文档库 最新最全的文档下载
当前位置:文档库 › 数据结构课程设计排序算法比较

数据结构课程设计排序算法比较

数据结构课程设计排序算法比较
数据结构课程设计排序算法比较

哈尔滨理工大学《数据结构》课程设计报告

班级:

学号:

姓名:

指导老师:

目录

排序算法比较

一、需求分析

二、程序的主要功能

三、程序运行平台

四、数据结构

五、算法及时间复杂度

六、测试用例

七、程序源代码

二感想体会与总结

排序算法比较

一、需求分析

利用随机函数产生N个随机整数(N = 500,1000,1500,2000,2500,…,30000),利用直接插入排序、折半插入排序,起泡排序、快速排序、选择排序、堆排序,基数排序七种排序方法(可添加其它排序方法)进行排序(结果为由小到大的顺序),并统计每一种排序所耗费的时间(统计为图表坐标形式)。

二、程序的主要功能

1.用户输入任意个数,产生相应的随机数

2.用户可以自己选择排序方式(直接插入排序、折半插入排序、起泡排序、快速排序、选择排序、堆排序、基数排序)的一种

3.程序给出原始数据、排序后从小到大的数据,并给出排序所用的时间。

三、程序运行平台

Visual C++ 6.0版本

四、数据结构

本程序的数据结构为线形表,线性顺序表、线性链表。

1、结构体:

typedef struct

{

int *r; //r指向线形表的第一个结点。r[0]闲置,不同的算法有不同的用处,如用作哨兵等。

int length; //顺序表的总长度

}Sqlist;

2、空线性表

Status InitSqlist(Sqlist &L)

{

L.r=(int *)malloc(MAXSIZE*sizeof(int)); //分配存储空间

if(!L.r)

{

printf("存储分配失败!");

exit(0);

} //存储分配失败

L.length=0;//初始长度为0

return OK;

}

五、算法及时间复杂度

(一)各个排序是算法思想:

(1)直接插入排序:将一个记录插入到已排好的有序表中,从而得到一个新的,记录数增加1的有序表。

(2)折半插入排序:插入排序的基本插入是在一个有序表中进行查找和插入,这个查找可利用折半查找来实现,即为折半插入排序。

(3)起泡排序:首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换,然后比较第二个记录和第三个记录的关键字。依此类推,直到第N-1和第N个记录的关键字进行过比较为止。上述为第一趟排序,其结果使得关键字的最大纪录被安排到最后一个记录的位置上。然后进行第二趟起泡排序,对前N-1个记录进行同样操作。一共要进行N-1趟起泡排序。

(4)快速排序:通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,已达到整个序列有序。

(5)选择排序:通过N-I次关键字间的比较,从N-I+1个记录中选出关键字最小的记录,并和第I(1<=I<=N)个记录交换。

(6)堆排序:在堆排序的算法中先建一个大顶堆,既先选得一个关键字作为最大的记录并与序列中最后一个记录交换,然后对序列中前N-1记录进行选择,重新将它调整成一个大顶堆,如此反复直到排序结束。

(7)基数排序:按最低位优先法先对低位关键字进行排序,直到对最高位关键字排序为止,经过若干次分配和收集来实现排序

(二)时间复杂度分析

排序算法最差时间时间复杂度是否稳定?

插入排序O(n2) O(n2) 稳定

冒泡排序O(n2) O(n2) 稳定

快速排序O(n2) O(n*log

2

n) 不稳定选择排序O(n2) O(n2) 稳定

堆排序O(n*log

2n) O(n*log

2

n) 不稳定

基数排序O(n*log

2

n) O(n2) 稳定

10000个数据的时间比较:

算法名称用时

直接插入排序0.25

折半插入排序0.219

起泡排序0.704

快速排序0.016

选择排序0.39

堆排序0.0001

基数排序0.016

六、测试用例

1、首先选择需要排序的数字个数,比如输入5000。

2、系统显示出随机产生的随机数。

用户选择排序方式,比如选择1.直接插入排序

3、系统将随机数排序后整齐的显示出来。

4、用户可以选择继续排序或者退出系统。

七、程序源代码

/********************************************************************************************** 第六题:排序算法比较

设计要求:利用随机函数产生N个随机整数(N = 500,1000,1500,2000,2500,…,30000),

利用直接插入排序、折半插入排序,起泡排序、快速排序、||选择排序、堆排序,基数排序七种排序方法

(可添加其它排序方法)进行排序(结果为由小到大的顺序),并统计每一种排序所耗费的时间(统计

为图表坐标形式)。

************************************************************************************************/

#include "stdio.h"

#include "stdlib.h"

#include "time.h"//计时

#define ERROR 0

#define OK 1

#define OVERFLOW -2

#define MAXSIZE 100000 //用户自己规定排序的数字的长度

typedef int Status;

typedef struct

{

int *r; // r[0]闲置

int length; //顺序表的总长度

}Sqlist;

//构造一个空线性表

Status InitSqlist(Sqlist &L)

{

L.r=(int *)malloc(MAXSIZE*sizeof(int)); //分配存储空间

if(!L.r)

{

printf("存储分配失败!");

exit(0);

} //存储分配失败

L.length=0;//初始长度为0

return OK;

}

//输入随机数并显示在界面上

Status ScanfSqlist(int &N,Sqlist &L)

{

int i;

printf("请输入要排序的元素个数N: ");

scanf("%d",&N);

for(i=1;i<=N;i++)

L.r[i]=rand(); //随机产生样本整数

printf("\n\n");

printf(" 随机产生了%d个随机数,它们是:\n",N);

for(i=1;i<=N;i++)

{

printf("%7.2d ",L.r[i]);

}

printf("\n");

L.length=N; //存储线性表的长度

return OK;

}

//输出排序之后的数据

Status PrintfSqlist(int N,Sqlist L)

{

int i;

printf("数据个数:");//输出数据个数

printf("%d\n",L.length);

printf("排序后的数据:(从左向右依次增大)\n");//输出数据

for(i=1;i<=N;i++)

printf("%7.2d ",L.r[i]);

printf("\n");

return OK;

}

//***************************************************************

// 直接插入排序

//***************************************************************

Status InsertSort(Sqlist &L) //参考书P265算法10.1 {

int i,j;

if(L.length==0)

{

printf("要排序的数据为空!");

return ERROR;

}

for(i=2;i<=L.length;i++)

{

if(L.r[i]

{

L.r[0]=L.r[i]; //复制为监视哨

L.r[i]=L.r[i-1];

for(j=i-2;L.r[0]

{

L.r[j+1]=L.r[j]; //记录后移

}

L.r[j+1]=L.r[0]; //插入到正确位置

}

}

return OK;

}

//***************************************************************

// 折半插入排序

//***************************************************************

Status BInsertSort(Sqlist &L) //参考书P267算法10.2 {

int i,j,mid,low,high;

if(L.length==0)

{

printf("要排序的数据为空!");

return ERROR;

}

for(i=2;i<=L.length;i++)

{

L.r[0]=L.r[i]; //将L.r[i]暂存在L.r[0]

low=1;

high=i-1;

while(low<=high) //在r[low..high]中折半查找有序插入的位置

{

mid=(low+high)/2;

if(L.r[0]

{

high=mid-1;

}

else

{

low=mid+1; //插入点在高半区

}

}//while

for(j=i-1;j>=high+1;j--) //插入点后的数据后移

{

L.r[j+1]=L.r[j];

}

L.r[high+1]=L.r[0]; //将数据插入

}//for

return OK;

}

/********************************************************************************

希尔排序

*********************************************************************************/

//参考书P272算法10.4及10.5

/*Status ShellInsert(Sqlist &L,int dk) //希尔插入排序

{

int i,j;

//前后位置的增量是dk

for(i=dk+1;i<=L.length;i++)

//r[0]只是暂存单元,不是哨兵,

{

if(L.r[i]

//将L.r[i]插入有序增量子表

{

L.r[0]=L.r[i];

//暂存L.r[0]

for(j=i-dk;j>0 && L.r[0]

{

L.r[j+dk]=L.r[j];

//记录后移,查找插入位置

}

L.r[j+dk]=L.r[0];

//插入

}

}

return OK;

}

Status ShellSort(Sqlist &L,int dlta[5],int t) //希尔排序

{

int i;

if(L.length==0)

{

printf("要排序的数据为空!");

return ERROR;

}

for(i=0;i

{

ShellInsert(L,dlta[i]); //一趟增量为dlta[k]的插入排序

}

return OK;

}

*/

//**************************************************************

// 起泡排序

//**************************************************************

Status BubbleSort(Sqlist &L)

{

int i,j,t;

if(L.length==0)

{

printf("要排序的数据为空!");

return ERROR;

}

for(i=1;i<=L.length-1;i++)

{

for(j=1;j<=L.length-i;j++)

{

if(L.r[j]>L.r[j+1]) //前面的数据>后面数据时

{

t=L.r[j+1];

L.r[j+1]=L.r[j];

L.r[j]=t; //将元素交换

}

}

}

return OK;

}

//****************************************************

// 快速排序

//****************************************************

int Partition(Sqlist &L, int low, int high) //交换顺序表中子表L.r[low..high]的记录,使得枢轴记录到位,并返回其所在位置,此时在它之前(后)的记录均不大于它

{

int pivotkey; //记录关键字

L.r[0]=L.r[low]; //用子表的第一个纪录作枢轴纪录

pivotkey=L.r[low]; //用枢轴纪录关键字

while (low

{

while(low=pivotkey)

{

high--;

}

L.r[low]= L.r[high]; //将比枢轴记录小的记录移到低端

while(low

{

low++;

}

L.r[high]=L.r[low]; //将比枢轴记录大的数移到高端

}

L.r[low]=L.r[0]; //枢轴记录到位

return low;

}//Partition函数

void Qsort (Sqlist &L,int low, int high)

{

int pivotloc;

if (low

{

pivotloc=Partition(L, low ,high);

Qsort(L,low,pivotloc-1); //对低子表递归排序,pivotloc是枢轴位置

Qsort(L,pivotloc+1,high); //对高子表递归排序

}

}//Qsort函数

Status QuickSort (Sqlist &L)

{

if(L.length==0)

{

printf("要排序的数据为空!");

return ERROR;

}

Qsort(L,1,L.length);

return OK;

}//QuickSort

//**********************************************

// 选择排序

//**********************************************

Status ChooseSort(Sqlist &L)

{

int i,j,k,t;

if(L.length==0)

{

printf("没有数据!");

return ERROR;

}

for(i=1;i<=L.length;i++) //排序的趟数

{

k=i;

for(j=i+1;j<=L.length;j++) //比较第i个元素以及其后的数据中最小的

{

if(L.r[j]

k=j;

}

if(i!=j) //将最小数据赋值给L.r[i]

{

t=L.r[i];

L.r[i]=L.r[k];

L.r[k]=t;

}

}

return OK;

}

//****************************************

// 堆排序

//****************************************

Status HeapAdjust(Sqlist &L,int s,int m) //调整L.r[s]的关键字,使L.r[s~m]成大顶堆{

int i;

L.r[0]=L.r[s];

for(i=2*s;i+1<=m;i*=2) //沿数据较大的孩子结点向下筛选

{

if(i

i++;

if(L.r[0]>=L.r[i]) //L.r[0]插入在S位置上

break;

L.r[s]=L.r[i];

s=i;

}

L.r[s]=L.r[0]; //插入新数据

return OK;

}

Status HeapSort(Sqlist &L) //堆排序

{

int i,t;

if(L.length==0)

{

printf("没有数据!");

return ERROR;

}

for(i=L.length/2;i>0;i--)

HeapAdjust(L,i,L.length);

for(i=L.length;i>1;i--)

{

t=L.r[1]; //将堆顶记录和当前未经排序的子序列L.r[1..i]中最后一个记录互换

L.r[1]=L.r[i];

L.r[i]=t;

HeapAdjust(L,1,i-1); //将L.r[1..i-1]重新调整为大顶堆

}

return OK;

}

//**************************************************

// 基数排序

//**************************************************

typedef struct node{

int key;

node *next;

}RecType;

Status RadixSort(Sqlist L)

{

int t,i,j,k,d,n=1,m;

RecType *p,*s,*q,*head[10],*tail[10]; //定义各链队的首尾指针

for(i=1;i<=L.length;i++) //将顺序表转化为链表

{

s=(RecType*)malloc(sizeof(RecType));

s->key=L.r[i];

if(i==1) //当为第一个元素时

{

q=s;

p=s;

t++;

}

else

{

q->next=s; //将链表连接起来

q=s;

t++;

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

数据结构课程设计

1.一元稀疏多项式计算器 [问题描述] 设计一个一元稀疏多项式简单计算器。 [基本要求] 输入并建立多项式; 输出多项式,输出形式为整数序列:n, c1, e1, c2, e2,……, cn, en ,其中n是多项式的项数,ci, ei分别是第i项的系数和指数,序列按指数降序排序; 多项式a和b相加,建立多项式a+b; 多项式a和b相减,建立多项式a-b; [测试数据] (2x+5x8-3.1x11)+(7-5x8+11x9)=(-3.1x11+11x9+2x+7) (6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2-x2+7.8x15)=(-7.8x15-1.2x9-x+12x-3) (1+x+x2+x3+x4+x5)+(-x3-x4)=(x5+x2+x+1) (x+x3)+(-x-x3)=0 (x+x2+x3)+0=(x3+x2+x) [实现提示] 用带头结点的单链表存储多项式,多项式的项数存放在头结点中。 2.背包问题的求解 [问题描述] 假设有一个能装入总体积为T的背包和n件体积分别为w1, w2, …,wn的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积为{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)、(1,4,5)、(8,2)、(3,5,2) [实现提示] 可利用回溯法的设计思想来解决背包问题。首先,将物品排成一列,然后顺序选取物品转入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品“太大”不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直至求得满足条件的解,或者无解。 由于回溯求解的规则是“后进先出”因此自然要用到栈。 3.完全二叉树判断 用一个二叉链表存储的二叉树,判断其是否是完全二叉树。 4.最小生成树求解(1人) 任意创建一个图,利用克鲁斯卡尔算法,求出该图的最小生成树。 5.最小生成树求解(1人) 任意创建一个图,利用普里姆算法,求出该图的最小生成树。 6.树状显示二叉树 编写函数displaytree(二叉树的根指针,数据值宽度,屏幕的宽度)输出树的直观示意图。输出的二叉树是垂直打印的,同层的节点在同一行上。 [问题描述] 假设数据宽度datawidth=2,而屏幕宽度screenwidth为64=26,假设节点的输出位置用 (层号,须打印的空格数)来界定。 第0层:根在(0,32)处输出;

数据结构课程设计报告模板

《数据结构I》三级项目报告 大连东软信息学院 电子工程系 ××××年××月

三级项目报告注意事项 1. 按照项目要求书写项目报告,条理清晰,数据准确; 2. 项目报告严禁抄袭,如发现抄袭的情况,则抄袭者与被抄袭者均 以0分计; 3. 课程结束后报告上交教师,并进行考核与存档。 三级项目报告格式规范 1. 正文:宋体,小四号,首行缩进2字符,1.5倍行距,段前段后 各0行; 2. 图表:居中,图名用五号字,中文用宋体,英文用“Times New Roman”,位于图表下方,须全文统一。

目录 一项目设计方案 (3) 二项目设计分析 (4) 三项目设计成果 (4) 四项目创新创业 (5) 五项目展望 (6) 附录一:项目成员 (6) 附录二:相关代码、电路图等 (6)

一项目设计方案 1、项目名称: 垃圾回收 2、项目要求及系统基本功能: 1)利用数据结构的知识独立完成一个应用系统设计 2)程序正常运行,能够实现基本的数据增加、删除、修改、查询等功能3)体现程序实现算法复杂度优化 4)体现程序的健壮性 二项目设计分析 1、系统预期实现基本功能: (结合本系统预期具体实现,描述出对应基本要求(增、删、改、查等)的具体功能) 1. 2. 3. 4. 5. 6. 7. 2、项目模块功能描述 (基本分为组织实施组织、程序功能模块编写、系统说明撰写等。其中程序功能子模块实现) 模块一: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 模块二: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 模块n: 主要任务:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

数据结构课程设计报告

《数据结构与算法》课程设计报告 学号: 班级序号: 姓名: 指导教师: 成绩: 中国地质大学信息工程学院地理信息系统系 2011年12 月

1.需求规格说明 【问题描述】 利用哈夫曼编码进行对已有文件进行重新编码可以大大提高减小文件大小,减少存储空间。但是,这要求在首先对一个现有文件进行编码行成新的文件,也就是压缩。在文件使用时,再对压缩文件进行解压缩,也就是译码,复原原有文件。试为完成此功能,写一个压缩/解压缩软件。 【基本要求】 一个完整的系统应具有以下功能: (1)压缩准备。读取指定被压缩文件,对文件进行分析,建立哈夫曼树,并给出分析结果(包括数据集大小,每个数据的权值,压缩前后文件的大小),在屏幕上输出。 (2)压缩。利用已建好的哈夫曼树,对文件进行编码,并将哈夫曼编码及文件编码后的数据一起写入文件中,形成压缩文件(*.Haf)。 (3)解压缩。打开已有压缩文件(*.Haf),读取其中的哈夫曼编码,构建哈夫曼树,读取其中的数据,进行译码后,写入文件,完成解压缩。 (4)程序使用命令行方式运行 压缩命令:SZip A Test.Haf 1.doc 解压缩命令:SZip X Test.Haf 2.doc或SZip X Test.Haf 用户输入的命令不正确时,给出提示。 (5)使用面向对象的思想编程,压缩/解压缩、哈夫曼构建功能分别构建类实现。 2.总体分析与设计 (1)设计思想: 1、压缩准备:1> 读文件,逐个读取字符,统计频率 2> 建立哈夫曼树 3> 获得哈弗曼编码 2、压缩过程: 1> 建立一个新文件,将储存权值和字符的对象数组取存储在文件头

数据结构实验总结报告

数据结构实验总结报告 一、调试过程中遇到哪些问题? (1)在二叉树的调试中,从广义表生成二叉树的模块花了较多时间调试。 由于一开始设计的广义表的字符串表示没有思考清晰,处理只有一个孩子的节点时发生了混乱。调试之初不以为是设计的问题,从而在代码上花了不少时间调试。 目前的设计是: Tree = Identifier(Node,Node) Node = Identifier | () | Tree Identifier = ASCII Character 例子:a(b((),f),c(d,e)) 这样便消除了歧义,保证只有一个孩子的节点和叶节点的处理中不存在问题。 (2)Huffman树的调试花了较长时间。Huffman编码本身并不难处理,麻烦的是输入输出。①Huffman编码后的文件是按位存储的,因此需要位运算。 ②文件结尾要刷新缓冲区,这里容易引发边界错误。 在实际编程时,首先编写了屏幕输入输出(用0、1表示二进制位)的版本,然后再加入二进制文件的读写模块。主要调试时间在后者。 二、要让演示版压缩程序具有实用性,哪些地方有待改进? (1)压缩文件的最后一字节问题。 压缩文件的最后一字节不一定对齐到字节边界,因此可能有几个多余的0,而这些多余的0可能恰好构成一个Huffman编码。解码程序无法获知这个编码是否属于源文件的一部分。因此有的文件解压后末尾可能出现一个多余的字节。 解决方案: ①在压缩文件头部写入源文件的总长度(字节数)。需要四个字节来存储这个信息(假定文件长度不超过4GB)。 ②增加第257个字符(在一个字节的0~255之外)用于EOF。对于较长的文件,

会造成较大的损耗。 ③在压缩文件头写入源文件的总长度%256的值,需要一个字节。由于最后一个字节存在或不存在会影响文件总长%256的值,因此可以根据这个值判断整个压缩文件的最后一字节末尾的0是否在源文件中存在。 (2)压缩程序的效率问题。 在编写压缩解压程序时 ①编写了屏幕输入输出的版本 ②将输入输出语句用位运算封装成一次一个字节的文件输入输出版本 ③为提高输入输出效率,减少系统调用次数,增加了8KB的输入输出缓存窗口 这样一来,每写一位二进制位,就要在内部进行两次函数调用。如果将这些代码合并起来,再针对位运算进行一些优化,显然不利于代码的可读性,但对程序的执行速度将有一定提高。 (3)程序界面更加人性化。 Huffman Tree Demo (C) 2011-12-16 boj Usage: huffman [-c file] [-u file] output_file -c Compress file. e.g. huffman -c test.txt test.huff -u Uncompress file. e.g. huffman -u test.huff test.txt 目前的程序提示如上所示。如果要求实用性,可以考虑加入其他人性化的功能。 三、调研常用的压缩算法,对这些算法进行比较分析 (一)无损压缩算法 ①RLE RLE又叫Run Length Encoding,是一个针对无损压缩的非常简单的算法。它用重复字节和重复的次数来简单描述来代替重复的字节。尽管简单并且对于通常的压缩非常低效,但它有的时候却非常有用(例如,JPEG就使用它)。 变体1:重复次数+字符 文本字符串:A A A B B B C C C C D D D D,编码后得到:3 A 3 B 4 C 4 D。

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

数据结构课程设计-排序

一、问题描述 1、排序问题描述 排序是计算机程序设计的一种重要操作,他的功能是将一组任意顺序数据元素(记录),根据某一个(或几个)关键字按一定的顺序重新排列成为有序的序列。简单地说,就是将一组“无序”的记录序列调整为“有序”的记录序列的一种操作。 本次课程设计主要涉及几种常用的排序方法,分析了排序的实质,排序的应用,排序的分类,同时进行各排序方法的效率比较,包括比较次数和交换次数。我们利用java语言来实现本排序综合系统,该系统包含了:插入排序、交换排序、选择排序、归并排序。其中包括: (1)插入排序的有关算法:不带监视哨的直接插入排序的实现; (2)交换排序有关算法:冒泡排序、快速排序的实现; (3)选择排序的有关算法:直接选择排序、堆排序的实现; (4)归并排序的有关算法:2-路归并排序的实现。 2、界面设计模块问题描述 设计一个菜单式界面,让用户可以选择要解决的问题,同时可以退出程序。界面要求简洁明了,大方得体,便于用户的使用,同时,对于用户的错误选择可以进行有效的处理。 二、问题分析 本人设计的是交换排序,它的基本思想是两两比较带排序记录的关键字,若两个记录的次序相反则交换这两个记录,直到没有反序的记录为止。应用交换排序基本思想的主要排序方法有冒泡排序和快速排序。 冒泡排序的基本思想是:将待排序的数组看作从上到下排列,把关键字值较小的记录看作“较轻的”,关键字值较大的纪录看作“较重的”,较小关键字值的记录好像水中的气泡一样,向上浮;较大关键字值的纪录如水中的石块向下沉,当所有的气泡都浮到了相应的位置,并且所有的石块都沉到了水中,排序就结束了。 冒泡排序的步骤: 1)置初值i=1; 2)在无序序列{r[0],r[1],…,r[n-i]}中,从头至尾依次比较相邻的两个记录r[j] 与r[j+1](0<=j<=n-i-1),若r[j].key>r[j+1].key,则交换位置; 3)i=i+1; 4)重复步骤2)和3),直到步骤2)中未发生记录交换或i=n-1为止; 要实现上述步骤,需要引入一个布尔变量flag,用来标记相邻记录是否发生交换。 快速排序的基本思想是:通过一趟排序将要排序的记录分割成独立的两个部分,其中一部分的所有记录的关键字值都比另外一部分的所有记录关键字值小,然后再按此方法对这两部分记录分别进行快速排序,整个排序过程可以递归进行,以此达到整个记录序列变成有序。 快速排序步骤: 1)设置两个变量i、j,初值分别为low和high,分别表示待排序序列的起始下

数据结构课程设计报告模板

课程设计说明书 课程名称:数据结构 专业:班级: 姓名:学号: 指导教师:成绩: 完成日期:年月日

任务书 题目:黑白棋系统 设计内容及要求: 1.课程设计任务内容 通过玩家与电脑双方的交替下棋,在一个8行8列的方格中,进行棋子的相互交替翻转。反复循环下棋,最后让双方的棋子填满整个方格。再根据循环遍历方格程序,判断玩家与电脑双方的棋子数。进行大小判断,最红给出胜负的一方。并根据y/n选项,判断是否要进行下一局的游戏。 2.课程设计要求 实现黑白两色棋子的对峙 开发环境:vc++6.0 实现目标: (1)熟悉的运用c语言程序编写代码。 (2)能够理清整个程序的运行过程并绘画流程图 (3)了解如何定义局部变量和整体变量; (4)学会上机调试程序,发现问题,并解决 (5)学习使用C++程序来了解游戏原理。 (6)学习用文档书写程序说明

摘要 本文的研究工作在于利用计算机模拟人脑进行下黑白棋,计算机下棋是人工智能领域中的一个研究热点,多年以来,随着计算机技术和人工智能技术的不断发展,计算机下棋的水平得到了长足的进步 该程序的最终胜负是由棋盘上岗双方的棋子的个数来判断的,多的一方为胜,少的一方为负。所以该程序主要运用的战术有削弱对手行动战术、四角优先战术、在游戏开局和中局时,程序采用削弱对手行动力战术,即尽量减少对手能够落子的位置;在游戏终局时则采用最大贪吃战术,即尽可能多的吃掉对手的棋子;而四角优先战术则是贯穿游戏的始终,棋盘的四角围稳定角,不会被对手吃掉,所以这里是兵家的必争之地,在阻止对手进角的同时,自己却又要努力的进角。 关键词:黑白棋;编程;设计

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

数据结构课程设计排序实验报告

《数据结构》课程设计报告 专业 班级 姓名 学号 指导教师 起止时间

课程设计:排序综合 一、任务描述 利用随机函数产生n个随机整数(20000以上),对这些数进行多种方法进行排序。(1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。并把排序后的结果保存在不同的文件中。 (2)统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。 要求:根据以上任务说明,设计程序完成功能。 二、问题分析 1、功能分析 分析设计课题的要求,要求编程实现以下功能: (1)随机生成N个整数,存放到线性表中; (2)起泡排序并计算所需时间; (3)简单选择排序并计算时间; (4)希尔排序并计算时间; (5)直接插入排序并计算所需时间; (6)时间效率比较。 2、数据对象分析 存储数据的线性表应为顺序存储。 三、数据结构设计 使用顺序表实现,有关定义如下: typedef int Status; typedef int KeyType ; //设排序码为整型量 typedef int InfoType; typedef struct { //定义被排序记录结构类型 KeyType key ; //排序码 I nfoType otherinfo; //其它数据项 } RedType ; typedef struct { RedType * r; //存储带排序记录的顺序表 //r[0]作哨兵或缓冲区 int length ; //顺序表的长度 } SqList ; //定义顺序表类型 四、功能设计 (一)主控菜单设计

数据结构课程设计报告

编号 课程设计 题目 1、一元稀疏多项式计算器 2、模拟浏览器操作程序 3、背包问题的求解 4、八皇后问题 二级学院计算机科学与工程学院 专业计算机科学与技术 班级 2011级 37-3班 学生姓名 XX 学号 XXXXXXXXXX 指导教师 XXXXX 评阅教师 时间 1、一元稀疏多项式计算器 【实验内容】 一元稀疏多项式计算器。

【问题描述】 设计一个一元稀疏多项式简单计算器。 【需求分析】 其基本功能包括: (1)输入并建立多项式; (2)输出多项式,输出形式为整数序列为:n,c1,e1,c2,e2,……,cn,en,其中n 是多项式的项数,ci,ei分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相减,建立多项a+b; (4)多项式a和b相减,建立多项式a-b; (5)计算多项式在x处的值; (6)计算器的仿真界面(选做); 【概要设计】 -=ADT=- { void input(Jd *ha,Jd *hb); void sort(dnode *h)

dnode *operate(dnode *a,dnode *b) float qiuzhi(int x,dnode *h) f",sum); printf("\n"); } 【运行结果及分析】 (1)输入多项式:

(2)输出多项式(多项式格式为:c1x^e1+c2x^e2+…+cnx^en): (3)实现多项式a和b相加: (4)实现多项式a和b相减: (5)计算多项式在x处的值:

2、模拟浏览器操作程序 【实验内容】 模拟浏览器操作程序 【问题描述】 标准Web浏览器具有在最近访问的网页间后退和前进的功能。实现这些功能的一个方法是:使用两个栈,追踪可以后退和前进而能够到达的网页。在本题中,要求模拟实现这一功能。 【需求分析】 需要支持以下指令: BACK:将当前页推到“前进栈”的顶部。取出“后退栈”中顶端的页面,使它成为当前页。若“后退栈”是空的,忽略该命令。 FORWARD:将当前页推到“后退栈”的顶部。取出“前进栈”中顶部的页面,使它成为当前页。如果“前进栈”是空的,忽略该命令。 VISIT:将当前页推到“后退栈”的顶部。使URL特指当前页。清空“前进栈”。 QUIT:退出浏览器。 假设浏览器首先加载的网页URL是:http:

最新数据结构实训总结

精品文档 这次课程设计的心得体会通过实习我的收获如下1、巩固和加深了对数据结构的理解,提高综合运用本课程所学知识的能力。2、培养了我选用参考书,查阅手册及文献资料的能力。培养独立思考,深入研究,分析问题、解决问题的能力。3、通过实际编译系统的分析设计、编程调试,掌握应用软件的分析方法和工程设计方法。4、通过课程设计,培养了我严肃认真的工作作风,逐步建立正确的生产观念、经济观念和全局观念。从刚开始得觉得很难,到最后把这个做出来,付出了很多,也得到了很多,以前总以为自己对编程的地方还不行,现在,才发现只要认真做,没有什么不可能。 编程时要认真仔细,出现错误要及时找出并改正,(其中对英语的要求也体现出来了,因为它说明错误的时候都是英语)遇到问题要去查相关的资料。反复的调试程序,最好是多找几个同学来对你的程序进行调试并听其对你的程序的建议,在他们不知道程序怎么写的时候完全以一个用户的身份来用对你的用户界面做一些建议,正所谓当局者迷旁观者清,把各个注意的问题要想到;同时要形成自己的编写程序与调试程序的风格,从每个细节出发,不放过每个知识点,注意与理论的联系和理论与实践的差别。另外,要注意符号的使用,注意对字符处理,特别是对指针的使用很容易出错且调试过程是不会报错的,那么我们要始终注意指针的初始化不管它怎么用以免不必要麻烦。 通过近两周的学习与实践,体验了一下离开课堂的学习,也可以理解为一次实践与理论的很好的连接。特别是本组所做的题目都是课堂上所讲的例子,在实行之的过程中并不是那么容易事让人有一种纸上谈兵的体会,正所谓纸上得来终觉浅绝知此事要躬行。实训过程中让我们对懂得的知识做了进一步深入了解,让我们的理解与记忆更深刻,对不懂的知识与不清楚的东西也做了一定的了解,也形成了一定的个人做事风格。 通过这次课程设计,让我对一个程序的数据结构有更全面更进一步的认识,根据不同的需求,采用不同的数据存储方式,不一定要用栈,二叉树等高级类型,有时用基本的一维数组,只要运用得当,也能达到相同的效果,甚至更佳,就如这次的课程设计,通过用for的多重循环,舍弃多余的循环,提高了程序的运行效率。在编写这个程序的过程中,我复习了之前学的基本语法,哈弗曼树最小路径的求取,哈弗曼编码及译码的应用范围,程序结构算法等一系列的问题它使我对数据结构改变了看法。在这次设计过程中,体现出自己单独设计模具的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,也从中发现自己平时学习的不足和薄弱环节,从而加以弥补。 精品文档

数据结构课程设计排序算法总结

排序算法: (1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序 【算法分析】 (1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。 (2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。 (3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。 (4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。 (5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。 (6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。 (7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。 【算法实现】 (1)直接插入排序: void InsertSort(SqList &L){ for(i=2;i<=L.length ;i++) if(L.elem[i]L.elem[0];j--) L.elem [j+1]=L.elem [j]; L.elem [j+1]=L.elem[0]; } } (2)折半插入排序:

数据结构课程设计报告

数据结构课程设计 设计说明书 TSP 问题 起止日期:2016 年 6 月27 日至2016 年7 月 1 日 学生姓名 班级 学号 成绩 指导教师( 签字) 2016 年7 月 1 日

目录 第1 章需求分析.................................................................................1... 1.1 简介 (1) 1.2 系统的开发背景 (1) 1.3 研究现状 (1) 第2 章概要设计.................................................................................2... 2.1 系统开发环境和技术介绍 (2) 2.2 系统需求分析 (2) 2.2.1 总体功能分析 (2) 2.2.2 核心功能分析 (3) 第3 章详细设计...................................................................................4... 3.1 系统开发流程 (4) 3.2 系统模块设计 (4) 3.3 系统结构 (6) 3.2 系统流程图 (6) 第4 章调试分析...................................................................................7... 4.1 程序逻辑调试 (7) 4.2 系统界面调试 (8) 第5 章测试结果...................................................................................9... 5.1 测试环境 (9) 5.2 输入输出测试项目 (9) 5.3 测试结果 (10) 结论.....................................................................................................1..1.. 参考文献................................................................................................1..1. 附录.......................................................................................................1..2..

数据结构各种排序算法的时

数据结构各种排序算法的时间性能.

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能 学生姓名 学生学号 专业班级

指导老师李晓鸿完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略

各种排序算法的优缺点

一、冒泡排序 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。首先比较a[1]与 a[2]的值,若a[1]大于a[2]则交换两者的值,否则不变。再比较a[2]与a[3]的值,若a[2]大于a[3]则交换两者的值,否则不变。再比较a[3]与a[4],以此类推,最后比较a[n-1]与a[n]的值。这样处理一轮后,a[n]的值一定是这组数据中最大的。再对a[1]~a[n- 1]以相同方法处理一轮,则a[n-1]的值一定是a[1]~a[n-1]中最大的。再对a[1]~a[n-2]以相同方法处理一轮,以此类推。共处理 n-1轮后a[1]、a[2]、……a[n]就以升序排列了。 优点:稳定; 缺点:慢,每次只能移动相邻两个数据。 二、选择排序 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。 n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果: ①初始状态:无序区为R[1..n],有序区为空。 ②第1趟排序 在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 …… ③第i趟排序 第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。 优点:移动数据的次数已知(n-1次); 缺点:比较次数多。 三、插入排序 已知一组升序排列数据a[1]、a[2]、……a[n],一组无序数据b[1]、 b[2]、……b[m],需将二者合并成一个升序数列。首先比较b[1]与a[1]的值,若b[1]大于a[1],则跳过,比较b[1]与a[2]的值,若b[1]仍然大于a[2],则继续跳过,直到b[1]小于a数组中某一数据a[x],则将a[x]~a[n]分别向后移动一位,将b[1]插入到原来 a[x]的位置这就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若无数组a,可将b[1]当作n=1的数组a) 优点:稳定,快; 缺点:比较次数不一定,比较次数越少,插入点后的数据移动越多,特别是当数据总量庞大的时候,但用链表可以解决这个问题。 四、缩小增量排序 由希尔在1959年提出,又称希尔排序(shell排序)。 已知一组无序数据a[1]、a[2]、……a[n],需将其按升序排列。发现当n不大时,插入排序的效果很好。首先取一增量d(da[x],然后采用分治的策略分别对a[1]~a[k-1]和a[k+1]~a[n] 两组数据进行快速排序。 优点:极快,数据移动少; 缺点:不稳定。 六、箱排序 已知一组无序正整数数据a[1]、a[2]、……a[n],需将其按升序排列。首先定义一个数组x[m],且m>=a[1]、a[2]、……a[n],接着循环n次,每次x[a]++. 优点:快,效率达到O(1) 缺点:数据范围必须为正整数并且比较小

相关文档
相关文档 最新文档