文档库 最新最全的文档下载
当前位置:文档库 › 大学物理A复习整合

大学物理A复习整合

大学物理A复习整合
大学物理A复习整合

大学物理A 复习整合

一、选择题

3. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E ?

随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ B ]

4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 [ A ] (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定.

6. 一电场强度为E ?的均匀电场,E ?

的方向沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为: [ D ] A 、2

R

E π B 、2

2/R E π

C 、2

2R E π D 、 0

7.如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:[ D ] (A)

r

0212ελλπ+. (B)

202

10122R R ελελπ+π

(C)

1

01

2R ελπ.

(D) 0.

02ε

P 0

?

8. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ D ] 9. 根据高斯定理的数学表达式

?

∑?=S

q S E 0/d ε?

?可知下述各种说法中,正

确的是: (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.

(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.

(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ C ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.

(D) 电势值的正负取决于产生电场的电荷的正负. [ C ]

4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则

(A) 从A 到B ,电场力作功最大.

(B) 从A 到C ,电场力作功最大.

(C) 从A 到D ,电场力作功最大.

(D) 从A 到各点,电场力作功相等. [ D ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功

(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.

(C) A =∞. (D) A =0. [ D ]

6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为:

(A)

???

??-πR r q 1140

ε . (B) ??? ??-πr R Q 1140ε . (C)

??? ??-πR Q r q 041ε . (D)

r

q

04επ .

[ A ] q

A

7.

7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线

度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为

(A)

d S q q 0212ε+. (B) d S

q q 02

14ε+.

(C) d S q q 0212ε-. (D) d S

q q 02

14ε-. [ C ]

8. 在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是 [ C ]

A 、场强大的地方电势一定高

B 、场强相等的各点电势一定相等

C 、场强为零的点电势不一定为零

D 、场强为零的点电势必定是零 2. 对于带电的孤立导体球: [ B ]

A 、导体内的场强与电势大小均为零。

B 、导体内的场强为零,而电势为恒量。

C 、导体内的电势比导体表面高。

D 、导体内的电势与导体表面的电势高低无法确定。

3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ B ]

(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .

4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ?

,电位移

为0D ?

,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ?,电位移为D ?,则

[ B ] (A) r E E ε/0??=,0D D ??=. (B) 0E E ??=,0D D r ?

?ε=. (C) r E E ε/0??=,r D D ε/0??=. (D) 0E E ??=,0D D ?

?=.

5. 在一个不带电的孤立导体球壳的球心处放入一点电荷q ,当q 由球心处移开,但仍在球壳内时,下列说法中正确的是[ B ]

A 、球壳内、外表面的感应电荷均不再均匀分布

B 、球壳内表面感应电荷分布不均匀,外表面感应电荷分布均匀

C 、球壳内表面感应电荷分布均匀,外表面感应电荷分布不均匀

D 、球壳内、外表面感应电荷仍保持均匀分布

7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ B ]

(A)

U 12减小,E 减小,W 减小. (B) U 12增大,E 增大,W 增大.

(C) U 12增大,E 不变,W 增大. (D) U 12减小,E 不变,W 不变. 1. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度

ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1

与B 2间的关系为 [ C ]

(A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =

2

1

B 2. (D) B 1 = B 2 /4. B

A

S

q 1q 2

C

q

2. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感

强度分别用1B ?、2B ?和3B ?

表示,则O 点的磁感强度大小

(A)

B = 0,因为B 1 = B 2 = B 3 = 0.

(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ?

?,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.

(D) B ≠ 0,因为虽然021≠+B B ?

?,但B 3≠ 0. [ C ]

4. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:[ C ] (A) 01=B ,02=B . (B)

01=B ,l

I

B π=

0222μ.

(C)

l I

B π=

0122μ,02=B .

(D)

l I B π=0122μ,l

I B π=0222μ.

5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) 0d =??L l B ??,且环路上任意一点B = 0.

(B) 0d =??L

l B ??,且环路上任意一点B ≠0. (C) 0d ≠??L

l B ?

?,且环路上任意一点B ≠0.

(D)

0d ≠??L l B ?

?,且环路上任意一点B =常量. [ B ]

6. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式

中哪一个是正确的?

(A)

I l H L 2d 1

=????. (B)

I l H L =??2

d ??

(C)

I l H L -=??3

d ?

?. (D)

I l H L -=??4

d ?

?. [ D ]

8. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为 (A) 0. (B)

R

I

40μ.

(C) R I 420μ. (D) R I

0μ. (E) R

I

820μ. [ A ]

1. 一线圈载有电流I ,处在均匀磁场B ρ

中,线圈形状及磁场方向如图所示,线圈受到磁力矩的大小和转

3.

a

4

动情况为(转动方向以从上往下看或从左往右看为准):[ A ]

A 、I

B R M m

2

π25=

,绕11O O '轴逆时针转动 B 、IB R M m 2

π25=,绕11

O O '轴顺时针转动 C 、IB R M m 2

π23=,绕22

O O '轴顺时针转动 D 、IB R M m 2

π2

3=,绕22

O O '轴逆时针转动 2. 如图,在竖直放置的长直导线AB 附近,有一水平放置的有限长直导线CD ,C 端到长直导线的距离

为a ,CD 长为b ,

若AB 中通以电流1I ,CD 中通以电流2I ,

则导线CD 受的安培力的大小为[ C ] A 、a b

a I I F

+=ln 0

2

12μπ B 、a

b I I F

ln

2

12μπ=

C 、a b

a I I F

+=

ln

π22

10μ

D 、a

b

I I F ln π2210μ=

4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ A ]

(A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.

8. 两根载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 [ B ]

(A) 沿x 方向平动. (B) 绕x 轴转动.

(C) 绕y 轴转动. (D) 无法判断

2. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ A ]

4. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒

I 1

I 2

y z

x

I 1

I 2

t O (A)

t O

(C)

t O (B)

t O

(D) C D

O

ω B ?

O O ′ B B

A

C

长且沿磁场方向的轴OO ' 转动(角速度ωρ

与B ?同方向),BC 的长度为棒长的3

1

,则

(A) A 点比B 点电势高. (B) A 点与B 点电势相等.

(B) A 点比B 点电势低. (D)有稳恒电流从A 点流向B 点. [ A ]

5. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ?

平行于ab 边,bc 的长度为l .当金属框

架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为 [ B ]

(A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-.

(C) =2l B ω,U a – U c =221l B ω.(D)

=2

l B ω,U a – U c =22

1l B ω-6. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达

到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是[ D ] (A) 4. (B) 2. (C) 1. (D)

21. 7. 在感应电场中电磁感应定律可写成t l E L

K d d d Φ

-=????,式中K E ?为感应电场的电场强度.此式表明:

(A) 闭合曲线L 上K E ?

处处相等.

(B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线.

(D) 在感应电场中不能像对静电场那样引入电势的概念. [ D ]

5、若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为:[ B ]

(A) pV / m . (B) pV / (kT ).

(C) pV / (RT ). (D) pV / (mT ).

4、如图所示,一定量的理想气体,沿着图中直线从状态a (压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4 L ).则在此过程中: [ B ] (A) 气体对外作正功,向外界放出热量. (B) 气体对外作正功,从外界吸热.

(C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少.

5、一定量的理想气体的初态温度为0T ,体积为0V ,先绝热膨胀使体积变为20V ,再等容吸热使温度恢复为0T ,最后等温压缩为初态,则在整个过程中气体将:[ A ] (A)放热; (B) 对外界作功;(C) 吸热;(D)内能增加; (E) 内能减少。

7.、在温度分别为 327℃和27℃的高温热源和低温热源之间工作的热机,理论上的最大效率为 [ B ] (A) 25% (B) 50% (C) 75% (D) 91.74%

8、根据热力学第二定律可知:[ D ] (A) 功可以全部转换为热,但热不能全部转换为功.

?

1

234

(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C) 不可逆过程就是不能向相反方向进行的过程. (D) 一切自发过程都是不可逆的.

二、填空题

11. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强

度分别为:E A =-3σ / (2ε0),E B =-σ / (2ε0), E C = σ / (2ε0),E D =3σ / (2ε0) (设方向向右为正).

12. 两块平行板,相距d ,板面积均为S ,分别均匀带电q +、q -,若两板的线度远大于d ,则它们的相互作用力的大小为

S q

o ε22

12. 静电场的环路定理的数学表示式为:0d =??

L

l E ?

?.该式的物理意义是:单位正电荷在静电场中沿任

意闭合路径绕行一周,电场力作功等于零。该定理表明,静电场是_有势(或保守力)场.

10. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D = λ/(2πr ),电场强度的大小 E =λ/(2π ε0 εr r ).

11. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的

倍;电场强度是原来的 _________倍;电场能量是原来的

_________倍. (,

1,

r r εε)

12. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的

1

r

ε倍;电场

能量是原来的

1

r

ε倍.

9. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为1:1.

10. 一电子以速率v 绕原子核旋转,若电子旋转的等效轨道半径为0r ,则在等效轨道中心处产

生的磁感应强度大小=

B 02

04ev r μπ。如果将电子绕原子核运动等效为一圆电流,则其磁矩大小

=m p 012

IS evr =

10. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B ?

中,则该载流导线所受的安培力大小为aIB

+σ+σ+σA

B

C

D

c a

?

11. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流

I ,导线置于均匀外磁场B ?中,且B ?

与导线所在平面垂直.则该载流导线

bc 所受的磁力大小为

2aIB .

12. 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆

心O 处的电流元l I ?d 所受的安培力F ?

d 的

大小为a l I

4/d 2

0μ,方向_________________.

9. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中,磁

感强度为

B ?的匀强磁场垂直于xy 平面.

当aOc 以速度v ?

沿x 轴正向运动时,导线上a 、c 两点间电势差U ac = v BL sin θ;当aOc 以速度v ?

沿y 轴正向运

动时,a 、c 两点的电势相比较, 是 a 点电势高.

12、 用总分子数N 、气体分子速率v 和速率分布函数f (v ) 表示下列各量:

(1) 速率大于v 0的分子数=v v v d )(0

?

∞Nf ; (2) 速率大于v 0的那些分子的平均速率=

v v v/v v v v d )(d )(0

??

f f ;

(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=

v v v v d )(0

?

f .

13、在平衡状态下,已知理想气体分子的麦克斯韦速率分布函数为f (v )、分子质量为m 、最概然速率为v p ,试说明下列各式的物理意义: (1) ()d p f ∞?

v v v 表示分布在v p ~∞速率区间的分子数在总分子数中占的百分率;

(2)

()2

01v v d v 2m f ∞

?表示分子平动动能的平均值.

14、 图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量

40)三种气体分子的速率分布曲线。其中 曲线(a )是 氩 气分子的速率分布曲线;

曲线(c )是 氦 气分子的速率分布曲线;

11、一热机从温度为 727℃的高温热源吸热,向温度为 527℃的低温热源放热.若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功 400 J . 三、计算题

13. 带电细线弯成半径为R 的半圆形,电荷线密度为=

sin

,式中

为一常数,为半径R 与x 轴所成的夹角,如图所示.试求环心

O 处的电场强度.

解:在处取电荷元,其电荷为 d q =

d l =

R sin d

它在O 点产生的场强为

a

a I

c b

B

?

O

O

I

a

l

I ?d

v ?B ? x

v ? c

a

θ×

××

×

×××××

y R

x

φ

(a)

(b)

(c)

v

f (v )

R R q E 002

04d sin 4d d εφφλεπ=

π=

3分

在x 、y 轴上的二个分量 d E x =-d E cos

d E y =-d E sin 对各分量分别求和

?ππ=0

00d cos sin 4φφφελR E x =0

R

R E y 0002008d sin 4ελφφελ-=π=

∴ j R

j E i E E y x ?

???008ελ-

=+= 15. 一半径为R 的带电球体,其电荷体密度分布为=Ar(r ≤R) ,=0 (r >R)

A 为一常量.试求球体内外的场强分布.

解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为

r r Ar V q d 4d d 2π?==ρ

在半径为r 的球面内包含的总电荷为

40

3d 4Ar r Ar dV q r

V

π=π==??ρ (r ≤R)

以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π?

得到 ()021

4/εAr E =, (r ≤R )

方向沿径向,A >0时向外, A <0时向里. 在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π? 得到 ()2

042

4/r AR E ε=, (r >R )

方向沿径向,A >0时向外,A <0时向里.

14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.

解: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U .

在球层内取半径为r →r +d r 的薄球层.其电荷为 d q = 4r 2

d r

该薄层电荷在球心处产生的电势为

()00/d 4/d d ερεr r r q U =π=

整个带电球层在球心处产生的电势为

()212

20

002d d 2

1

R R r r U U R R -=

=

=?

?ερερ

y R

x

φ d φ

d E x

d E y

φ

O d E

d q

O R 1 R 2

因为空腔内为等势区所以空腔内任一点的电势U 为

()212

20

02R R U U -=

=ερ 若根据电势定义?

?=l E U ?

?d 计算同样给分.

16. 有两根半径都是R 的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d ≥2R ),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.

解:设原点O 在左边导线的轴线上,x 轴通过两导线轴线并与之垂直.在两轴线组成的平面上,在R <x <(d -R )区域内,离原点距离x 处的P 点场强为

()

x d x E E E -π+π=

+=-+0022ελ

ελ

则两导线间的电势差

?

-=R

d R

x E U d ?

-??

? ??-+π=

R

d R

x x d x d 11

20

ελ

()[]R

d

R

x d x ---π=

ln ln 20

ελ??? ??---π=R d R R R d ln ln 20ελ R

R d -π=ln 0ελ 14. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电

荷q .设无限远处为电势零点,试求:

(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.

(3) 球心O 点处的总电势.

解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的距离都是a ,所以由这些电荷在O 点产生的电势为

a

dq

U q 04επ=

?-a

q 04επ-=

(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和

q Q q q O U U U U +-++=

r q 04επ=

a q 04επ-

b q Q 04επ++ )111(40b a r q +-π=εb

Q

04επ+

14. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.

解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、

B 4.根据叠加原理O 点的磁感强度为:

+

4321B B B B B ?????+++=

∵ 1B ?、4B ?

均为0,故32B B B ???+= 2分

)2(4102R I

B μ= 方向

2分 2

42)sin (sin 401203R

I a I B π=-π=μββμ

)2/(0R I π=μ 方向

15. 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.

解:由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1,则 1

014R I

B μ=

同理, 2

024R I B μ=

∵ 21

R R > ∴ 21B B <

故磁感强度12B B B

-=

204R I μ=104R I μ-2

06R I μ= ∴ 21

3R R =

14. 无限长直导线,通以电流I ,有一与之共面的矩形线圈

ABCD 。已

知BC 边长为b ,且与长直导线平行,DC 边长为a 。若线圈以垂直于

导线方向的速度V ρ

向右平移,当D 点与长直导线的距离为d 时,求线圈ABCD 内的感应电动势的大小和方向。

解:建立坐标系,长直导线为Y 轴,DC 边为X 轴,原点在长直导线上,式中r 是t 时刻AD 边与长直导线

的距离,线圈中磁通量

r

r a Ib x x b

I

Φr

a r

+==

?

+ln π2d π

200μμ

v a r r Iba t Φ)

(π2d d 0+=-

=με 当r

d = 时,v a d d Iba

)

(π20+=

με

方向:ABCDA (即顺时针)

18、 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少?

(氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )

1 2

3

4 R R

O

I

a 2

R 1 R 2 O

I

V

ρI

A B C

D

a

b

d

解: 0.8×

22

1

v M =(M / M mol

)

T R ?2

5

, ∴ T =0.8 M mol v 2

/ (5R )=0.062 K 又 ?p =R ?T / V (一摩尔氧气) ∴ ?p =0.51 Pa .

13、温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8.31

1--??K mol J 1,ln 3=1.0986)

(1) 计算这个过程中气体对外所作的功.

(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为

?

?==

=

333ln d d V V V V RT V V

RT

V p W =8.31×298×1.0986 J = 2.72×103

J (2) 绝热过程气体对外作功为

V V

V p V p W V V V V d d 0

30

03??-==

γ

γ

RT V p 1

311131001--=--=

--γγγ

γ=2.20×103

J

15、1 mol 理想气体在T 1 = 400 K 的高温热源与T 2 = 300 K 的低温热源间作卡诺循环(可逆的),在400 K 的等温线上起始体积为V 1 = 0.001 m 3,终止体积为V 2 = 0.005 m 3,试求此气体在每一循环中

(1) 从高温热源吸收的热量Q 1 (2) 气体所作的净功W (3) 气体传给低温热源的热量Q 2 解:(1) s

J

(2) 25.011

2

=-

=T T η

. 311034.1?==Q W η J

(3) 312

1001.4?=-=W Q Q J

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理学第三版课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度与加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 2 22s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 就是随t 减少的, ∴ t s v v t l v d d ,d d 0-==-=船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=-=船 或 s v s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m,v =0,

求该质点在t =10s 时的速度与位置. 解:∵ t t v a 34d d +== 分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 34(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 m 7055102 1102s m 190102310432101 210=+?+?=?=?+?=-x v 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔 60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .

大学物理第三版下册答案(供参考)

习题八 8-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A处点电荷为研究对象,由力平衡知:q'为负电荷 2 2 2 0) 3 3 ( π4 1 30 cos π4 1 2 a q q a q' = ? ε ε 解得q q 3 3 - =' (2)与三角形边长无关. 题8-1图题8-2图 8-7 一个半径为R的均匀带电半圆环,电荷线密度为λ,求环心处O点的场强. 解: 如8-7图在圆上取? Rd dl= 题8-7图 ? λ λd d d R l q= =,它在O点产生场强大小为

2 0π4d d R R E ε? λ= 方向沿半径向外 则 ??ελ ?d sin π4sin d d 0R E E x = = ??ελ ?πd cos π4)cos(d d 0R E E y -= -= 积分R R E x 000 π2d sin π4ελ ??ελπ == ? 0d cos π400 =-=? ??ελ π R E y ∴ R E E x 0π2ελ = =,方向沿x 轴正向. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强. 解: 高斯定理0 d ε∑? = ?q S E s 取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E S π2d =?? 对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ r E 0π2ελ = 沿径向向外

大学物理期末考试试卷

第三军医大学2011-2012学年二学期 课程考试试卷(C 卷) 课程名称:大学物理 考试时间:120分钟 年级:xxx 级 专业: xxx 题目部分,(卷面共有26题,100分,各大题标有题量和总分) 一、选择题(每题2分,共20分,共10小题) 1.下面哪一种说法是正确的 ( ) A 、 运动物体的加速度越大,速度越大 B 、 作直线运动的物体,加速度越来越小,速度也越来越小 C 、 切向加速度为正值时,质点运动加快 D 、 法向加速度越大,质点运动的法向速度变化越快 2.对功的概念有以下几种说法: (1)保守力作正功时,系统内相应的势能增加 (2)质点运动经一闭合路径,保守力对质点作的功为零 (3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零 在上述说法中:( ) A 、(1)、(2)是正确的 B 、(2)、(3)是正确的 C 、只有(2)是正确的 D 、只有(3)是正确的 3.在绕地球正常运转的人造卫星上,有一物体自行脱落,该物体将( ) A 、能击中地球 B 、能落下,但不一定击中 C 、 仍随卫星一起绕地球运动 D 、绕地球运动,但速度越来越慢 4.质量为的质点,其运动方程为t t x 45.42-=,式中x 以米、t 以秒计。在1s 末,该质点受力为多大( ) A 、 0 B 、 C 、 N D 、 5.可供选择的量纲如下:那么,动量矩的量纲为( ) A 、22T ML - B 、12T ML - C 、02T ML D 、1MLT - E 、32T ML -

6.如图所示,某种电荷分布产生均匀电场0E ,一面电荷密度为σ的薄板置于该电场中,且使电场0E 的方向垂直于薄板,设原有的电荷分布不因薄板的引入而收干扰,则薄板的左、右两侧的合电场为 ( ) A 、00,E E B 、0 0002,2εσεσ-+E E C 、002εσ-E , 002εσ+E D 、002εσ+E , 0 02εσ+E E 、E 0 ,0 02εσ+E 7.一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为,某一段时间内的平均 速度为,平均速率为,它们之间的关系必定有( ) A 、, B 、, C 、, D 、, 8.一带电体可作为点电荷处理的条件是 ( ) A 、电荷必须呈球形分布 B 、带电体的线度很小 C 、带电体的线度与其它有关长度相比可忽略不计 D 、电量很小 9.一质量为M 、半径为r 的均匀圆环挂在一钉子上,以钉为轴在自身平面内作幅度很小的简谐振动。若测得其振动周期为2π/秒,则r 的值为( ) A 、 32g B 、 162g C 、 2 16g D 、 4g

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理学(课后答案)第1章

第1章 质点运动学 习 题 一 选择题 1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同 (B)在某一过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小 解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。 1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt = =-,18dv a t dt ==-,故答案选D 。 1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ] (A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v 解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率s v t ?=?,而平均速度t ??r v = ,故v ≠v 。答案选D 。 1-4 质点作圆周运动时,下列表述中正确的是[ ]

(A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零 解析:质点作圆周运动时,2 n t v dv a a dt ρ =+=+ n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。 1-5 某物体的运动规律为 2dv kv t dt =-,式中,k 为大于零的常量。当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ] (A)2012v kt v =+ (B)2011 2kt v v =+ (C)2012v kt v =-+ (D)2011 2kt v v =-+ 解析:由于2dv kv t dt =-,所以 02 0()v t v dv kv t dt =-? ? ,得到20 11 2kt v v =+,故答案选B 。 二 填空题 1-6 已知质点位置矢量随时间变化的函数关系为2=4t +( 2t+3)r i j ,则从0t =到1t s =时的位移为 ,1t s =时的加速度为 。 解析:45342=-=+-=+1010r r r i j j i j ,228d d dt dt = ==111v r a i 1-7 一质点以初速0v 和抛射角0θ作斜抛运动,则到达最高处的速度大小为 ,切向加速度大小为 ,法向加速度大小为 ,合加速度大小为 。 解析:以初速0v 、抛射角0θ作斜抛的运动方程:

大学物理期末考试试卷(含答案)

《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理学吴柳下答案

大学物理学下册 吴柳 第12章 12.1 一个封闭的立方体形的容器,内部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其内为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后, 长度之比是多少)? 解: 活塞两侧气体的始末状态满足各自的理想气体状态方程 左侧: T pV T V p 111= 得, T pT V p V 1 11= 右侧: T pV T V p 222= 得, T pT V p V 2 22= 122121T p T p V V = 即隔板两侧的长度之比 1 22121T p T p l l = 12.2 已知容器内有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2 atm ,密度32kg/m 1024.1-?=ρ.求该气体的摩尔质量. 解: nkT p = (1) nm =ρ (2) A mN M = (3) 由以上三式联立得: 1235 2232028.010022.610 013.1100.12731038.11024.1----?=?????????==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器内装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量. 解: () V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ( )()RT M M M V V p 21 22-=- (2)

(完整版)大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+-r r r 由d /d v r t =r r 则速度: 28v i tj =+r r r 由d /d a v t =r r 则加速度: 8a j =r r 则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r r r r 当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r r r r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t v ,d d v t v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201()(h -)2 r t v t i gt j =+v v v (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)0d -gt d r v i j t =v v v 而落地所用时间 g h 2t = 所以 0d d r v i j t =v v d d v g j t =-v v 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

《大学物理(一)》期末考试试题]

《大学物理(一)》综合复习资料 一.选择题 1. 某人骑自行车以速率V 向正西方行驶,遇到由北向南刮的风(设风速大小也为V ),则他感到风是从 (A )东北方向吹来.(B )东南方向吹来.(C )西北方向吹来.(D )西南方向吹来. [ ] 2.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 2 2 +=(其中a 、b 为常量)则该质点作 (A )匀速直线运动.(B )变速直线运动.(C )抛物线运动.(D )一般曲线运动. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 (A )不变.(B )变小.(C )变大.(D )无法判断. 4. 质点系的内力可以改变 (A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总动量. 5.一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A )1/2 .(B )1/4.(C )2/1.(D) 3/4.(E )2/3. [ ] 6.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 1变为 (A )4/1E .(B ) 2/1E .(C )12E .(D )14E . [ ] 7.在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4. (B )λ/2.(C ) 3λ/4 . (D )λ. [ ] 8.一平面简谐波沿x 轴负方向传播.已知x =b 处质点的振动方程为)cos(0φω+=t y ,波速为u ,则波动方程为:

大学物理学 第三版 课后习题答案

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以 0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小. 图1-4 解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l += 将上式对时间t 求导,得 t s s t l l d d 2d d 2= 题1-4图 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ t s v v t l v d d ,d d 0-==- =船绳 即 θ cos d d d d 00v v s l t l s l t s v ==-=- =船 或 s v s h s lv v 0 2/1220)(+==船 将船v 再对t 求导,即得船的加速度 1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m , v =0, 求该质点在t =10s 时的速度和位置. 解:∵ t t v a 34d d +==

分离变量,得 t t v d )34(d += 积分,得 122 34c t t v ++= 由题知,0=t ,00=v ,∴01=c 故 22 34t t v += 又因为 22 34d d t t t x v +== 分离变量, t t t x d )2 3 4(d 2+= 积分得 2322 12c t t x ++= 由题知 0=t ,50=x ,∴52=c 故 52 1232++=t t x 所以s 10=t 时 1-10 以初速度0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-10图所示. 题1-10图 (1)在最高点, 又∵ 1 2 11 ρv a n =

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

《大学物理学》(袁艳红主编)下册课后习题答案

第9章 静电场 习 题 一 选择题 9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ] (A) 4f (B) 8f (C) 38f (D) 16 f 答案:B 解析:经过碰撞后,球A 、B 带电量为2q ,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为 8 f 。 9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B 解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。因而正确答案(B ) 9-3 如图9-3所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且 OP =OT ,那么[ ] (A) 穿过S 面的电场强度通量改变,O 点的场强大小不变 (B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 习题9-3图

(C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D 解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式2 04q E r πε= ,移动电荷后,由于OP =OT , 即r 没有变化,q 没有变化,因而电场强度大小不变。因而正确答案(D ) 9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ] (A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D 解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。因而通过该立方体任一面的电场强度通量为q /6ε0,答案(D ) 9-5 在静电场中,高斯定理告诉我们[ ] (A) 高斯面内不包围电荷,则面上各点E 的量值处处为零 (B) 高斯面上各点的E 只与面内电荷有关,但与面内电荷分布无关 (C) 穿过高斯面的E 通量,仅与面内电荷有关,而与面内电荷分布无关 (D) 穿过高斯面的E 通量为零,则面上各点的E 必为零 答案:C 解析:高斯定理表明通过闭合曲面的电场强度通量正比于曲面内部电荷量的代数和,与面内电荷分布无关;电场强度E 为矢量,却与空间中所有电荷大小与分布均有关。故答案(C ) 9-6 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1

大学物理A期末试卷答案

浙江师范大学《大学物理A(一)》考试卷 (A 卷) (2014——2015学年第一学期) 考试形式: 闭卷 考试时间: 90 分钟 出卷时间:2014年12月29日 使用学生:数学与应用数学、信息与计算科学、科学教育等专业 说明:考生应将全部答案都写在答题纸上,否则作无效处理 真空电容率212120m N C 1085.8---???=ε,真空磁导率2 70A N 104--??=πμ 一. 选择题(每题3分,共30分) 1. 一运动质点在某瞬时位于矢径()y x r ,? 的端点处, 其速度大小为 ( ) (A) t r d d (B) t r d d ? (C) t r d d ? (D) 22d d d d ?? ? ??+??? ??t y t x 答:(D ) 2. 如图所示,一轻绳跨过一个定滑轮,两端各系一质量分别为m 1和m 2的重物,且m 1>m 2.滑轮质量及轴上摩擦均不计,此时重物的加速度的大小为a .今用一竖直向下的恒力g m F 1=代替质量为m 1的物体,可得质量为m 2 的重物的加速度为的大小a ′,则 (A) a ′= a (B) a ′> a (C) a ′< a (D) 不能确定. 答:(B) 3. 质量为20 g 的子弹沿x 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿x 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 ( ) (A) 9 N·s (B) -9 N·s (C)10 N·s (D) - 10 N·s 答案:(A ) 4. 质量为m ,长为l 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒由静止开始从水平位置自由下落摆动到竖直位置。若棒的质量不变,长度变为l 2,则棒下落相应所需要的时间 ( ) (A) 变长. (B) 变短. (C) 不变. (D) 是否变,不确定. 答案:(A ) 5. 真空中两块互相平行的无限大均匀带电平面。其电荷密度分别为σ+和2σ+,两板之间的距离为d ,两板间的电场强度大小 为 ( ) (A) 0 (B) 023εσ (C) 0εσ (D) 0 2εσ 答案:()D 6. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,设E

大学物理学第三版下册课后答案

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无 关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计, 求每个小球所带的 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强 →∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求 场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人说,因为f =qE ,S q E 0ε= ,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε=,另一板受它的作用力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为 θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θE =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量 3 0π2cos r p E r εθ = 垂直于r 方向,即θ方向场强分量 3 00π4sin r p E εθ =

相关文档
相关文档 最新文档