软件流程图如下图5所示:

图5 程序流程图3、理论分析与计算

(1)、等效采样的分析

等效采样又称等价采样或等效扫描。在此方式下,采样系统能以扩

展的方式复现频率大大超过采样频率的信号波形。图6为等效采样的原理图。对于一个频率为f in (周期为T in )的输入信号,采样信号频率为f ε(周期为T ε)与之相近,但频率相差为Δf ,周期相差为Δt ,即:

||in t T T ε=-

对于输入信号来说,每个周期上的采样位置是递增的,每次的增量

即为Δt 。这样就在信号的不同周期上取到了关于信号幅值变化的完 整信息。复现的信号虽然在频率上失真了,但是保留了信号的基本变化规律,如同一个实时采样的信号被扩展。

图6 等效采样原理图

在等效采样的实现中,取的Δt 为5ns , (2)、A/D 转换器采样速率的设定

最大采样速率是指单位时间内完成的完整的A/D 转换的最高次数,常以频率表示,采样速率愈高,说明捕捉信号的能力就愈强。采样速率的计算公式如下所示:

()()

1/Ndiv f Ts div -=

每格需要显示的点数扫描时间因子

根据题目要求的三档扫描速度20ms/div 、2us/div 、100ns/div ,在系统的实现中采样的点数为2561div -,将采样点数和扫描速度代入上面的公式可以得出三档所需的采样频率分别为:1.28KHz 、12.8MHz 、256MHz ,本系统中使用到的高速ADC 芯片是MAX114,其最高采样频率为1MHz ,因此在20ms/div 档采用的是实时采样模式,而在2us/div 和100ns/div 档采用的是等效采样模式。 (3)、垂直灵敏度的实现

在系统的实现中要求实现三档垂直灵敏度1V/div 、0.1V/div 、2mV/div ,这可以通过采用程控放大来实现。由于信号的频率最高达到了10MHz ,因此采用增益带宽积高达800MHz 的OPA637构成的程控放大。取A/D 转换器的基准电压为5V ,则示波器上8格对应为5V ,即为0.625V/diV,由此算得三档垂直灵敏度对应的放大倍数分别为0.625、6.25和312.5。

三、主要功能电路的设计

1、程控放大电路的设计

由于要求系统实现1V/div 、0.1V/div 、2mV/div 三档垂直灵敏度,因此

采用程控放大电路,对应上述三档垂直灵敏度,采用可控的三档放大实现。程控放大电路图如下图7所示:

图7 程控放大电路图

2、整形电路的设计

根据题目要求,系统的触发要求采用上升

沿触发,且触发的电平可调。根据此要求,我们采用比较电平可调的MAX913整形电路。通过在-5V -+5V 范围内设定基准比较电平,当输入信号超过该电平时,输出全为高;当输入信号低于该电平时,输出全为低。该法可以较好的满足题目设计的要求。具体电路实现如下图8所示:

3、加法器电路的设计

由于A/D 转换器采用的是MAX114,此芯片只能对正值信号进行采样,而信号输入时有正有负,故需要采用加法器电路,以对信号进行平移,使信号都为正值。而由于信号频率很高,为了在对信号处理时信号能不衰减,故采用带宽很宽的AD844来实现该加法电路。具体电路实现如下图所示:

9 8

4、A/D采样电路的设计

A/D转换器采样是信号处理的重要部Array分,是对模拟信号进行数字量化的部分。

在该系统的实现中我们采用的是MAX114

的流水线工作模式,该模式下MAX114的

工作直观,控制简单。MAX114的电路实

现电路如下图10所示:

5、

四、测试条件与测试数据表格

1、测试仪器

(1)、信号源:Agilent 33120A

(2)、数字示波器:Tektronix TDS1002

(3)、直流稳压稳流电源:SG1733SB3A

2、测试条件

(1)、测试时间:2007年9月

(2)、测试温度:30C

3、测试数据与结果分析

(1)、输入阻抗测试

五、总结分析与结论

参考文献

[1]、全国大学生电子设计竞赛组委会(编).全国大学生电子设计竞赛获奖作品精选(2003).北京:北京理工大学出版社,2005

[2]、谢自美主编,《电子线路设计·实验·测试》,武汉:华中科技大学出版社,2003年1月印刷第二版

[3]、李朝青编,《单片机原理及接口技术》,北京:北京航空航天大学出版社,2003年1月第9次印刷

[4]、李华主编,《MCS-51系列单片机实用接口技术》,北京:北京航空航天大学出版社,2004年3月第11次印刷

[ 5]、叶苑周建明张沁川, 《高速数字存储示波器实现技术》,电子测量与仪器学报,2005年6月第19卷第3期,42~45

[6]、韩峰,《单片机等效采样示波器的设计》,鸡西大学学报,2006年12月第6卷第6

期,63~64

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSOs)、数字荧光示波器(DPOs)、混合信号示波器(MSOs)和采样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC)。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC),然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agilent DSO-X 2002A 型数字示波器面板介绍

该示波器有两个输入通道CH1和CH2,可同时观测两路输入波形。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。 荧光屏(液晶屏幕)是显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。 操作面板上的各个按钮按下后,相应参数设置会显示在荧光屏上。 开机后,荧光屏显示如下: 测试信号时,首先要将示波器的地(示波器探笔的黑夹子)与被测电路的地连接在一起。根据输入通道的选择,将示波器探头接触被测点(信号端)。按下Auto Scale,示波器会自动将扫描到的信号显示在荧光屏上。 输入耦合方式:模拟示波器输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC);部分数字示波器则没有GND耦合这种方式,其通过在屏幕上直接标注零电平线的位置的方法来实现GND耦合(用来确定零电平线)的功能。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观

数字示波器的设计

计算机工程应用技术本栏目责任编辑:贾薇薇 数字示波器的设计 刘岩 (天津工业大学信息与通信工程学院,天津300160) 摘要:数字示波器是现代电子测量中最常角的仪器,它是一种可以用来观察、测量、记录各种瞬时电压,并以波形方式显示其与时间关系的电子仪器。本文中详细介绍了数字存储示波器的原理及特点,给出了一种以单片机和可编程逻辑器件为控制核心的设计方案,同时给出了其硬件和软件设计的结构及思路。 关键词:数字示波器;模块化;FPGA 中图分类号:TM935文献标识码:A文章编号:1009-3044(2008)20-30375-02 TheDesignofDigitalOscilloscope LIUYan (TianjinIndustryUniversity,InformationandCommunicationEngineeringInstitute,Tianjin300160,China) Abstract:Themodernelectronicdigitaloscilloscopeisthemostcommonlymeasuredangleoftheapparatus,whichisacanbeusedtoob-serve,measureandrecordallkindsoftransientvoltageandwavetoshowtheirrelationshipwiththetimetheelectronicdevice.Thisarticledescribedthedigitalstorageoscilloscopeindetailandtheprinciplefeaturesofthispaper,amicrocontrollerandaprogrammablelogicdevicetocontrolthecoreofthedesignplan,andgaveitshardwareandsoftwaredesignofthestructureandideas. Keywords:Digitaloscilloscopes;modular;FPGA 1引言 数字示波器是智能化数字存储示波器的简称,是模拟示波器技术、数字化测量技术、计算机技术的综合产物。它能够长期存储波形,可进行负延时触发,便于观侧单次过程和缓变信号,具有多种显示方式和多种输出方式,同时还可以进行数学计算和数据处理,功能扩展也十分方便,比普通模拟示波器具有更强大的功能,因此在电子电信类实验室中使用越来越广泛。 2数字示波器的工作原理 数字存储示波器不是将波形存储在示波管内的存储栅网上,而是存在存储器中,因而存储时间可以无限长。数字存储示波器主要利用A/D转换技术和数字存储技术来工作,它能迅速捕捉瞬变信号并长期保存。该示波器首先对模拟信号进行高速采样以获得相应的数字数据并存储,存储器中储存的数据用来在示波器的屏幕上重建信号波形;然后利用数字信号处理技术对采样得到的数字信号进行相关处理与运算,从而获得所需要的各种信号参数;最后,该示波器根据得到的信号参数绘制信号波形,并对被测信号进行实时、瞬态分析,以方便用户了解信号质量,快速准确地进行故障诊断。数字存储示波器将输入模拟信号经过AD/转换,变成数字信号,储存在半导体存储器RAM中,需要时将RAM中存储的内容读出显示在LCD,或通过DA/转换,将数字信号变换成模拟波形显示在示波管上。数字存储示波器框图如图l所示。数字存储示波器可以采用实时采样,每隔一个采样周期采样一次,可以观察非周期信号川。数字示波器的采样方式包括实时采样和等效采样(非实时采样)。等效采样又可以分为随机采样和顺序采样,等效采样方式大多用于测量周期信号。数字示波器工作原理框架如图1。 图1数字存储示波器的基本原理方框图 3数字示波器的主要特点 与传统的模拟示波器相比,数字存储示波器有其非常突出的特点,其具体表现如下:(1)信号采样速率大大提高数字存储示波器首先在采样速率上有较大地提高。可从最初采样速率等于两倍带宽提高至五倍甚至十倍。相应对正弦波取样引入的失真也从10%降低至3%甚至1%。(2)显示更新速率更高数字存储示波器的显示更新速率最高可达每秒40万个波形,因而在观察偶发信号和捕捉毛刺脉冲方面更加方便。(3)波形的采样、存储与显示可以分离在存储阶段,数字示波器可对快速信号采用较高的速率进行采样与存储,而对慢速信号则采用较低速率进行采样与存储;在显示阶段,不同频率的信号读出速度可以采用一个固定的速率并可以无闪烁地观测极慢信号与单次信号,这是模拟示波器所无能为力的。(4)存储时间长由于数字存储示波器是把模拟信号用数字方式存储起来,因此,其存储时间理论上可以无限长。(5)显示方式灵活多样为适应对不同波形的观测,数字存储示波器有滚动显示、刷新显示、 收稿日期:2008-04-22

简易数字示波器设计_本科论文

摘要 本科毕业设计论文 题目简易数字示波器设计 I

西安交通大学城市学院本科生毕业设计(论文) 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 III

数字示波器原理及使用

数字示波器的原理及使用 【摘要】示波器就是以直角坐标为参数系,以时间扫描为时基两维地显示物理量——电量瞬时变化的仪器,它不但能观测低频信号(包括单次信号),同时也能观测高频信号与快速脉冲信号 ,并能对其表征的参量进行分析与测量。随着数字集成电路技术的发展而出现的数字存储示波器,不但能对波形进行显示,还能对波形进行存储、分析、计算,并能组成自动测试系统,使之成为了电子测量领域的基础测试仪器之一。 关键词:示波器,信号,数字集成电路,数字存储 【Abstract】Oscilloscope is an instrument that can display electrical signals in rectangular coordinates system based on amplitude and time、It can not only observe the low-frequency signal (including single signal), but also the high-frequency signal and pulse signal, and parameters on the characterization of the analysis and measurement、The digital storage oscilloscope was invented with the development of digital integrated circuit technology, which can not only display the waveform but also can store, analysis, calculate the Parameters of the signal and can form an automatic testing system、The digital storage oscilloscope have become one of the basic testing instrument for electronic measurement 、 Keywords: oscilloscope,signal,digital integrated circuit, digital storage oscilloscope 1、前言 随着数字集成电路技术的发展,数字式示波器的出现以其存储波形及多种信号分析、计算、处理等优良的性能逐步取代模拟示波器。与模拟示波器相比,数字示波器可以实现高带宽及方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 2、数字示波器的基本原理 2、1数字存储示波器的组成原理 典型的数字示波器原理框图如图2、1所示,它分为实时与存储两种工作状态,当其以实时状态工作时,其电路组成原理与模拟示波器相同。当其以存储状态工作时,它的工作过程一般分为存储与显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过采样与量化两个过程的数字化处理,将模拟信号转化成数字信号后,在逻辑控制电路的控制下将数字信号写入到存储器中。量化过程就就是将采样获得的离散值通过 A/D转换器转换成二进制数字。采样,量化及写入过程都就是在同一时钟频率下进行的。在显示工作阶段,将数字信号从存储器中读出来,并经D/A转换器转换成模拟信号,经垂直放大器放大加到CRT 的Y偏转板。与此同时,CPU的读地址计数脉冲加之D/A转换器,得到一个阶梯波的扫描电压,加到水平放大器放大,驱动CRT的X偏转板,从而实现在CRT上以稠密的光点包络重现模拟信号。

STM32的数字示波器设计

STM32的数字示波器设计 示波器的设计分为硬件设计和软件设计两部分。示波器的控制核心采用ARM9,由于STM32芯片里有自带的AD,采样速率最高为500KSPS,分辨率为10位,供电电压为3.3V,基本上能满足本设计要求,显示部分用3.2寸TFTLCD(分辨率:320*240)模块。软件部分采用C语言进行设计,设计环境为Keil。 硬件总体结构 该设计采用模块化的设计方法,根据系统功能把整个系统分成不同的具有特定功能的模块,硬件整体框图如下图所示。 该示波器由4部分电路构成,分别是: (1)输入程控放大衰减电路; (2)极性转换电路; (3)AD转换电路; (4)显示控制电路; (5)按键控制电路; 整体设计思路是:信号从探头输入,进入程控放大衰减电路进行放大衰减,程控放大器对电压大的信号进行衰减,对电压小信号进行放大以符合AD的测量范围,经过处理后信号进入极性转换电路进行

电平调整成0—3.3V电压,因为被测信号可能是交流信号,而AD只能测量正极性电信号,经调整后送入AD转换电器对信号进行采样,采样所得数据送入LCD显示,这样实现了波形的显示。按键控制可以通过不同的按键来控制波形的放大和缩小,同时也可以改变采样间隔,以测量更大频率范围的信号。 STM32处理器介绍 STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。按性能分成两个不同的系列:STM32F103“增强型”系列和STM32F101“基本型”系列。增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。两个系列都内置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品。 本设计所用的STM32F103VCT6集成的片上功能如下: (1) 1.2v内核供电,1.8V/2.5V/3.3/V存储器供电,3.3V外部I/O供电 (2)外部存储控制器 (3)(3) LCD 控制器 (4) 4通道DNA并有外部请求引脚 (5) 3通道UART (6) 2通道SPI

数字示波器的简单使用

预备实验:数字示波器使用方法(简介) 内容提示:1、数字示波器功能简介 2、示波器面板照 3、示波器各按钮操作功能 4、示波显示状态的含义 5、常用功能按钮的操作 6、垂直控制按钮的操作 7、水平控制按钮的操作显示 8、触发电平控制按钮的操作 9、操作注意事项 10、显示、测量直流信号 11、显示、测量交流信号 一、数字示波器功能简介 数字示波器是一种小巧,轻型、便携式的可用来进行以接地电平为参考点测量的数字式实时示波器。它的屏幕既能显示被测信号的波形,还能显示被测信号的电压幅度、周期、频率等有关电参数。 ADS1000CA特点: ●全新的超薄外观设计、体积小巧、携带更方便 ●彩色TFT LCD 显示,波形显示更清晰、稳定 ●双通道,带宽: 25MHZ-100MHZ ●实时采样率:1GSa/s ●存储深度:2Mpts ●丰富的触发功能:边沿、脉冲、视频、斜率、交替、延迟 ●独特的数字滤波与波形录制功能 ●Pass/Fail 功能 ●32 种自动测量功能 ●2 组参考波形、20 组普通波形、20 组设置内部存储/调出;支持波形、设置、CSV 和位图文件U 盘外部存储及调出 ●手动、追踪、自动光标测量功能 ●通道波形与FFT 波形同时分屏显示功能 ●模拟通道的波形亮度及屏幕网格亮度可调 ●弹出式菜单显示模式,用户操作更灵活、自然 ●丰富的界面显示风格:经典、现代、传统、简洁 ●多种语言界面显示,中英文在线帮助系统 ●标准配置接口:USB Host:支持U 盘存储并能通过U 盘进行系统软件升级; USB Device:支持PictBridge 直接打印及与PC 连接远程控制;RS-232

虚拟数字示波器的设计和实现

一、绪论 1.1 虚拟示波器背景 示波器是电子测量行业最常用的测量仪器之一,主要用来测量并显示被测信号的参数和波形,在科学研究、科学实验以及现场监测等许多领域被广泛应用。随着科学研究的不断深入和各种高新技术的不断发展,传统示波器的诸如波形不稳定、测读不准确等许多缺陷逐渐显露出来,而且体积大,耗电多,越来越不能满足现代应用的需要。 “虚拟仪器”这一新概念测量仪器的诞生,使示波器突破了传统,在功能和作用等多方面发生了根本性变化。虚拟仪器将计算机和测量系统融合于一体,用计算机软件代替传统仪器的某些硬件的功能,用计算机的显示器代替传统仪器物理面板。 虚拟示波器是虚拟仪器的一种,它不仅可以实现传统示波器的功能,具有存储、再现、分析、处理波形等特点,而且体积小,耗电少。虚拟示波器使用功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同的方式(如数据、图形、图表等)表示测量结果,完成各种规模的测量任务。鉴于虚拟示波器的种种优点及广泛用途,研究出性能优越、价格低廉的虚拟示波器是十分重要的。 1.2 性能指标 本示波器与常见的示波器比较,最大的特点是可以定量地给出信号的各种参量,比如最大、最小值和频率等,无需使用者再去数格子,然后还要计算。特别适合于学校教学实验的需求,在学校教学中可以直联投影机,使全体学生都可以远距离看到信号波形的演示。 本示波器采样USB接口,其频率比并口示波器略高,同样支持直流测量,可以定量测量信号,主要技术指标如下: 采样频率:共八挡可调:323.53kHz、100kHz、50kHz、20kHz、10kHz、5kHz、2kHz、1kHz。本机测量的信号频率应在70kHz以下。 最高输入电压:共两挡可选:±2.5V,±12.5V,如果接入10:1示波器探棒,最大输入电压可达±125V。 输入阻抗:1MΩ。 供电电压:无需外部供电,直接从PC机的USB口取电。 接口:USB接口。 二、硬件设计 具体电路原理图见附录一,从图中可以看出电路的输入信号调理部分和信号转换部分与常见的并口示波器相同,R10、R11、R12、R13、R14、C19、C20和C21构成输入交直流切换和衰减网络,提供交直流输入切换和1:1、1:5的输入信号切换功能;TL074中的一个运放U 1 A和其周边元件构成一个跟随放大器,提供了输入保护和阻抗转换功能;TL074中的另一个运放U1B

基于STM32的简易数字示波器

山东科技大学 课程设计报告 设计题目:基于STM32的简易数字示波器 专业: 班级学号: 学生姓名: 指导教师: 设计时间: 小组成员:

基于STM32的数字示波器设计 -----------硬件方面设计 摘要 本设计是基于ARM(Advance RISC Machine)以ARM9[2]为控制核心数字示波器的设计。包括前级电路处理,AD转换,波形处理,LCD显示灯模块。前级电路处理包括程控放大衰减器,极性转换电路,过零比较器组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。充分使用了Proteus Multisim仿真工具,大大提高了设计效率,可测量输入频率范围为1HZ—50KHZ 的波形,测量幅度范围为-3.3V—+3.3V,并实现波形的放大和缩小,实时显示输入信号波形,同时测量波形输入信号的频率。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本。 关键词:AD ,ARM,实时采样,数字示波器

目录 前言---------------------------------------------------------------------------------3第一章绪论--------------------------------------------------------------------4 1.1课题背景---------------------------------------------------------------------4 1.2课题研究目的及意义----------------------------------------------------4 1.3课题主要的研究内容----------------------------------------------------5 第二章系统的整体设计方案--------------------------------------------6 2.1硬件总体结构思路--------------------------------------------------------6 第三章硬件结构设计------------------------------------------------------------7 3.1程控放大模块设计-------------------------------------------------------7 3.1.1程控放大电路的作用-------------------------------------------7 3.1.2程控放大电路所用芯片---------------------------------------7 3.1.3AD603放大电路及原理----------------------------------------8 3.2极性转换电路设计------------------------------------------------------10 3.3 AD转换电路及LED显示电路等(由组内其他同学完成) 第四章软件设计(由组内其他同学完成) 第五章性能能测试与分析--------------------------------------------------15 第六章设计结论及感悟-----------------------------------------------17参考文献----------------------------------------------------------------------18

数字示波器使用方法

数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 区分模拟带宽和数字实时带宽 带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。 有关采样速率 采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。 1.如果采样速率不够,容易出现混迭现象 如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生: ·调整扫速; ·采用自动设置(Autoset); ·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。 ·如果示波器有Insta Vu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。 2.采样速率与t/div的关系 每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出: fs=N/(t/div) N为每格采样点

基于STM32的数字示波器设计

山东科技大学电子技术综合实践报告 设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 1001050903 学生姓名: 指导教师: 设计时间:2013.6.18 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率范围为1HZ—50KHZ的波形,测量幅度范围为-3.3V—+3.3V,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 (1) 第1章绪论 (2) 1.1课题背景 (2) 1.2课题研究的目的和意义 (2) 1.3课题的主要研究工作 (3) 第2章系统整体设计方案 (3) 2.1硬件总体结构 (3) 2.2系统实现的原理介绍 (4) 2.2.1 STM32处理器介绍 (4) 2.2.2 LCD显示介绍 (5) 2.3软件整体设计 (6) 2.4数字手持示波器技术参数 (6) 第3章软件编程与调试 (7) 3.1软件设计总体框图 (7) 3.2键盘控制程序 (7) 3.3峰峰值测量程序设计 (8) 3.4LCD显示程序设计 (9) 第四章性能测试与分析 (11) 第五章总结 (13) 第六章参考文献 (14)

数字示波器使用方法总结

数字示波器使用小方法 前言 本文的结构逐条编排,目的是使内容成为开放性和可添加型的,欢迎有经验的同事增加新的内容。 对本文中用到按键符号作如下规定: TRIGGER MENU→Type(main)→Edge(pop-up)→Coupling(main)→DC(Side) 代表按面板上的TRIGGER MENU键,再按显示屏下方的T ype键,重复按这个钮直到Edge高亮显示,再按显示屏下方的Coupling,再按显示屏右侧的DC键。 注:main代表显示屏下方的键,Side代表显示屏右方的键,pop-up代表一直按此键,直到项目高亮显示。 目录 一.安全问题 (1) 二.使用探头 (2) 三.触发方式 (11) 四.测试方法 (15) 五.小常识、小经验 (23)

一.安全问题 结论一示波器电源线要用三相插头良好接地(即接实验室的地线)说明为了避免电冲击对示波器造成损伤,输出及输入端进行电气连接前要保证示波器良好接地。 结论二探头地线只能接电路板上的地线,不可以搭接在电路板的正、负电源端说明交流供电系统或经整流后直流供电的系统的地一般都是接大地的。探头的地也是经示波器安全地线接大地的。如果探头的地搭在电路板上不是地的点上,就会造成此点和电源地短路,轻者使电路板工作不正常,重者会烧坏电路板或探头,造成严重后果。 尤其注意不能把探头的地接到电路板上的正、负电源端。 结论三不允许在探头还连接着被测试电路时插拔探头。 说明避免对示波器和探头造成损伤,尤其是有源探头。厂家说明。 结论四信号的幅度不要超过探头和示波器的安全幅度,以免造成损坏说明信号幅度超过±40V时,用有源探头P6245和P6243测量会造成探头的损坏。不同探头的幅度量程是不同的,要留心探头及示波器上的说明文字。

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正

弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: AMP A/D Display Input DeMUX Acquistion Memory uP Display Memory 图3.数字存储示波器的基本原理框图

基于STM的数字示波器设计

基于S T M的数字示波器 设计 The Standardization Office was revised on the afternoon of December 13, 2020

山东科技大学电子技术综合实践报告 设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 03 学生姓名: 指导教师: 设计时间: 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率范围为1HZ—50KHZ的波形,测量幅度范围为—+,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 0 第1章绪论 (1) 课题背景 (1) 课题研究的目的和意义 (1) 课题的主要研究工作 (2) 第2章系统整体设计方案 (2) 硬件总体结构 (2) 系统实现的原理介绍 (3) STM32处理器介绍 (3) LCD显示介绍 (4) 软件整体设计 (5) 数字手持示波器技术参数 (5) 第3章软件编程与调试 (6) 软件设计总体框图 (6) 键盘控制程序 (7) 峰峰值测量程序设计 (7) LCD显示程序设计 (8) 第四章性能测试与分析 (8) 第五章总结 (9) 第六章参考文献 (9)

DS1052E型数字示波器使用说明书

DS1052E 型数字示波器使用说明 概述 DS1052E 型示波器以优异的技术指标及众多功能特性的完美 结合,向用户提供了简单而功能明晰的前面板,以进行所有的基本操作。各通道的标度和位置旋钮提供了直观的操 作,完全符合传统仪器的使用习惯,用户不必花大量的时间去学习和熟悉示波器的操作, 即可熟练使用。为加速调整,便于测量,用户可直接按AUTO 键,立即获得适合的波形显 现和档位设置。除易于使用之外,示波器还具有更快完成测量任务所需要的高性能指标和 强大功能。通过1GSa/s 的实时采样和25GSa/ s 的等效采样,可在示波器上观察更快的信号。 强大的触发和分析能力使其易于捕获和分析波形。清晰的液晶显示和数学运算功能,便于 用户更快更清晰地观察和分析信号问题。

技术性能 50MHz 。双模拟通道,每通道带宽: 分辨率。×234 320高清晰彩色液晶显示系统: USB 存储设备以及USB 接口打印机,并可通过USB 存储设备进支持即插即用闪存式 行软件升级。 模拟通道的波形亮度可调。 AUTO )。自动波形、状态设置( 波形、设置、CSV 和位图文件存储以及波形和设置再现。 精细的延迟扫描功能,轻易兼顾波形细节与概貌。 自动测量20 种波形参数。 自动光标跟踪测量功能。 独特的波形录制和回放功能。 内嵌FFT。 LPF,HPF,BPF,BRF 。实用的数字滤波器,包含 Pass/ Fail 检测功能,光电隔离的输出端口。Pass/ Fail 多重波形数学运算功能。 独一无二的可变触发灵敏度,适应不同场合下特殊测量要求。多国语言菜单显示。 弹出式菜单显示,用户操作更方便、直观。

示波器的原理和使用 实验报告

示波器的原理和使用实验报告 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1、示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1、示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 图1示波管的内部结构和供电图示

1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s 为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。

基于单片机数字示波器的设计

目录 (一)实训内容 (1) (二)实训目的 (1) (三)数字示波器原理 (1) 1.机型介绍 (1) 1.1.整体介绍 (1) 1.2.功能简介 (1) 2.本机参数介绍 (2) 3.基本原理 (3) 3.1.硬件总体框图 (3) 3.2.耦合方式选择电路 (3) 3.3灵敏度选择电路① (4) 3.4.电压跟随器 (5) 3.5.灵敏度选择电路② (5) 3.6.信号调理电路 (6) 3.7.触发电路 (7) 3.8.档位控制电路 (7) 3.9.去耦合电路 (8) 3.10.电源供电电路 (8) 3.11.单片机接口电路 (9) 4.元器件功能与检测 (10) 4.1.STM32F103Cx单片机 (10) 4.2.TL084运算放大器 (10) 4.3.LM7805三端稳压集成电路 (11) 4.4.LM7905三端稳压集成电路 (11) 4.5.LM11173.3三端稳压集成电路 (11) 5.PCB版 (11) (四)数字示波器的组装 (11) (五)数字示波器的调试 (12) (六)小组分工 (13) (七)实训心得 (13) (八)参考文献 (14) (九)附录 (15)

(一)实训内容 1.利用套件中各种电子元器件/模块组装数字示波器。 2.学习数字示波器原理与系统组成。 (二)实训目的 1.理解数字示波器内部组成结构和工作原理。 2.学习数字示波器的组装、调试、维修以及升级方法。 3.锻炼学生动手与实践能力。 (三)数字示波器原理 1.机型介绍 1.1.整体介绍: DSO138数字示波器采用9V电源供电,以STM32F103Cx单片机为核心处理器,具有将信号数字化后再建波形,记忆、存储被观测信号的功能,还可以用来观测和比较单次过程和非周期现象、低频和慢速信号。采用彩色TFT LCD屏幕,使示波器灵敏度、可视度得到很大的提高,并留有USB端口可供二次升级开发。总体来说DSO138示波器具有体积小、重量轻,便于携带,操作方便,能自动测量波形的频率、周期、峰峰值、有效值、最大值、最小值等特点。 1.2.功能简介: 3个拨动开关:CPL、SEN1、SEN2。其中CPL开关有GND、AC、DC三种耦合

数字示波器的原理和使用方法

数字示波器的原理和使用方法 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下数字示波器的原理和使用方法。 1、数字示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1(1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 1(荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10,所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0(1s为中余辉,0(1s-1s为长余辉,大于1s为极长

余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2(电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作 用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。 电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、 G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。 3(偏转系统 偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8(1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y

相关文档