文档库 最新最全的文档下载
当前位置:文档库 › 2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法
2.5.1平面几何中的向量方法

2.5.1平面几何中的向量方法

由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以用向量的线性运算及数量积表示出来,因此,可以用向量方法解决平面几何中的一些问题。下面通过几个具体实例,说明向量方法在平面几何中的运用。

问题探究:

例1平行四边形是表示向量加法与减法的几何模型.如图,=+,=-,你能发现平行四边形对角线的长度与两条邻

边长度之间的关系吗?

分析:不妨设=,=,则

=+,=-,

= ·=(+)·(-)

=a·a+a·b+b·a+b·b

+2a·b

同理

-2a·b

观察(1)、(2)两式的特点,我们发现,(1)+(2)得

+=2

)=2

+)。

即平行四边形两条对角线的平方和等于两条邻边平方和的两倍。

思考如果不用向量的方法,能证明上述关系吗?

平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别

是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用下列方法解决部分几何问题。解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素;然后通过向量的运算,特别是数量积来研究电、线段等元素之间的关系;最后再把运算结果“翻译”成几何关系得到几何问题的结论。这就是用向量方法解决几何问题的“三部曲”:

(1) 建立皮面几何与向量的联系,用向量表示问题中涉及的几何元素,将

平面几何问题转化为向量问题;

(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;

(3) 把运算结果“翻译”成几何关系。

例2 如图2.5-2,连接□ABCD 的一个顶点至AD 、DC 边的中点E 、F ,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?

分析:由于R 、T 是对角线AC 上的两点要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可。又因为AR 、RT 、TC 、AC 共线,所以只需判断、、、之间的关系即可。

解:第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题: 设=,=,=,=,则=+。

第二步,通过向量计算,研究几何元素之间的关系: 由于与共线,所以,我们设

=n (+)

,n 是实数, 又因为

EB =AB -AE =-21 ER 与EB 共线,所以我们设 ER =EB =m (a -

21b ),因为AR =AE +ER , 所以 =

21+m (-21)。 因此 n (+)= 21+m (-21)

即 (n-m ) +(n+2

1-m ) = 由于向量、不共线,要使上式为,必须

??

???=+=-0021-m n m n 解得n=m=31,所以 =31, =32 第三步,把运算结果“翻译”成几何关系: AR=RT=TC

思考: 用演绎证明的方法如何证明本题的结论?

2.5.2向量在物理中的应用举例

问题探究:

例3在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

分析:上面的问题可以抽象为如右图所示的数学模

型。只要分析清楚F 、G 和角度三者之间的关系(其中F 为F 1、F 2的合力),就得到了问题的数学解释。

解:不妨设| F 1|=| F 2|,由向量的平行四边形法则,

力的平衡以及直角三角形的知识可以知道 12cos G F q =

11

20

180090cos 2

F F F q q q 由上面的式子,我们发现:当由逐渐变大时,由逐渐变大,的值由2大逐渐变小,因此由小逐渐变大,即之间的夹角越大越费力,夹角越小越省力 思考:

(1) θ为何值时, |F1|最小,最小值是多少?

(2) |F1|能等于|G|吗?为什么?

例4

()10/,2/,?d v km h v km h ==12 如图,一条河的两岸平行,河的宽度=500m 一膄船从A 处出发到河对岸。已知船的速度水流速度问行驶航程最短时,所用时间是多少精确到0.1 min

分析:如果水是静止的,则船只要取垂直于河岸的方向行驶,就能使行驶航

解:|v

小结:

物理问题

(

向量问题

()

数学问题

的解决

解释和验证相

关物理现象

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

6.2 立体几何中的向量方法(A卷提升篇)【解析版】

专题6.2 立体几何中的向量方法(A 卷基础篇)(浙江专用) 参考答案与试题解析 第Ⅰ卷(选择题) 一.选择题(共10小题,满分50分,每小题5分) 1.(2020·全国高二课时练习)已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 法向量的是( ) A .(1,1,1)- B .(1,1,1)- C .? ? ? ??? D .?? ? ??? 【答案】C 【解析】 (1,1,0),(1,0,1)AB AC =-=-, 设(,,)n x y z =为平面ABC 的法向量, 则00n AB n AC ??=??=? ,化简得00x y x z -+=??-+=?, ∴x y z ==,故选C. 2.(2020·全国高二课时练习)空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .无法确定 【答案】A 【解析】 ∵空间直角坐标系中, A (1,2,3), B (﹣1,0,5), C (3,0,4), D (4,1,3), ∴AB =(﹣2,﹣2,2),CD =(1,1,﹣1), ∴AB =﹣2CD , ∴直线AB 与CD 平行. 故选A .

3.(2020·全国高二课时练习)已知平面α的法向量为(2,2,1)n =--,点(,3,0)A x 在平面α内,则点(2,1,4)P -到平面α的距离为 103,则x =( ) A .-1 B .-11 C .-1或-11 D .-21 【答案】C 【解析】 (2,2,4)PA x =+-,而103n d n PA ?= =, 103=,解得1x =-或-11. 故选:C 4.(2020·全国高二课时练习)已知向量,m n 分别是直线l 和平面α的方向向量和法向量,若 1cos ,2 m n =-,则l 与α所成的角为( ) A .030 B .060 C .0120 D .0150 【答案】A 【解析】 设线面角为θ,则1sin cos ,,302 m n θθ=??==. 5.(2020·全国高二课时练习)设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若2,3a n π= ,则l 与α所成的角为( ) A .23π B .3π C .6π D .56 π 【答案】C 【解析】 结合题意,作出图形如下:

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

空间几何中的向量方法

第一讲:空间几何中的向量方法---------坐标运算与法向量 一、空间向量的坐标运算 1. 若123(,,)a a a a = ,123(,,)b b b b = ,则 (1)112233(,,)a b a b a b a b +=+++; (2)112233(,,)a b a b a b a b -=---; (3)123(,,),a a a a R λλλλλ=∈; (4)112233a b a b a b a b ?=++; (5)112233//,,,(0,)a b a b a b a b b R λλλλ?===≠∈; (6)1122330a b a b a b a b ⊥?++=; (7 )a == (8 )cos ,a b a b a b ?<>= = ?. 例1 已知(2,3,5),(3,1,4),a b =-=-- 求,,8,,a b a b a a b +-? 的坐标. 2.若111222(,,),(,,),A x y z B x y z 则212121(,,)AB x x y y z z =--- 练习1: 已知PA 垂直于正方形ABCD 所在的平面,M 、N 分别是AB,PC 的中点,且PA=AD=1, 求向量MN 的坐标. 二、空间直角坐标系中平面法向量的求法 1、 方程法 利用直线与平面垂直的判定定理构造三元一次方程组,由于有三个未知数,两个方程,要设定一个变量的值才能求解,这是一种基本的方法,容易接受,但运算稍繁,要使法向量简洁,设值可灵活,法向量有无数个,他们是共线向量,取一个就可以。 例1 已知(2,2,1),(4,5,3),AB AC == 求平面ABC 的法向量。 解:设(,,)n x y z = ,则由,,n AB n AC ⊥⊥ 得=0=0n AB n AC ??????? 即220453=0x y z x y z ++=?? ++? 不妨设1z =,得12 =-1 x y ?=? ???, 取1(,1,1)2n =-

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

立体几何中的向量方法—证明平行和垂直

2017届高二数学导学案编写 审核 审批 课题:立体几何中的向量方法—证明平行和垂直 第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】 理解空间向量的概念;掌握空间向量的运算方法 【学习方法】学案导学法,合作探究法。 【自主学习·梳理基础】 1、 考点深度剖析 利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】 1.直线的方向向量与平面的法向量的确定 ①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直线l 的方向向量,与AB → 平行的任意非零向量也是直线l 的方向向量. ②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? ?? n·a =0, n·b =0. 2.用向量证明空间中的平行关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2. ③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系 ①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】 探究一:如图,在棱长为2的正方体1111D C B A ABCD -中, N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在 棱 1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ . 探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明: (1)AE ⊥CD ; (2)PD ⊥平面ABE .

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 考点剖析: 1.理解直线的方向向量及平面的法向量. 2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 命题方向:1)向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果. 2)用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键 规律总结: 1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题. 3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外. 知 识 梳 理 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB → 为直 线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平 面α的法向量,则求法向量的方程组为??? n·a =0,n·b =0.

用向量方法解立体几何的的题目

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin | ||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内

面角l αβ--的平面角α=arccos |||| a b a b 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a 、 b 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设 向量,求n (n a ⊥,n b ⊥),则 异面直线a 、b 的距离

专题:运用向量法证明立体几何问题

专题:运用向量法证明立体几何问题 一、知识点: 1、若向量m 与直线l 平行,则向量叫做直线l 的方向向量。 2、若⊥α,则叫做平面α的法向量。 (1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。 (2)若χ轴与平面的法向量,可设为=(1,0,0) (3)若 y 轴为平面的法向量,可设为=(0,1,0) (4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直 若为平面α的法向量,n 为直线l 的方向向量,则 (1)l ⊥α?m ∥n ?m =λn (2)l ∥α ?m ⊥n ?m ·n =0 4、运用向量求角 (1)若两条异面直线l 1,l 2所成的角为 θ,为l 1 的方向向量, n 为l 2 的方向向量,则 cos (090)m n m n θθ=<≤ , (2)若两个平面12αα,所成的二面角的平面角为 θ,为1α的法向

量,为2α的法向量,则 cos (090)m n m n θθ=<≤ , 当二面角为锐时为θ;当二面角为钝角时为 π-θ。 (3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α 的法向量,则 sin (090)m n m n θθ=<≤ , 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任 一点,则PA m d m = 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD ⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3 2 )。 (1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD 解:如图建立空间直角坐标系D xyz -。 设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0), B (1,1,0), C (0,1,0),E (0,21,2 1 ) (1)设(x,y,z)m = 为平面EDB 的法向量 则00m DB m DE ?=??=?? , 而(1,1,0)11(0,,)22 DB DE ?=??=?? ∴011022 x y y z +=?? ?+=?? , 即 x y z y =-??=-? 故m =(1,-1,1)(取Y=-1)

(精心整理)高中数学:向量法解立体几何总结

向量法解立体几何 1、直线的方向向量和平面的法向量 ⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作 n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量. ⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系. ②设平面α的法向量为(,,)n x y z =. ③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组0 n a n b ??=???=??. ⑤解方程组,取其中一组解,即得平面α的法向量. 2、用向量方法判定空间中的平行关系 ⑴线线平行。设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. ⑵线面平行。设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明 a u ⊥,即0a u ?=. ⑶面面平行。若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 3、用向量方法判定空间的垂直关系 ⑴线线垂直。设直线12,l l 的方向向量分别是a b 、 ,则要证明12l l ⊥,只需证明a b ⊥,即0a b ?=. ⑵线面垂直 ①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明

a ∥u ,即a u λ=. ②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、 ,若0 ,.0 a m l a n α??=?⊥? ?=??则 ⑶面面垂直。 若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ?=. 4、利用向量求空间角 ⑴求异面直线所成的角 已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BD θ?= ⑵求直线和平面所成的角 求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为?, 则θ为?的余角或?的补角 的余角.即有:cos s .in a u a u ?θ?== ⑶求二面角 二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角. 如图: 求法:设二面角l αβ--的两个半平面的法向量分别为m n 、 ,再设m n 、的夹角为?,二面角l αβ--的平面角为θ,则二面角θ为m n 、 的夹角?或其补角.π?- 根据具体图形确定θ是锐角或是钝角: 如果θ是锐角,则cos cos m n m n θ??== , 即arccos m n m n θ?=; O A B O A B l

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

立体几何中的向量方法

立体几何中的向量方法 Prepared on 22 November 2020

教学过程 一、课堂导入 空间平行垂直问题 1.两条直线平行与垂直; 2.直线与平面平行与垂直; 3.两个平面平行与垂直;空间夹角问题 1.两直线所成角; 2.直线和平面所成角; 3.二面角的概念;

空间距离问题 二、复习预习 (1)空间向量的直角坐标运算律:设231(,,)a a a a =,231(,,)b b b b =,则 112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=. (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去 起点的坐标. (3)模长公式:若231(,,)a a a a =, 则 21||a a a a =?=+ (4)夹角公式: 2 1cos |||| a b a b a b a ? ?= = ?+ (5)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 221221221)()()(z z y y x x -+-+-== . 三、知识讲解 考点1 平面法向量的求法 在空间平面法向量的算法中,普遍采用的算法是设(,,)n x y z =,它和平面内的两个不共线的向量垂直,数量积为0,建立两个关于x ,y ,z 的方程,再对其中一个变量根据需要取特殊值,即可得到法向量.还有几种求平面法向量的办法也比较简便. 求法一:先来看一个引理: 若平面ABC 与空间直角坐标系x 轴、y 轴、z 轴的交点分别为A (a ,0,0)、B (0,b ,0)、C (0,0,c ),定义三点分别在x 轴、y 轴、z 轴上的坐标值x A = a , y B = b , z C = c

向量法解立体几何

中山二中2011届空间向量解立体几何 一、空间直角坐标系的建立及点的坐标表示 (1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底 叫单位正交基底,用{,,}i j k 表示; (2)在空间选定一点O 和一个单位正交基底 {,,}i j k ,以点O 为原点,分别以,,i j k 的方向为正 方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -, 点O 叫原点,向量,,i j k 都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为 xOy 平面,yOz 平面,zOx 平面。 (3)作空间直角坐标系O xyz -时,一般使135xOy ∠=(或45),90yOz ∠=; (4)在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系规 定立几中建立的坐标系为右手直角坐标系 (5)空间直角坐标系中的坐标:如图给定空间直角坐 标系和向量 a ,设,,i j k 123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 作向量a 在空间直角坐标系O xyz -123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任 一点A ,存在唯一的有序实数组(,,)x y z ,使 OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的 坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,) a b a b a b a b -=---, 123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设,是空间两个非零向量,我们把数量><,cos |||| 规定:零向量与任一向量的数量积为0。 2、模长公式 2| |a a a x =?=+3、两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2 ||(AB AB = =, 或,A B d = 4、夹角:cos |||| a b a b a b ??= ?. 注:①0(,a b a b a b ⊥??=是两个非零向量); ②2 2||a a a a =?=。 5、 空间向量数量积的性质: ①||cos ,a e a a e ?=<>.②0a b a b ⊥??=.③2||a a a =?.

13—立体几何中的向量方法

13—立体几何中的向量方法 【基础巩固】 1.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a ∥b,则λ与μ的值可以是( ) (A)2, (B)-, (C)-3,2 (D)2,2 2.如图所示,PD 垂直于正方形ABCD 所在平面,AB=2,E 为PB 的中点,cos< , >=,若以DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,则点 E 的坐标为( ) (A)(1,1,1) (B)(1,1,) (C)(1,1,) (D)(1,1,2) 3.正方体ABCD A 1B 1C 1D 1的棱长为a,点M 在AC 1上且= ,N 为B 1B 的中点,则| |为( ) (A) a (B) a (C) a (D) a 4.如图所示,已知PA ⊥平面ABC,∠ABC=120°,PA=AB=BC=6,则| |等于( ) 5.若向量a=(1,λ,2),b=(2,-1,2)且a 与b 的夹角的余弦值为,则λ= . 6.已知A(4,1,3),B(2,3,1),C(3,7,-5),点P(x,-1,3)在平面ABC 内,则x= . 【空间三种角】 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a·n | |a ||n |. 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). 平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2 |,如图(2)(3). 考点一 异面直线所成角 [典例引领] (2015·全国卷Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:

相关文档
相关文档 最新文档