文档库 最新最全的文档下载
当前位置:文档库 › 筏板基础设计中基床系数K如何确定

筏板基础设计中基床系数K如何确定

筏板基础设计中基床系数K如何确定
筏板基础设计中基床系数K如何确定

注: 土的基床系数K的确定,转自老虎空间haisheng帖子

1 基床反力系数K值的理解和确定

1.1基床反力系数K值的物理意义:单位面积地表面上引起单位下沉所需施加的力。基床反力系数K值的影响因素包括:基床反力系数K值的大小与土的类型、基础埋深、基础底面积的形状、基础的刚度及荷载作用的时间等因素。试验表明,在相同压力作用下,基床反力系数K随基础宽度的增加而减小,在基底压力和基底面积相同的情况下,矩形基础下土的K值比方形的大.对于同一基础,土的K值随埋置深度的增加而增大。试验还表明,粘性土的K值随作用时间的增长而减小。因此,K值不是一个常量,它的确定是一个复杂的问题。

1.2 基床反力系数K值的计算方法

(a)静载试验法:静载试验法是现场的一种原位试验,通过此种方法可以得到荷载-沉降曲线(即P-S曲线),根据所得到的P-S曲线,则K值的计算公式如下:K=P2-P1/S2-S1;其中,P2、P1分别为基底的接触压力和土自重压力,S2、S1——分别为相应于P2、P1的稳定沉降量。静载试验法计算出来的K值是不能直接用于基础设计的,必须经太沙基修正后才能使用,这主要是因为此种方法确定K值时所用的荷载板底面积远小于实际结构的基础底面积,因此需要对K值进行折减(HiStruct注:折减要适当且有依据)。(b)按基础平均沉降Sm反算:用分层总和法按土的压缩性指标计算若干点沉降后取平均值Sm,得 K=p/ Sm 式中p为基底平均附加压力,这个方法对把沉降计算结果控制在合理范围内是非常重要的。用这种方法计算的k值不需要修正,JCAD在“桩筏筏板有限元计算”中使用的就是这种方法。

(c)经验值法 JCCAD说明书附录二中建议的K值。

1.3 讨论

基床反力系数K是基础设计中非常重要的一个参数,因为它的大小直接影响到地基反力的大小和基础内力。因此,合理地确定此参数的大小就显得至关重要。

1.3.1已知沉降算K值:JCCAD软件在“桩筏筏板有限元计算”中,K值的计算公式为:“板底土反力基床系数建议(kN/m3)”=“总面荷载值(准永久值)”/“平均沉降S1(m)”。

1.3.2不知道沉降算K值:如果设计人员无法准确预估沉降量,而按经验值法输入K值,或者采用程序提供的建议值。这两种方法产生的K值在很多情况下会有很大的差别,有时甚至相差一个数量级。这主要是因为采用经验值法计算出的K值不仅受人为因素的影响很大,而且其考虑的因素比较粗糙的缘故。而采用程序提供的建议值时,只要输入的地质资料准确无误,则程序计算出的结构平均基床反力系数K一般是可以接受(Histruct注,请务必理解JCCAD的刚度K计算和修正原理!)。

1.3.3 对于某些工程,若基础埋深比较大,当基础开挖的土体重量大于结构本身重量时,地基土产生回弹,则程序将无法给出K的建议值。此时设计人员可以考虑回弹再压缩,用结构“总面荷载值(准永久

值)”/“回弹再压缩沉降值(mm)”得到基床反力系数K值。

1.3.4 JCCAD中附录给出的K值很大,计算可能会比它小一个数量级的原因:1)来源于苏联规范,正常用于路基上枕木、轨道计算(压力泡小,与表层土相关)。2)没有考虑压缩深度的影响,没有考虑荷载大小的影响,建筑物宽度方向也在几十米多。3)原有研究成果没有考虑上部结构的影响。4)计算内力反映的变形与实际的沉降不是一个量级。(HiStruct对这些原因的说法持保留意见)

1.4建议

建议:a、取用附录给出的K值,不考虑上部结构共同作用。b、如取沉降反算的值,应考虑上部结构共同作用。

HiStruct 注,一般来说取沉降反算法对于大部分筏板合理,建议可以采用中点沉降,并根据筏板特征适当提高边缘区域的K值,而对于大型的地下室筏板,采用平均值计算或者用附录给出的K值可适当选择采用。而其它关于桩筏基础设计中群桩的弹簧刚度取值,承台下土的分担,基础设计建议等,可以联系本人咨询。

筏板基础知识详细解析

筏板基础知识详细解析 (一)筏形基础平法施工图的表示方法 1.梁板式筏形基础平法施工图,是在基础平面布置图上采用平面注写的方式进行表达 2.当绘制基础平面布置图时,应将其所支承的混凝土结构、钢结构、砌体结构或混合结平面一起绘制。 3.通过选注基础梁底面与基础平板底面的标高高差来表达二者间的位置关系,可以明确与板顶一平)、“低板位”(梁底与板底一平)、“中板位”(板在梁的中部)三种不 4.梁板式筏形基础构件的类型和编号; a)梁板式筏形基础由基础主梁,基础次梁,基础平板等构成。 (二)梁板式筏形基础平板的平面注写 1.梁板式筏形基础平板的平面注写 a)梁板式筏形基础平板LPB的平面注写,分板底部与顶部贯通纵筋的集中标注与板底部标注两部分内容。当仅设置贯通纵筋而未设置附加非贯通纵筋时,则仅做集中标注。 b)梁板式筏形基础平板LPB贯通纵筋的集中标注,应在所表达的板区双向均为 第一跨(X与Y双向首跨)的板上引出(图面从左至右为X向,从下至上为Y向) 板区划分条件:

i当板厚不同时,相同板厚区域为一板区。 ii当因基础梁跨度、间距、板底标高等不同,设计者对基础平板的底部与顶部贯通纵筋配置相同的区域为一板区。各板区应分别进行集中标注。 集中标注内容规定如下: 注写基础平板的编号。 ?注写基础平板的截面尺寸。注写h=XXX表示板厚。 ?注写基础平板的底部与顶部贯通纵筋及其总长度。 先注写X向底部(B打头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围;头)贯通纵筋与顶部(T打头)贯通纵筋,及其纵筋长度范围。(图面从左至右为X 贯通纵筋的总长度注写在括号中,注写方式为“跨数及有无外伸”,其表达形式为:一端有外伸,(xxB)两端有外伸。 注:基础平板的跨数以构成柱网的主轴线为准;两主轴线之间无论有几道辅助轴线,例:X:BB22@150;TB20@150;(5B) Y:BB20@200;TB18@200;(7A) 表示基础平板的X向底部配置B22间距150的贯通纵筋,顶部配置B20间距150的为5跨两端有外伸;Y向底部配置B20间距200的贯通纵筋,顶部配置B18间距20度为7跨一端有外伸; 当某向底部贯通纵筋或顶部贯通纵筋的配置,在跨内有两种不同间距时,先注写跨内两前面加注纵筋根数(以表示其分布的范围);再注写跨中部的第二种间距(不需要加分隔。 例:X:B12B22@200/150; Y:T10B20@200/150

筏板基础的简化计算方法

伐板基础的简化计算方法 1.悬臂法 方法概述——就是传统的墙下钢混条基计算法。 计算特点——假定基底土反力为均匀分布,为了减小基底压力使之满足软弱地基承载力的要求而将基底加宽到互相连通的程度,但不作为连续的整板去分析。 方法缺点——基础宽度加大后,基底土的反力分布实际上是不均匀的。计算时,基底已经连成了一体却不考虑其连续性,因此很不合理,计算的结果是不经济的。 2.倒楼盖法 方法概述——假定筏板为一块倒置于地基上的连续板,由纵横墙支承。 计算特点——假定基底土反力为均匀分布,按普通的楼盖计算。 方法缺点——考虑了筏板的整体性,计算结果较悬臂法经济。但此法仍然没有考虑到基底土的反力分布实际上是不均匀的,所以各墙支座处所算得的负弯矩偏小,甚至出现小于实际弯矩而偏于不安全。 3.柔性基础简化计算法 方法概述——将在柱荷载作用下的十字交叉条形基础简化为各条单向连续条形基础的计算方法。 计算特点——将柱荷载的总值先按两个方向交叉连续的条形基础(板)的刚度比值进行分配以作为各向的柱荷载,然后分别按单向连续条形基础(板)计算。 方法缺点——此方法的一般假定为基底反力是按线性分布的,柱下最大,跨中最小,计算结果较倒楼盖法还要经济。但该方法只适用于柱下十字交叉条形基础和柱下筏板基础的简化计算,不适用于横墙承重的筏板基础。 4.弹簧地基梁法 方法概述——假定筏板沿横向被截分为单位宽的条板,置于文克尔假设的弹簧低级上,并假定板底面任一点的单位压力p与地基沉降S成正比,即p=kS。 计算特点——条板按受有一组横墙集中荷载作用的无限长梁计算。由于地基沉降S与基础挠度y接触协调相等,有p(x)=kS=ky. 方法缺点——同文克尔弹簧地基法假设。 5.弹性理论截条法 方法概述——将筏板横向截分为单位宽的条板并置于均质半空间弹性地基上。 计算特点——由于积分上的困难,基底地基反力与沉降之间的关系很难用解析函数表达。目前是利用郭尔布诺夫-波萨多夫的《弹性地基上结构物的计算》中的计算表格来简化计算。 方法缺点——虽然克服了文克尔弹簧地基法假设的基本缺点,具有能够扩散应力和变形的优点,但是,它的扩散能力往往超过实际情况。由于计算所得的沉降量和地表沉降范围较实测值为大,而实际地基压缩层厚度是有限的,压缩层范围内土质往往是非均质的,即使是同一种土层组成,变形参数也有随深度而增长的情况。按半空间弹性理论所得的地基反力分布一般呈马鞍形和集中在梁端和板的边缘处,这是半空间弹性理论所算得的梁板弯矩大的主要原因。 6.弹性地基板法

筏板基础设计分析&浅基础设计的一些概念和原则

筏板基础设计分析 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试 验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变 形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调 整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位, 有些高层建筑若设置3~4 层(甚至更多层) 地下室时, 总荷载有可能等于或小于卸土荷载重量, 这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来, 对于高层建筑在计算地基沉降变形中, 地基回弹再压缩变形不但不应忽略, 而应予以重视和考虑.

岩土工程中部分桩筏基础的设计

岩土工程中局部桩筏基础的设计 摘要:本文描述了在加拿大的多伦多地区在复杂的岩土工程条件下的局部桩筏基础(PPRF)的设计。PPRF是根据侧向土压力,不均匀分布的建筑荷载和地基不均匀承载力来设计的。该桩主要布置在地基沉陷教的地区。也就是在筏板基础承受较大压力而土体承载力较低的西北部地区。为了保持PPRF的完整性,一个统一的单位标准被应用于桩筏设计。整体的稳定,包括滑动和倾覆也是PPRF设计的一部分。同时,也使用了计算机软件分析。 高园项目是位于加拿大多伦多的一个中密度公寓建设项目。其海拔变化从101.6到102.1米。沿着BloorStreet West/Ellis 公园道大约在其东南方11米,详见图1. 在整个建筑物下面建了三层车库。在西北部边缘下挖11m在东南边界挖了大概1m。虽然沿着Bloor Street West and Ellis Park Road没有安装永久锚杆。 沿着北部和西部的边界的地下室墙壁受到140.4KPa的土压力。 地质条件 在实地4个钻井中,最大深度为37.4米。土壤样本检测方法采用标准贯入度。在实验室内进一步检测和表征土壤样本。 工程土壤条件概括如下:在北部14米到14.2米和南部的1.7米到7米处被深棕色粉质砂土和砂质粉土填充。灰色粉砂质粘土扩展至深处14.6到30.0米,非常坚硬。在深21.9米到32.9米处富集紧密的砂纸淤泥。在深22.6到34.3米处风化页岩的顶端存在一层坚硬的灰色潮湿的粘土质粉砂层。详见图 2.乔治

亚湾的灰页岩,石灰岩在钻井深度扩展延伸范围的探索结果。 在已经完成的开放的钻井处出现地下水时要被监测。从地表到地下水的深度为10到18.3米。 局部桩筏基础 基于现存地质条件,局部桩筏基础只在未收到扰动的残积土和工程填土中使用,并按容许承载力250KPa设计。该桩基的使用,可以在保证基础安全的情况下减少筏板基础使用面积并减低成本。 筏板基础厚度取决于原状天然砂和少灰混凝土在换填的过程中对一个地域的扰动程度。筏板的底面高程变化从东部的87.90米到西部的92.00米,并通过一系列步骤来完成沿筏板长度和宽度的高程变化。 计算筏板基础压力公式如下: ∑P是垂直荷载组合的总和;A是筏板面积;Mx和My分别是沿X轴和Y轴的弯矩;Ix和Iy是X轴和Y轴的惯性矩。定义建筑物的总荷载是P,固定荷载,活荷载和侧向土压力的六种荷载组合形式也都被分析。 筏板基础的沉降值按照砂土层和粘性土层分别的弹性沉降和固结沉降值之和。

筏板基础计算

筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致; (2) 公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ] 采用的计算参数系室内有侧限固结试验测得的压缩模量ESi , 试验条件与基础底面压缩层不同深度处的实际侧限条件不同; (3) 利用公式计算的建筑物沉降量只与基础尺寸有关, 而实测沉降量已受到上部结构与基础刚度的调整. 采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽, 因而压缩层深度大,与一般多层建筑物不同, 地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较, 适应高层建筑物箱型基础与筏板基础的沉降计算经验系数, 主要与压力和地层条件相关, 尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内) 砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整, 所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时, 由于基坑开挖较深, 卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算, 从经验上回弹量约为公式计算变形量10%~ 30% , 因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~ 1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹

筏板基础计算

筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。 (1 )地基承载力验算 地基承载力验算方法同独立柱基,参见第17.1.1节内容。对于非矩形筏板, 抵抗矩W采用积分的方法计算。 (2 )基础抗冲切验算 按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。 ①梁板式筏基底板的抗冲切验算 底板受冲切承载力按下式计算 *50.70/认 式中: F i ——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值; B hp——受冲切承载力截面高度影响系数; U m ――距基础梁边h°/2处冲切临界截面的周长; f t ――混凝土轴心抗拉强度设计值。 图17.1.5-1 底板冲切计算示意 ②平板式筏基柱(墙)对筏板的冲切验算

计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力, 距柱边h o/2处冲切临界截面的最大剪应力T max应按下列公式计算。 石=E / %瓜 - a / l s r max^0.7(0.4 + 1.2/A)ApZ 1 式中: F i——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重; U m ――距柱边h o/2处冲切临界截面的周长;M unb ――作用在冲切临界截面重心上的不平衡弯矩设计值; C A B――沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离; I s ――冲切临界截面对其重心的极惯性矩; B s——柱截面长边与短边的比值,当B s<2时,B s取2;当B s>4时,B s取4 ; c i——与弯矩作用方向一致的冲切临界截面的边长; C2——垂直于C i的冲切临界截面的边长;a s ――不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数; ③平板式筏基短肢剪力墙对筏板的冲切验算 短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。

pkpm筏板基础设计指导

基础参数设置 在PKPM主界面选择“JCCAD”的第二项“基础人机互输入”,程序进入基础交互输入环境。屏幕显示上部结构与基础相连的各层轴网及其柱墙支撑布置,并弹出右图所示的“存在基础模型数据文件”的对话框。选择“读取旧数据文件”项,则程序将原有的基础数据和上部结构数据都读出。如下图所示: 本菜单运行的前提条件:1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置; 3.如果要读取上部结构分析传来的荷载还应该运行相应的程序的内力计算部分; 4.如果要自动生成基础插筋数据还应运行画柱施工图程序。 “地质资料”→“打开资料”→“平移对位”,如下图所示: “参数输入”→“基本参数”,第一页:地基承载力计算参数,本页对话框的参数是用于确定地基承载力的。第二页:基础设计参数,

本页对话框用于基础设计的公共参数。如下图所示: 个别参数,此菜单功能用于对“基本参数”统一设置的基础参数个别修改,这样不同的区域

可以用不同的参数进行基础设计。如下图所示: 参数输出 点击菜单,弹出如下图所示的“基础基本参数.txt”文件,用户可查看相关参数,并可将此文本文件打印输出。文件所列的参数为总体参数,当个别节点的参数与总体参数不一致时应以相应计算结果文件中所列参数为准。 网格节点

本菜单功能用于增加、编辑PMCAD传下的平面网格、轴线和节点,以满足基础布置的需要。如设置弹性地基梁的挑梁设置筏板加厚区域等。需注意该菜单调用应在“荷载输入”和“基础布置”之前,否则荷载或基础构件可能会错位。 荷载输入 1、荷载参数 本菜单用于输入荷载分项系数、组合系数等参数。点击后,弹出下图所示的“输入荷载组合参数”对话框,内含其隐含值。 这些参数的隐含值按规范的相应内容确定。白色输入框的值是用户必须根据工程的用途进行修改的参数,灰色的数值是规范指定值。 其中:当“分配无柱间节点荷载”选择项打“√”后,程序可将墙间无柱间节点或无基础柱上的荷载分配到节点周围的墙上,从而使墙下基础不会产生丢荷载情况。分配荷载的原则为按周围墙的长度加权分配,长墙分配的荷载多,短墙分配的荷载少。 “附加荷载”→“读取荷载” 本菜单用于选择上部荷载的荷载来源种类,程序可读取PM导荷和砖混荷载,TA T,PK,SATWE,PMSAP等多种来源上部结构分析程序传来的与基础相连的柱、墙、支撑内力、作为基础设计的外荷载,界面如下图。 若要选用某上部结构设计程序生成的荷载工况,则点击左面相应项。选取之后,右面的列表框中相应荷载项前显示√,表示荷载选中。程序读取相应程序生成的荷载工况的标准内

【施工】筏板、集水坑基础知识解析

筏板、集水坑基础知识解析(图文) 业务背景: ?①条形基础:上部采用墙承重(较多的用在砖墙) ?②独立基础:上部采用框架结构(柱子) ?③带型(井格式)基础:框架结构+地基条件差(其实就是用条形基础承重柱,在预算中带型基础特指有支模板的混凝土条形基础) ?④筏板基础:高层建筑或上部荷载较大+所在地基承载力较弱。筏板基础有梁式筏板和板式筏板。其中板式筏板基础就像盘子反扣在地表上承受筑?⑤桩基础:上部荷载较大,需将其传至深层较坚硬的地基。当由若干桩支撑一个平台,而用平台托住整个建筑时,这个平台就是桩承台。 ?⑥箱型基础:高层建筑或上部荷载较大+软弱地基。箱型基础是由底板+顶板+若干纵横墙柱组成,中空部分较大时可以作为地下室 知识点 1.筏板基础的种类 1.平板式筏板基础(无基础梁) 2.梁板式筏板基础(有基础梁)分为 : 外伸、不外伸

2.1 梁板式筏板基础(外伸)

(封边构造) 2.2 梁板式筏板基础(无外伸)

知识点2.筏板与基础梁的关系?“高板位” ?“中板位

?“低板位” 知识点3.筏板的钢筋种类 ?①筏板主筋 ?②(分布筋) ?③筏板负筋 ?④马镫筋和拉筋 ?⑤筏板基础的四角设置的放射筋。

详细讲解: ②(分布筋) ?板里面连接负筋的钢筋叫做分布筋 ?分布钢筋的另一个概念就是与受力钢筋垂直均匀布置的构造钢筋(起固定受力筋的作用)。 ?一般筏板底、面筋都为双层双向的,因此不需要设置板分布筋(note:我们软件没有“分布筋”,因为其实他就是主筋,与受力筋概念对应) ③筏板负筋 ?需注意: ①筏板负筋与楼板负筋不同:筏板负筋,在板底布置,属于板局部加强 ②筏板负筋是直接与筏板底筋绑在一起,一般筏板负筋与筏板贯通筋隔一布一 ④马镫筋和拉筋

桩筏基础设计讲解

桩筏基础设计讲解 该帖被浏览了880次 | 回复了6次 桩筏基础的设计与成本控制 摘要:随着高层建筑的发展,建筑基础设计方法越来越多,目前由于基础设计是一种粗放的设计,对桩筏基础的理论及方法不十分完善。规范要求桩筏基础设计均要满足桩基础和筏板基础的要求,现就在设计过程中如何做好桩筏基础的设计与成本控制与大家进行探讨。 关键词:桩筏基础设计成本控制 在目前的设计过程中,很多设计人员由于对桩筏基础的设计缺少经验,或对桩基础规范运用不灵活,不能根据地质条件对桩筏基础共同工作进行合理设计,而仅采用桩基受力形式忽略土的共同作用,造成不必要的项目成本增加(主要是基础成本)。 一、当今现状设计的方法 1、设计人员对桩筏基础设计概念理解不清,不能灵活应用规范,如对有地下水或地下水高的桩筏基础设计时均采用不考虑地基土对筏板的作用,全部采用桩承担上部荷载。 2、在常规设计方法时把上部结构和基础作为两个独立单元分别考虑,在上部荷载作用下求得上部结构内力和基础反力,然后把反力作用在弹性地基的基础上计算基础的内力,这种设计方法没有考虑上部结构与基础的共同作用。没有考虑上部结构刚度对基础的作用,从而导致 基础设计过于偏于保守。

3、有的由于计算不当而使用了厚筏。高层建筑设计中,采用桩筏基础时,对于筏板厚度的采用往往争议较大。有采用很厚的,有采用较薄的;有的规程甚至提出,应当使每层建筑不小于多少厚度的。对于筏板厚度的确定,传统上是凭经验假定,然后再进行冲剪验算。这实际上说明目前在筏板厚度确定的问题上,并没有什么方法。由此难免造成当前在高层建筑中的筏厚不少超过1.5m的,个别的厚度竟达4m 的不合理现象。所以筏板减薄问题实际上是一个如何确定筏板厚度的问题,而不只是一个单纯的减薄问题。在桩筏筏厚的确定上,郭宏磊等采用了一新的方法,即先在正常使用极限状态下,考虑筏板的抗裂性与差异沉降来定出一筏厚值,然后再在承载能力极限状态下,考虑冲切能力加以验算,如果发现板厚过小,此时再加厚也为时不晚,由于先走一步的原因,到了后面也有承载能力极限状态的保证。此外,这样做还有一个好处,即筏厚一定,筏板尺寸就一定,那么,有关桩筏筏板的设计后 半部就只剩下筏板的配筋问题了 二、高层建筑筏基与地基共同作用的分析 1、从对2008年《建筑桩基技术规范》阅读理解,有无地下水对桩筏 基础设计是否考虑桩土共同作用影响不大。 2、高层建筑桩筏基础的工作性质,对常规设计(s/d=3~4情况)是基本上接近于在弹性地基上刚性基础的工作性质。由于上部结构和地基基础是一个整体, 合理的桩筏箱基础设计应在分析上部结构、桩筏箱基础、土体共同作用的基础上, 优化桩筏设计。根据优化理论,桩筏箱基础优化设计的数学模型为一‘设计变量群桩的每根桩长、底板厚

PKPM软件JCCAD筏板基础设计步骤举例

PKPM软件JCCAD筏板基础设计步骤举例PKPM软件JCCAD筏板基础设计步骤举例 一、地质资料输入 1、PKPM软件的JCCAD部分进行基础设计时,不一定要输入地质资料。 对于无桩的基础,如果不进行沉降计算,则可以不输入地质资料;如果要进行沉降计算,则需要输入地质资料。输入土的力学指标包括:压缩模量、重度。 对于有桩基础,如果不进行单桩刚度及沉降计算的话,可以不输入地质资料;否则就要输入。输入土的力学指标包括:压缩模量、重度、状态参数、内摩擦角和粘聚力。 2、在PKPM软件主界面“结构”页中选择“JCCAD”软件的第一项“地质资料输入”,程序进入地质资料输入环境,如下图所示: 3、土层布置

给地质资料命名之后,开始进行土层布置,点击右侧菜单“土层布置”,如下图所示: 弹出土层参数对话框,显示用于生成各勘测孔柱状图的地基土分层数据,如下图所示:4、输入孔点

单击“孔点输入”→“输入孔位”,以相对坐标和米为单位,逐一输入所有勘测孔点的相对 位置。孔点输入结束后,程序自动用互不重叠的三角形网格将各个孔点连接起来,并用插值法将孔点之间和孔点外部的场地土情况计算出来。如下图所示: 程序要求孔点形成的三角形网格互不交叉,互不重叠。如孔点位置十分复杂,程序自动形成的网格不能满足上述要求,可以通过“网格修改”命令由人工修改完成。 点击“修改参数”,点取已输入的孔点,弹出孔点土层参数对话框,如下图所示。对话框中显示的是标准孔点的土参数,应按各勘测孔的情况修改表中的数据,如土层低标高、土层参数、空口标高、探孔水头标高等。空口位置一般不采用绝对坐标,不必修改孔口坐标。如某一列各勘测孔的土参数相同,可以选择“用于所有点”,以减少修改土层参数的工作量。

广厦基础设计桩筏和筏板基础设计

第5章桩筏和筏板基础设计 1快速入门 广厦建筑结构CAD安装后,在Exam子目录下有一个工程实例:基础.prj。工程师在用录入系统生成基础CAD数据并用SSW计算后,可参考如下输入要点,快速掌握桩筏和筏板基础的设计方法。 实例见:Exam\基础.prj,平面如下: 进入“广厦基础CAD”。 选择“读取墙柱底力”菜单,弹出对话框选择读取SSW计算的上部结构墙柱底内力。 选择“总体信息?桩筏和筏板基础总体信息”菜单,弹出如下对话框输入地基承载力特征值200kN/m2。 1.1平板式筏基设计 点按“基础设计─桩筏和筏板基础布置和计算─角点定边”,弹出如下对话框输入边界挑出长度1000mm。 确认后,光标点选点①、②、③和④,回车结束选择角点。绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─划分单元”,弹出如下对话框: 确认后,绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─计算筏板”,光标点选所要计算的筏板。 点按“基础设计─桩筏和筏板基础布置和计算─计算简图”,光标选择“板节点正最大挠度线”,显示最大挠度等值线。 点按“基础设计─桩筏和筏板基础布置和计算─文本结果”,显示剪力墙下的地梁计算结果和柱对筏板的冲切验算结果,同时输出桩筏和筏板基础总体信息。 剪力墙下没有地梁时CAD自动布置地梁,在计算时剪力墙底各工况轴力作为梁荷载参与计算,各工况弯矩作为梁两端节点弯矩参与计算,工程师可增加梁高以考虑剪力墙刚度对筏板的影响。 柱对筏板的冲切验算不满足时,可局部加柱帽或加大板厚。 点按“基础设计─桩筏和筏板基础布置和计算─贯通板筋”,光标点选点①和②确定贯通板面筋和底筋的两端点,输入面筋D14@200和底筋D12@150,再点选点③和④确定标注起点和终点,最后点选点⑤指定文字标注的位置,输入标注值,回车即可,绘图板上出现: 同理布置垂直方向的贯通板筋,绘图板上出现: 1.2梁式筏基础设计 点按“基础设计─桩筏和筏板基础布置和计算─角点定边”,弹出如下对话框输入边界挑出长度1000mm。 确认后,光标点选点①、②、③和④,回车结束选择角点。绘图板上出现: 点按“基础设计─弹性地基梁布置和计算─轴线地梁”,弹出如下对话框,选择筏板肋梁选项,输入梁肋宽200mm。 确认后,光标窗选整个平面,梁板的布置没有先后次序。绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─划分单元”,弹出如下对话框: 确认后,绘图板上出现: 点按“基础设计─桩筏和筏板基础布置和计算─计算筏板”,光标点选所要计算的筏板。

浅谈某高层建筑桩筏基础设计及沉降计算

浅谈某高层建筑桩筏基础设计及沉降计算 彭奇华 (衡阳天翔工程咨询有限公司,湖南衡阳421000) 摘要:结合实际工程,介绍了软土地基中为控制沉降而设置桩基的深基础设计方法及采用电算软件进行沉降计算的设计手法,对沉降计算结果进行了分析,从而解决了软土中桩筏基础的沉降计算问题。 关键词:桩筏基础,沉降计算,弹性地基梁板 一、工程概况 本工程位于某市,为一栋集商业、写字楼、公寓于一体的高层建筑综合大楼,其地下4层,用作车库、超市及设备房;地上裙房6层,主要用作商场;两栋塔楼(分缝后)分别为商务公寓和商务写字楼,总层数为25层,基本层高3.3m和3.6m,建筑总高度为98.50m。 二、基础设计 (一)地质条件及基础选型 本区大地构造属于雷一琼喜山沉降带北部某区。场区内第四纪地层发育,厚度达数百米,区域稳定性较好。勘察发现场区及附近均为第四系松散沉积层覆盖,地表未发现有明显的构造形迹出露,场地地形平坦,不存在高陡边坡、崩塌等不良工程地质现象本次钻探最大深度为85.0m,揭露土层上部为填土,全新统沼泽相沉积淤泥质黏土及中更新统北海组粉土,下部为下更新统湛江组海陆交互沉积地层,按成因类型及岩土工程特性划分为16个主要单元层。 据钻探资料揭示,场地⑧中砂及其以下土层中⑨,⑩,⑩黏土强度相对较低,其余土层的承载力特征值在250kPa以上;其中⑥粉质黏土及⑩中砂层分布稳定,厚度较大,为硬塑~坚硬或中密~密实状,承载力特征值在280kPa以上,其下无软弱下卧层分布,是理想的桩基础桩端持力层。根据湛江地区经验,桩的类型可考虑选择预应力管桩或钻孔灌注桩。结合本工程特点,采用钻孔灌注桩基础的桩筏基础结构形式。 (二)基础设计 桩基的布置:根据主楼与裙楼基础的受力特点,主楼采用长桩基,裙房则采用天然地基加短桩基的设计思路,采用不同桩长的形式进行布桩。主楼桩基主要以承受上部竖向荷载为主,柱下布置群桩,桩径有800眦1,1000眦1两种,大部分有效桩长为40m,桩端持力层为粉质黏土层;核心筒下布置群桩,桩径1500FD./TI,有效桩长50m,桩端持力层为中砂层;裙楼则主要以抵抗水浮力为主,柱下布置单桩,桩径1000FD./TI,有效桩长25m,桩端持力层为中砂层。由于本工程地下室比较深,地下水埋深较浅,水浮力相当大,为了平衡水浮力的作用,在部分跨度较大的筏板跨中布置了抗拔桩。这样,既解决了抗浮的问题,又有利于减小筏板的受力及配筋,节约工程造价。

筏板基础计算

pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则有更大的可靠度. 2 天然筏板基础的变形计算 地基的验算应包括地基承载力和变形两个方面, 尤其对于高层或超高层建筑, 变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难, 计算结果误差较大, 往往使工程设计人员难以把握, 有时由于计算沉降量偏大, 导致原来可以采用天然地基的高层建筑, 不适当地采用了桩基础, 使基础设计过于保守, 造价提高, 造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同, 这是受多种因素的影响造成的. (1) 这种理论的假定条件遵循虎克定律, 即应力—应变呈直线关系, 土体任何一点都不能产生塑性变形, 与土体的实际应力—应变状态不相一致;

筏板基础计算

筏板基础计算 pkpm平板筏基建模方法 目前工程中,“柱下或者剪力墙下平板式筏板”在pkpm里计算,简单概括有三个方法:“倒楼盖”“弹性地基梁法”“桩筏筏板有限元计算”。 具体到用“弹性地基梁法”(即jccad中第三个菜单)计算“柱下或者剪力墙下平板式筏板”的操作步骤是什么,这个流程是什么下面具体罗列: 1、首先要按地勘报告输入地质数据,用于沉降计算。非常重要。 2、在菜单2中输入筏基模型,注意筏板一般要挑出,因此首先用网格延伸命令将网格向外延伸一个悬挑长度,然后定义并布置筏板,给出厚度和埋深,并做柱和墙的冲切验算,看看板厚是否满足要求,如不满足,可以加柱帽(注:加柱帽的功能在“上部构件”的菜单中)。 3、输入筏板荷载,如果是平板式基础,可以直接布置板带,程序自动确定板带翼缘宽度形成地基梁模型。也可以不布置板带,直接定义地基梁形成梁元模型。 4、进入菜单3,按梁有限元法计算筏板。首先需要计算沉降,这里有个非常重要的概念,就是地基模型的选用。程序用模型参数kij(默认为0.2)来模拟不同的地基模型,kij=0的时候,为经典文克尔地基模型,kij=1的时候,为弹性半空间模型,不明白看教材。一般软土取低值0~0.2,硬土取高值0.2~0.4。其它参数不难理解,不赘述。梁元法程序提供两种沉降计算模式,刚性沉降和柔性沉降。柔性沉降假定筏板为完全柔性,而刚性沉降则假定为完全刚性。计算完成后,程序用求出的各区格反力除以其沉降值得到各区格的地基刚度值,然后转换为地梁计算用的地梁下的基床反力系数,这样便确定了基地的反力分布,用于下一步的内力计算。沉降计算是筏板计算的核心步骤。

4、基床系数k的合理性判断。沉降计算完毕后,计算数据中会给出各区格的 地基刚度,即基床系数。这个系数一般要比建议值小很多。基床系数的合理性,关键看沉降计算结果。可用规范分层总和法手算地基中心点处的沉降值作比较。如出入大,应调整基床系数使其接近手算值。因此,用软件算连续基础,实际上就是对基床系数的校核。菜单5的有限元法中提供的“沉降试算”功能,就是这个思想(其实这个功能就是给懒人和初学者开发的)。 5、对于基床系数的调整,程序提供了一种方便的功能--可以按照广义文克尔地基模型进行地基梁计算,即变基床系数调整法。可以把你输入的基础系数,按照已经计算完毕的各区格的刚度变化率进行调整,作为新的基础系数用于下一步的地基梁内力计算。 6、基础计算模型一般用普通弹性地基梁就可以了,倒楼盖模型缺点较多,一般不推荐。考虑上部结构刚度可根据具体情况选择完全刚性,或等代刚度法。 筏板基础设计分析2009 1 筏板基础埋深及承载力的确定 天然筏板基础属于补偿性基础, 因此地基的确定有两种方法. 一是地基承载力 设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值, 并采用原位试验(如标惯试验、压板试验等) 与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础 分析地基承载力. 例如: 某栋地上28 层、地下2 层(底板埋深10m ) 的高层建筑, 由于将原地面下10m 厚的原土挖去建造地下室, 则卸土土压力达180kpa, 约相当 于11 层楼的荷载重量;如果地下水位为地面下2m , 则水的浮托力为80kpa, 约相 当于5 层楼的荷载重量, 因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ? 250kpa 时就能满足设计要求, 如果筏基底板适当向外挑出, 则 有更大的可靠度. 2 天然筏板基础的变形计算

JCCAD筏板基础设计

JCCAD筏板基础设计 应用前提条件: 1.上部结构的计算可以提供荷载和凝聚到基础顶面的刚度; 2.有完整准确地地质报告输入,并成功读入到合适位置。 基本参数 基础埋置深度:一般应自室外地面标高算起。对于地下室,采用筏板基础也应自室外地面标高算起,其他情况如独基、条基、梁式基础从室内地面标高算起。 自动计算覆土重:该项用于独基、条基部分。点取该项后程序自动按20kN/m2的混合容重计算基础的覆土重。如不选该项,则对话框中出现单位面积覆土重参数需要用户填写。一般来说如条基、独基、有地下室时应采用人工填写单位面积覆土重,且覆土高度应计算到地下室室内地坪处,以保证地基承载力计算正确。 一层上部结构荷载作用点标高:即承台或基础顶标高,先进行估算,计算完成后进行修改。该参数主要是用于求出基底剪力对基础底面产生的附加弯矩作用。在填写该参数时,应输入PMCAD中确定的柱底标高,即柱根部的位置。注意:该参数只对柱下独基和桩承台基础有影响,对其他基础没有影响。 地梁筏板 该菜单定义了按弹性地基梁元法计算需要的有关参数 总信息: 结构种类:基础

基床反力系数:按默认 按广义文克尔假定计算:若此项选择后,计算模型改为广义文克尔假定,即各点的基床反力系数将在输入的反力系数附近上下变化,边角部大,中部小一些,变化幅度与各点反力与沉降的比值有关,采用广义文克尔假定的条件是要有地质资料数据,且必须进行刚性底板假定的沉降计算,否则按一般文克尔假定计算。在此处要与基础梁板弹性地基梁法计算中的沉降计算参数输入中参数相对应。 弹性基础考虑抗扭: 人防等级:不计算 双筋配筋计算压区配筋百分率:0.2% 地下水距天然地坪深度:按实际 梁的参数: 梁钢筋归并系数:0.3 梁支座钢筋放大系数:1.0 梁跨中钢筋放大系数:1.0 梁箍筋放大系数:1.0 梁主筋级别:二级或三级 梁箍筋级别:一级或二级 梁立面图比例、梁剖面图比例:按默认 梁箍筋间距:200 翼缘(纵向)分布钢筋直径、间距:8mm、200mm 梁式基础的覆土标高:当不是带地下室的梁式基础时,此值为0;否则

筏板基础模板计算书

Appendix 1附件1 Calculation of the Formworks模板计算书 1、Side Formwork Construction侧模施工 1.1、设计说明 Design description: using site processed wood formwork, face plate is plywood of 15mm, secondary keel is timber of 50mm×100mm (the material is northeast larch) with 250mm space in between. Main keel is the timber of 80mm×200mm as modeling with the min. height no less than 150mm. 2 main keel set up with spacing of 700mm, 250mm as bottom and 255mm as upper side of slab. 侧模采用现场加工木模板,面板为15厚胶合板;次龙骨为50mm×100mm木方(材质为东北落叶松),间距250mm;主龙骨使用80mm×200mm木方做造型木(材质为东北落叶松),造型木中心最小高度不小于150mm。主龙骨设置两道,间距700mm,距底部250mm和上侧255mm. 1.2、Computational Checking of Secondary Keel次龙骨验算 1)Load and Combination of Load荷载及荷载组合 a.side pressure on the form for concrete混凝土对模板的侧压力 t0=200/(25+15)=5h (即混凝土的温度按25℃计算) F1=0.22γc t0β1β2V1/2=0.22×25×5×1.2×1.15×21/2 =53.67KN/m2 F2=γc H=25×1.2=30KN/m2(取此值做强度验算) (take this value for computational checking of strength ) b.load of concrete pouring混凝土倾倒荷载:4KN/m2 c.load of concrete vibrating混凝土振捣荷载:4KN/m2 combination of load荷载组合:1.2×30+1.4×(4+4)=47.2KN/m2 line load化为线荷载:q=47.2×0.25=11.8KN/m 2)Computational Checking of Flexural Strength抗弯强度验算 M max =11.8×0.7^2×(1-4×0.252/0.72)/8=0.52KN·m (建筑施工手册表Construction Manual 2-10) W n =1/6bh2 =1/6×50×1002 =250000/3 σm = M/W n =0.52×106 /(250000/3)=6.24N/mm2≤ f m =17 N/mm2

相关文档