文档库 最新最全的文档下载
当前位置:文档库 › 如何考虑暴雨工况下边坡的稳定计算

如何考虑暴雨工况下边坡的稳定计算

如何考虑暴雨工况下边坡的稳定计算
如何考虑暴雨工况下边坡的稳定计算

如何考虑暴雨工况下边坡的稳定计算

2013-12-09 15:25 来源:中国岩土网阅读:94

常理,雨水入渗土体,一方面降低土体强度指标C、φ,增大土体容重γ;另一方面下渗后形成空隙水压力、动水压力,增大边(滑)坡滑动破坏。然而在实际应用中,如果考虑暴雨工况下的边坡稳定性,成为困扰我们年轻工程师的一个难题。

常理,雨水入渗土体,一方面降低土体强度指标C、φ,增大土体容重γ;另一方面下渗后形成空隙水压力、动水压力,增大边(滑)坡滑动破坏。然而在实际应用中,如果考虑暴雨工况下的边坡稳定性,成为困扰我们年轻工程师的一个难题。

1 浸水对岩土体强度的影响

岩土体在浸水饱和以后,强度会大量降低。主要表现为:

①土体含水量增大,液性指数增大,从而土体可能由硬塑状态变为软塑状态,导致强度降低;对黏土2组天然现场直剪和6组现场浸水饱和直剪数据进行对比分析,天然状态(平均值):c=45.8kPa,φ=17.0°,浸水状态(平均值):c=26.1kPa,φ=17.4°。由试验结果可知,饱水对黏性土的黏聚力影响较大(由于样本较小,以下仅做初步统计,仅为初步结论),可否初步认为,对于黏性土边坡,主要降低黏聚力,从而容易导致浅表层滑坡。但对同一土层进一步进行室内直剪试验,得到天然状态(平均值):c=36.8kPa,φ=29.3°,浸水状态(平均值):c=28.5kPa,φ=21.2°,得到的强度指标远高于现场直剪指标,通过室内试验得到的结果表明,浸水饱和对黏性土的内摩擦影响也很明显。比较现场和室内试验,可以得到共性是浸水饱和严重降低土体的强度。

②岩体特别是泥岩、长石类砂岩、板岩、千枚岩等,雨水浸泡后,矿物岩石以及胶结物发生软化(黏土矿物类受影响特明显),导致强度降低。对比全风化片麻岩(成砂土状)强度指标天然状态:c=45.9kPa,φ=26.9°,浸水状态:c=28.5kPa,φ=21.2°。

由分析可知,岩土体在雨水浸泡以后,强度大大降低,严重影响到边坡的稳定。

2 计算方法的选择

2.1稳定水位稳定性计算

当边坡存在稳定地下水位线时,计算理论较成熟,并且能够实现定量化的软件也较多。根据地质资料提供的水位线,有针对的进行分析。

1)重度的选取:当对于黏性土,采用水土合算,地下水位以下取浮重度γsat,地下水位以上取天然重度γ;对于渗透系数较好的粗粒土,采用水土分算,地下水位以下取有效重度,地下水位以上取天然重度γ。

2)强度指标的选用:根据相关资料,地下水位以上取天然强度指标,地下水位以下,对于黏性土取饱和强度指标,粗粒土取有效应力指标。

3)水压力的确定:针对一般具有稳定水位的边(滑)坡工程,可直接采用空隙水压力进行稳定性验算,其中,为稳定地下水位线至滑动面的垂直距离。

2.2 暴雨工况下稳定性计算

依据相关理论介绍,在暴雨工况下,需要首先确定浸润线,浸润线确定以后按边坡存在稳定水位的基础上进行计算,即将浸润线考虑为稳定水位线。

然而在实践过程中,本人认为,暴雨工况下,雨水是从土体上方向下入渗,即入渗深度有限,即主要改变浸润线以上土体的强度和增加上部土体重度,这与很多边坡由于暴雨作用下发生浅层滑坡事实相符。

故本人认为在验算暴雨工况下边坡稳定性分析过程中,可否按如下进行考虑:首先根据经验初步确定浸润线,(浸润线的位置跟土体性质有关,黏性土本身渗透性较低,故雨水下渗较浅,砂性土渗透性较好,即雨水入渗深度较大)。黏性土:对浸润线以上可取饱和浸水强度指标和物理指标,浸润线以下可对天然强度指标进行适当的折减或直接取天然强度指标;砂性土:考虑浸润线作为一隔水层,对浸润线以上取有效强度指标,采用水土分算,浸润性以下取天然强度指标或取天然指标进行适当的折减。本人认为:暴雨入渗,短期作用,空隙水压力影响较小,应主要由强度指标的降低控制。

3 结语

在实践过程中,验算暴雨工况下边坡稳定困扰着本人。如何合理评价暴雨工况下边坡稳定也成为一个难题,在现场资料中没用找到能直接拿来应用到工程中的案例。如浸润线的确定本身就是一个模糊问题,依据经验确定也是概化了,不同的人有不同的意见,我也请教了很多工程师,他们很多对这个概念也没用真正的搞清楚,以上也仅仅是本人个人总结的一个初略的见解,其中会存在矛盾和错误,希望大家指出。要考虑暴雨工况下边坡稳定还需要进一步的深入和总结,方法的合理选择不仅影响工程的安全可靠,也影响到业主方的投资,因此我们有义务对这个问题进行深入。

车辆转弯半径表及计算方法

车辆转弯半径

些特种车辆的转弯半径为16~20m。 汽车的转弯半径决定汽车的机动性能。汽车的转弯半径在原地方向盘最大转角转弯后形成的半径,一般国家针对不同车型有法规要求。比如大型货车的转弯直径不大于24米,即半径12米。转弯半径以外轮转弯半径计算,因此,理论上汽车原地调头的最小路面宽度是转弯半径的两倍以上。 补充1:最简单的算法,把你的汽车横在路上,只要路面宽度大于你的车长稍微多一点就能调过头来。知道了最小的转弯半径还要考虑你的车身长度啊! 10.1.7 机动车出入口距城市道路交叉口、桥隧坡道起止线应大于50米。 10.1.8 居住区道路红线转弯半径不得小于6米,工业区不小于9米,有消防功能的道路,最小转弯半径为12米。

大型消防车转弯半径需要12.0米,转弯半径指的是车辆的前轮外侧,道路内缘圆弧半径均比转弯半径小,精确计算为:r2=(r12-l2)1/2-((b+h)/2)+y,但一般粗略的计算可以近似为:道路内缘圆弧半径=转弯半径-车宽-安全距离。(消防车宽2.5m,安全距离0.25m)所以大型消防车道内缘圆弧半径取9.0米左右是安全的。 汽车库规范2.0.2 汽车最小转弯半径(Minimumturn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 建规6.0.10 .1 普通消防车的转弯半径为9m,登高车的转弯半径为12m,一些特种车辆的转弯半径为16~20m。 所以,消防车道转弯半径=普通消防车的转弯半径9m-3m+=6m 作图:

R1——汽车最小转弯半径;R0 ——环道外半径;R——汽车环行外半径;

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

以通用条分法进行边坡稳定分析

科技信息 1.引言 条分法是一种基于极限平衡原理的稳定性分析方法,其可分为非严格条分法与严格条分法两种。目前大多数常用的极限平衡条分法均 采用垂直条分法计算安全系数……, 较为完备的是M orgenstern 和Price 提出的方法以及陈祖煜在此基础上发展的通用条分法。早期的一些方 法,如Bishop 法、 Spencer 法等,可以看作是它在一定假设条件下的简化。在众多的条分法中,其核心问题就是如何对条间力进行假设,从而使问题封闭可解。由于垂直条分法仅考虑了力(和力矩)的平衡,不涉及材料的变形,因而,要得到封闭的解答须对滑体的受力特征进行一定的 假设。 一般是从力和力矩平衡条件出发,以一种新的方式给出一般情况下安全系数所应满足的关系。 2.平衡方程 严格法要求土条满足所有的静力平衡条件,即2个力平衡条件及1个力矩平衡条件。以土条为隔离体,其受力分析如图所示。 图1土条受力图 图中符号含义: F 为安全系数;S a 为条底可获得的抗剪力,S a =c l i +N i tg φ,c,φ,l 分别为条底粘聚力、摩擦角、长度;S m 为条底已发挥的抗剪力,U αi 为孔隙水压力;W i 为土条重力;N i 为条底有效法向力;α为 条底倾角; P 左i ,P 右i 分别为土条左、右端条间力;h i ,h i+1分别表征条间力的作用位置;θ2i ,θ1i 分别为土条左、右条间力的水平倾角。 (1)由图可以分别建立水平竖直两个方向的平衡方程:水平方向合力为零,即: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -P 右i cos θ1i =0(1)竖直方向合力为零,即: P 右i sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(2)又由M ohr ———Coulom b 强度准则:S a =c l i +(N i +U αi )tg φ,S m =S a F =c l i +(N i +U αi )tg φF (3) 通常我们易知P 左i 和P 右i 之间存在一定的关系,即:P 右i -P 左i =ΔP i 现以P 右i >P 左i 为例P 右i =P 左i +ΔP i (4) 将(4 )式分别代入(1)(2)式可得P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi -(P 左i +ΔP i )cos θ1i =0(5)(P 左i +ΔP i )sin θ1i -S m sin αi -(N i +U αi )cos αi -P 左i sin θ2i +W i =0(6) 由式(5 )(6)分别可求得ΔP i =P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi 1i -P 左i (7) ΔP i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i 1i -P 左i (8) 二者相等可得: P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi cos θ1i -P 左i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i sin θ1i -P 左i 即: tg θ1i =P 左i sin θ2i +S m sin αi +(N i +U αi )cos αi -W i i 2i m i i αi i (9) 从而得到θ1i 与θ2i 的关系,即θ1i 可以用θ2i 表示出来。又因为所有的土条满足整体的力平衡状态,即有:∑ΔP i =0 即:∑[P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi ]∑cos θ1i -∑P 左i =0(10)从而可得: ∑S m =∑[P 左i cos θ1i +(N i +U αi )sin αi -P 左i cos θ2i ]i =c l i +(N i +U αi )tg φ(11) 故F= ∑[c l i +(N i +U αi )tg φ]cos αi 左i 1i i αi i 左i 2i (12)其中P 左i ,θ1i ,θ2i 为未知。(2)土条的力矩平衡方程: P 左i cos θ2i (h i '-b tg α)+P 左i b sin θ2i -P 右i cos θ1i (h i +b tg α)+P 右i b sin θ1i =0 (13)h i =P 左i (P 左i +ΔP i )cos θ1i h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(14) 将(7)中的ΔP i 代入上式 h i = P 左i cos θ1i P 左i cos θ2i +S m cos αi -(N i +U αi )sin αi h i 'cos θ2i -b 2(cos θ2i tg α-sin θ2i ∑∑ )+b 2 (tg θ1i -tg α)(15)其中P 左i ,θ1i ,θ2i ,S m 中的F 为未知,又由式(9)可以得到θ1i ,θ2i 的关 系,即θ1i 可以用θ2i 表示出来,故h i 是关于h i ' ,P 左i ,θ2i ,F 的函数。 我们可以假设初始植h i ' ,P 左i 均为0则可以通过(7)和(15)假设不 同的θ2i ,F 迭代求h i 直到满足其最后的边界值为零为止。3.结论(1)本文在理论推导过程中采用了与经典公式不同的方法,即将条 间合力的大小,方向P 左i , θ1i ,θ2i ,S m 作为未知数。(2)此方法在计算过程中不需要对方程进行求导,因而通过编程求得其安全系数。 (3)在通用条分法中,不同条块界面上剪切强度和滑动面上剪切强度应该具有不同的折减系数,这有待于今后进一步研究 (4)影响边坡稳定的条件有很多,仅仅通过条间的剪切力确定是远远不够的,比如说条块的形状,大小等都会对滑动趋势产生很大的影响,因此在实际的工程运用中应该充分予以考虑。 参考文献[1]Lee W A ,Lee T ,Sharma S ,et a1.Slope Stability an d Stabilization Methods [M ].New York :Wiley —Interscience Publication ,1996 [2]Fmdlund D C State of the art :analytical methods for slope stability analysis [A ].In :Proceedings of the 4International Symposium on Landslides [C ].Toronto :Ont ,1984.229-250 [3]张鲁渝.一个用于边坡稳定分析的通用条分法.岩石力学与工程学报,2005.2 [4]丁桦,张均锋,郑哲敏.关于边坡稳定分析的通用条分法的探讨.岩石力学与工程学报,2004.11 [5]朱大勇,钱七虎.严格极限平衡条分法框架下的边坡临界滑动 场.土木工程学报, 2000,33[6]杨明成.基于力平衡求解安全系数的一般条分法.岩石力学与工程学报,2005.4 以通用条分法进行边坡稳定分析 山东交通学院 曹丽娜 王日升 [摘要]本文首先介绍了通用条分法的基本方程。它直接将条间力合力的大小和方向作为未知数,并通过一系列的转化求得土条间合力方向间的关系,从而易通过编程求得其安全系数。[关键词]通用条分法边坡稳定 极限平衡 高校理科研究 526——

边坡稳定性计算方法.doc

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图9 -1 为一砂性边坡示意图,坡高H ,坡角β,土的容重为γ,抗剪 度指标为 c 、φ。如果倾角α的平面AC 面为土坡破坏时的滑动面,则可分析该滑 动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图 已知滑体ABC重W ,滑面的倾角为α,显然,滑面AC 上由滑体的重量W= γ(ΔABC)产生的下滑力T 和由土的抗剪强度产生的 抗滑力Tˊ分别为: T=W ·sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数 F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系 数表达式则变为 从上式可以看出,当α=β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当F s =1 时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于0.1 时,可以把它当作一个无限边坡进行分析。 图9-2 表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条进 行分析,作用在滑动面上的剪应力为, 在极限平衡状态时,破坏面上的剪应 力等于土的抗剪强度,即 得 式中N s = c/ γH称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无 粘性土。α=φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强 度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘 这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动 法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森(K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O 为圆心,R 为半径。 假定边坡破坏时,滑体ABC 在自重W 作用下,沿AC 绕O 点整体转动。滑动面AC 上的力系有:促使边坡滑动的滑动力矩M s =W ·d ;抵抗边坡滑动的抗滑力矩,它应该 包括由粘聚力产生的抗滑力矩M r =c ·AC ·R ,此外还应有由摩擦力所产生的抗滑力矩, 这里假定φ=0 。边坡沿AC 的安全系数F s 用作用在AC 面上的抗滑力矩和下滑力 矩之比表示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ=0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

车辆转弯半径表及计算方法

车辆转弯半径 些特种车辆的转弯半径为16~20m。 汽车的转弯半径决定汽车的机动性能。汽车的转弯半径在原地方向盘最大转角转弯后形成的半径,一般国家针对不同车型有法规要求。比如大型货车的转弯直径不大于24米,即半径12米。转弯半径以外轮转弯半径计算,因此,理论上汽车原地调头的最小路面宽度是转弯半径的两倍以上。 路面宽度载重量(吨)相对长度(米)转弯半径(米) 车长最小转弯半径(m4~8t 单辆汽 车 9微型车不超 过3.5米 4.50 10~15t 单辆 汽车12小型车 3.5-7米 6.004~8t 汽车带一辆载重2~3t 挂车12 轻型车7-10米 6.50~8.00 15~25t 平板 挂车 15 中型车10米 以上 8.00~10.008.00~10.0010.50~12.00载重40~60t 平板挂车18 铰接车17.5 米 10.50~12.50 2吨车 一般为4米左右,以4.3米 的居多3吨车约为5.5米5吨车约为6.2米8吨车约为7.2-8.8 米 10吨车约为9.6米12吨或15吨 车 一般为9.6-12.5 20吨车一般为12.5-14.5米25吨车一般为12.5-15米30吨车 一般为五轴或六轴的14-17米车辆

补充1:最简单的算法,把你的汽车横在路上,只要路面宽度大于你的车长稍微多一点就能调过头来。知道了最小的转弯半径还要考虑你的车身长度啊! 10.1.7机动车出入口距城市道路交叉口、桥隧坡道起止线应大于50米。 10.1.8居住区道路红线转弯半径不得小于6米,工业区不小于9米,有消防功能的道路,最小转弯半径为12米。 大型消防车转弯半径需要12.0米,转弯半径指的是车辆的前轮外侧,道路内缘圆弧半径均比转弯半径小,精确计算为: r2=(r12-l2)1/2-((b+h)/2)+y,但一般粗略的计算可以近似为:道路内缘圆弧半径=转弯半径-车宽-安全距离。(消防车宽2.5m,安全距离0.25m)所以大型消防车道内缘圆弧半径取9.0米左右是安全的。 汽车库规范2.0.2汽车最小转弯半径(Minimumturn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 建规6.0.10.1普通消防车的转弯半径为9m,登高车的转弯半径为12m,一些特种车辆的转弯半径为16~20m。 所以,消防车道转弯半径=普通消防车的转弯半径9m-3m(2.5+0.25)=6m 作图:

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

边坡稳定性分析方法

第二节边坡稳定性分析方法 力学验算法和工程地质法是路基边坡稳定性分析和验算方法常用的两种方法。 1.力学验算法 (1)数解法假定几个不同的滑动面,按力学平衡原理对每个滑动面进行验算,从中找出最危险滑动面,按此最危险滑动面的稳定程度来判断边坡的稳定性。此方法计算较精确,但计算繁琐。(2)图解或表解法在图解和计算的基础上,经过分析研究,制定图表,供边坡稳定性验算时采用。以简化计算工作。 2.工程地质法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值的参考数据,作为确定路基边坡值的依据。 一般土质边坡的设计常用力学验算法进行验算,用工程地质法进行校核;岩石或碎石土类边坡则主要采用工程地质法进行设计。 3.力学验算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。 一、直线滑动面法 松散的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线状态,故直线滑动面法适用于砂类土:

如图2-2-4所示,验算时,先通过坡脚或变坡点假设一直线滑动面,将路提斜上方分割出下滑土楔体ABD,沿假设的滑动面AD滑动,其稳定系数K按下式计算(按边坡纵向单位长度计): 验算的边坡是否稳定,取决于最小稳定系数Kmin的值。当Kmin=时,边坡处于极限平 衡状态。由于计算的假定,计算参数(r,Ψ,c)的取值都与实际情况存在一定的差异,为了保证边坡有足够的稳定性,通常以最小稳定系数Kmin≥来判别边坡的稳定性。但Kmin过大,则设计偏于保守,在工程上不经济。 当路堤填料为纯净的粗砂、中砂、砾石、碎石时,其粘聚力很小,可忽略不计,则式(2-2-3)变为: 式(2-2-3)也适用于均质砂类土路堑边坡的稳定性验算。

车辆转弯半径表及计算方法

车辆转弯半径 些特种车辆的转弯半径为16? 汽车的转弯半径决定汽车的机动性能。汽车的转弯半径在原地方向盘最大转角转弯后形成的半

径,一般国家针对不同车型有法规要求。比如大型货车的转弯直径不大于24米,即半径12米。转弯半径以外轮转弯半径计算,因此,理论上汽车原地调头的最小路面宽度是转弯半径的两倍以上。 补充1:最简单的算法,把你的汽车横在路上,只要路面宽度大于你的车长稍微多一点就能调过 头来。知道了最小的转弯半径还要考虑你的车身长度啊! 10.1.7机动车出入口距城市道路交叉口、桥隧坡道起止线应大于50米。 10.1.8居住区道路红线转弯半径不得小于6米,工业区不小于9米,有消防功能的道路,最小转弯半径为12米。 大型消防车转弯半径需要12.0米,转弯半径指的是车辆的前轮外侧,道路内缘圆弧半径均比转弯半径小,精确计算为:r2=(r12-l2)1/2-((b+h)/2)+y ,但一般粗略的计算可以近似为:道路内缘圆弧半径=转弯半径-车宽-安全距离。(消防车宽2.5m,安全距离0.25m)所以大型消防车道内缘圆弧半径取9.0米左右是安全的。 汽车库规范2.0.2 汽车最小转弯半径(Minimumturn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 建规6.0.10 .1普通消防车的转弯半径为9m,登高车的转弯半径为12m 一些特种 车辆的转弯半径为16?20m 所以,消防车道转弯半径=普通消防车的转弯半径9m- 3m(2.5+0.25) = 6m 作图:

K4. L10汽车环道平向 占一汽乍枚度前悬尺寸车老鈿l后悬尺\h W =R&—先(4- L10-1) R Q =R+H(iLlO-2) =J(l+iy^(r+b)2<4< 1.10-3) R ra=r—y<4. L 10-4) —中(4, L 10-5)前——环道最小宽度$ R1——汽车最小转弯半径; R0 ――环道外半径; R――汽车环行外半径; r2 环道内半径;

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公 式汇集 Prepared on 24 November 2020

第一章专用汽车的总体设计 1 总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡 泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2 基本计算公式 A 已知条件 a ) 底盘整备质量G 1 b ) 底盘前轴负荷g 1 c ) 底盘后轴负荷Z 1 d ) 上装部分质心位置L 2 e ) 上装部分质量G 2 f ) 整车装载质量G 3(含驾驶室乘员) g ) 装载货物质心位置L 3(水平质心位置) h ) 轴距)(21l l l + B 上装部分轴荷分配计算(力矩方程式) g 2(前轴负荷)×(12 1l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置) g 2(前轴负荷)=1222 1)()(l l L G +?上装部分质心位置上装部分质量 则后轴负荷222g G Z -= C 载质量轴荷分配计算 g 3(前轴负荷)×)2 1(1l l +=G 3×L 3(载质量水平质心位置) g 3(载质量前轴负荷)= 1332 1)()(l l L G +?装载货物水平质心位置整车装载质量 例图1

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

车辆转弯半径表及计算方法

车辆转弯半径路面宽度 载重量(吨)相对长度 (米) 转弯半径 (米) 车长最小转弯半 径(m 4~8t单辆 汽车9 微型车不超 过3.5米 4.50 10~15t单辆汽车12 小型车 3.5 -7米 6.00 4~8t汽车带一辆载重2~3t挂 车12 轻型车7- 10米 6.50~8.00 15~25t平板挂车15 中型车10米 以上 8.00~ 10.00 8.00~ 10.00 10.50~ 12.00 载重40~60t平板挂 车18铰接车17.5 米 10.50~ 12.50 2吨车一般为4米 左右,以4.3 米的居多3吨车约为5.5米5吨车约为6.2米8吨车约为7.2-8.8 米 10吨车约为9.6米 12吨或15吨 车一般为9.6-12.5 20吨车一般为 12.5-14.5米25吨车一般为

12.5-15米 30吨车一般为五轴 或六轴的 14-17米车辆 些特种车辆的转弯半径为16~20m。 汽车的转弯半径决定汽车的机动性能。汽车的转弯半径在原地方向盘最大转角转弯后形成的半径,一般国家针对不同车型有法规要求。比如大型货车的转弯直径不大于24米,即半径12米。转弯半径以外轮转弯半径计算,因此,理论上汽车原地调头的最小路面宽度是转弯半径的两倍以上。 补充1:最简单的算法,把你的汽车横在路上,只要路面宽度大于你的车长稍微多一点就能调过头来。知道了最小的转弯半径还要考虑你的车身长度啊! 10.1.7 机动车出入口距城市道路交叉口、桥隧坡道起止线应大于50米。 10.1.8 居住区道路红线转弯半径不得小于6米,工业区不小于9米,有消防功能的道路,最小转弯半径为12米。 大型消防车转弯半径需要12.0米,转弯半径指的是车辆的前轮外侧,道路内缘圆弧半径均比转弯半径小,精确计算为:r2=(r12-l2)1/2-((b+h)/2)+y,但一般粗略的计算可以近似为:道路内缘圆弧半径=转弯半径-车宽-安全距离。(消防车宽2.5m,安全距离0.25m)所以大型消防车道内缘圆弧半径取9.0米左右是安全的。 汽车库规范2.0.2 汽车最小转弯半径(Minimumturn radius of car) 汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。 建规 .1 普通消防车的转弯半径为9m,登高车的转弯半径为12m,一些特种车辆的转弯半径为16~20m。 所以,消防车道转弯半径=普通消防车的转弯半径9m-3m(2.5+0.25)=6m 作图:

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

常用的边坡稳定性分析方法

常用的边坡稳定性分析方法

第一节概述 (1) 一、无粘性土坡稳定分析 (1) 二、粘性土坡的稳定分析 (1) 三、边坡稳定分析的总应力法和有效应力法 (1) 四、土坡稳定分析讨论 (1) 第二节基本概念与基本原理 (1) 一、基本概念 (1) 二、基本规律与基本原理 (2) (一)土坡失稳原因分析 (2) (二)无粘性土坡稳定性分析 (3) (三)粘性土坡稳定性分析 (3) (四)边坡稳定分析的总应力法和有效应力法 (7) (五)土坡稳定分析的几个问题讨论 (8) 三、基本方法 (9) (一)确定最危险滑动面圆心的方法 (9) (二)复合滑动面土坡稳定分析方法 (9)

常用的边坡稳定性分析方法 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。 2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

相关文档