文档库 最新最全的文档下载
当前位置:文档库 › 一、气压随高度的变化

一、气压随高度的变化

一、气压随高度的变化
一、气压随高度的变化

一、气压随高度的变化

一个地方的气压值经常有变化,变化的根本原因是其上空大气柱中空气质量的增多或减少。大气柱质量的增减又往往是大气柱厚度和密度改变的反映。当气柱增厚、密度增大时,则空气质量增多,气压就升高。反之,气压则减小。因而,任何地方的气压值总是随着海拔高度的增高而递减。如图4·1所示,甲气柱从地面到1000m和从1000m到

2000m,虽然都是减少同样高度的气柱,但是低层空气密度大于高层,因而低层气压降低的数值大于高层。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。

(一)静力学方程

假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。见图4·2,在大气柱中截取面积为1cm2,厚度为△Z的薄气柱。设高度Z1处的气压为P1,高度Z2

处的气压为P2,空气密度为ρ,重力加速度为g。在静力平衡条件下,Z1面上的气压P1和Z2面上的气压P2间的气压差应等于这两个高度面间的薄气柱重量,即

P2-P1=-△P=-ρg(Z2-Z1)=-ρg△Z

式中负号表示随高度增高,气压降低。若△Z趋于无限小,则上式可写成

-dP=ρgdZ (4.1)

上式是气象上应用的大气静力学方程。方程说明,气压随高度递减的快慢取决于空气密度(ρ)和重力加速度(g)的变化。重力加速度(g)随高度的变化量一般很小,因而气压随高度递减的快慢主要决定于空气的密度。在密度大的气层里,气压随高递减得快,反之则递减得慢。实践证明,静力学方程虽是静止大气的理论方程,但除在有强烈对流运动的局部地区外,其误差仅有1%,因而得到广泛应用。将(4·1)式变换

高度所降低的气压值。

实际工作中还经常引用气压高度差(h),它表示在铅直气柱中气压每改变一个单位所对应的高度变化值。显然它是铅直气压梯度的倒数,即

式中R d=287J/kgK为干空气的气体常数。将R d、g值代入,并将T换成摄氏温标t,则得

表4·l是根据(4·2)式计算出的不同气温和气压下的h 值。

从表4·l中可以看出:①在同一气压下,气柱的温度愈高,密度愈小,气压随高度递减得愈缓慢,单位气压高度差愈大。反之,气柱温度愈低,单位气压高度差愈小。②在同一气温下,气压值愈大的地方,空气密度愈大,气压随高度递减得愈快,单位高度差愈小。反之,气压愈低的地方单位气压高度差愈大。比如愈到高空,空气愈稀薄,虽然同样取上下气压差一个百帕,而气柱厚度却随高度而迅速增大。

通常,大气总处于静力平衡状态,当气层不太厚和要求精度不太高时,(4·2)式可以用来粗略地估算气压与高度间的定量关系,或者用于将地面气压订正为海平面气压。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该式就难以直接运用,就需采用适合于较大范围气压随高度变化的关系式,即压高方程。

(二)压高方程

为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程

式中,P1、P2分别是高度Z1和Z2的气压值。该式表示任意两个高度上的气压差等于这两个高度间单位截面积空气柱的重量。用状态方程替换式中的ρ,得

(4·4)式是通用的压高方程。它表示气压是随高度的增加而按指数递减的规律。而且在大气低层,气压递减得快,在高层递减得慢。在温度低时,气压递减得快,在温度高时,递减得慢。利用(4·4)式原则上可以进行气压和高度间的换算,但直接计算还比较困难。因为在公式中指数上的子式中,g和T 都随高度而有变化,而且R因不同高度上空气组成的差异也会随高度而变化,因而进行积分是困难的。为了方便实际应用,需要对方程作某些特定假设。比如忽略重力加速度的变化和水汽影响,并假定气温不随高度发生变化,此条件下的压高方程,

称为等温大气压高方程。在等温大气中,(4·4)式中的T可视为常数,于是得

式中负号取消是因为将P1和P2的位置上下调换。从(4·5)式中可以看出,等温大气中,气压随高度仍是按指数规律递减的,其变化曲线见图4·3中实线。将T换成t,自然对数换成常用对数,并将g、R代入,则(4·5)式变成气象上常用的等温大气压高方程:

实际大气并非等温大气,所以应用(4·6)式计算实际大气的厚度和高度时,必须将大气划分为许多薄层,求出每个薄层的t m,然后分别计算各薄层的厚度,最后把各薄层的厚度求和便是实际大气的厚度。表4·2是利用(4·6)式计算的标准大气中气压与高度的对应值。

(4.6)式中把重力加速度g当成常数,实际上g随纬度和高度而有变化,要求得精确的Z值,还必须对g作纬度和高度的订正。一般说,在大气低层g随高度的变化不大,但将此式应用到100km以上的高层大气时,就必须考虑g的变化。此外,(4·6)式是把大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。

(4·7)式表示在多元大气中,气压随高度也是按指数规律递减的。当γ=0.6℃/100m,T0=273K,P0=1000hPa时,气压随高度降低的情况如图4·3中的虚线所示。图中实线是等温大气的情况,其气压随高度的递减比多元大气慢一些。实际大气与多元大气更为接近。

大气压力与海拔的关系

一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层

温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 呵呵,我没看清楚你的真正题意,给你一个相关的链接,可能比较准确。

6气压引起的气球体积变化

学生姓名: 年级:初三 授课时间: 学案编号:sjp-h006 课程名称:气压引起的气球体积变化

一、上节课的知识回顾 二、经典题型 解题思路清理: 放热:氧化钙跟水、浓硫酸稀释、中和反应、氢氧化钠固体溶于水 吸热:铵盐溶于水 产生气体:碳酸盐与酸产生二氧化碳、活泼金属与酸反应产生氢气、二氧化锰与双氧水 吸收气体:浓硫酸与氨气、二氧化碳与氢氧化钠、氨气和氯化氢气体与水以及各种溶液 第一组:用如图所示的密闭实验装置,能够使气球先膨胀,过一段时间又恢复到原状的一组固体和液体是() A.固体:硝酸铵;液体:水 B.固体:碳酸钠;液体:稀盐酸 C.固体:生石灰;液体:水 D.固体:氯化钠;液体:水 【解答】解:A、硝酸铵溶于水时吸收热量,瓶中气温降低气体收缩体积变小,瓶内压强减小,小气球不能鼓起来,故选项错误。 B、碳酸钠和稀盐酸反应放出大量气体二氧化碳,瓶内气体增多压强增大,小气球鼓起来,但不会恢复原状,故选项错误。 C、生石灰与水反应放出大量的热,瓶中温度升高,气体膨胀体积变大,瓶内压强增大,小气球鼓起来,但随着温度降低、压强减小,过一段时间小气球会恢复到原状,故选项正确。 D、氯化钠溶于水温度几乎无变化,小气球不能鼓起来,故选项错误。 【答案】故选:C。 第二组:如图所示,气球与大气相通,胶头滴管中有某种溶液,挤压胶头后气球变大,则胶头滴管与的广口瓶物质中分别为() A.H2O与CaO B.NaOH与CO2 C.浓H2SO4与H2O D.稀H2SO4与Zn 【解答】解:A、氧化钙与水反应放出热量,而使瓶内的压强增大,小气球不会鼓起,故错误; B、二氧化碳和氢氧化钠反应生成亚硫酸钠和水,气压减小,满足要求,故正确; C、浓硫酸溶于水放出热量,而使瓶内的压强增大,小气球不会鼓起,故错误。

大气压随高度变化的实验创新

QINGSHAONIAN KEXUE TANJIU 七彩实验室 在《大气压强》一节的学习中,我们已经了解到,证明大气压存在和测量大气压值的演示实验的器材选取方便,操作简单易行。但对于大气压随高度的变化,由于我们在日常生活中观察、体验得少,没有感性的认识,演示实验又不容易操作,而且可见度差。所以我从实验室中选取材料,自制了一个验证大气压随高度变化规律的实验装置,如果经过改进,还可以成为粗略测量高度的仪器。下面我将简单地介绍我的制作过程和实验过程。 制作材料:锥形瓶、橡皮塞、打 孔器、细长的玻璃管(两端开口)、 红色的水,记号笔。 制作原理:大气压强随高度增 加而减小。 制作过程:(1)用打孔器按照 细玻璃管的粗细在橡皮塞中间圆 心处打好孔。 (2)往锥形瓶中倒入适量的红色的水,用橡皮塞将瓶口塞紧,再 将玻璃管穿过橡皮塞插入水中。 (3)从玻璃管上端吹入少量气 体,使锥形瓶内的气体压强大于外 界的大气压强。水沿玻璃管明显 上升到玻璃瓶口以上,记下此时玻 璃管中液面的位置,用记号笔标 出,实验装置如图1所示。 实验过程:如图2所示,在手上 垫一块隔热的物体(可以是电器外 面包装用的塑料泡沫),拿着这个 装置从实验楼的楼下到楼上,观察玻璃管中红色水柱的高度的变化情况,记录新的液面位置。若水柱升高,则说明大气压强随高度的增加而减小。实验误差分析及注意事项:(1)玻璃管和锥形瓶与橡皮塞必须密合,不能漏气,漏气是液面不发生变化最可能的原因。(2)注意玻璃管一定要细长,这样刻度变化才能更明显。(3)不能用手直接拿玻璃瓶,以免玻璃瓶受热,使瓶内气体压强发生变化,从而影响测量;同样,楼上楼下的温差也不能太明显,否则对实验结果的观察也会产生一定的影响。实验装置的改进:这个实验的目的是验证大气压随高度的变化规律,那么我想可以将它改进成一个高度计,下面是我的改进方法: (1)以地面为一个相对的高度,标记出在地面时细玻璃管中液面的位置,并标注高度为0米。(2)从一楼走到四楼,用皮卷尺测出地面到四楼的高度为10米,标记出在四楼时玻璃管中液面的位置,并标注高度为10米。(3)用刻度尺测出玻璃管中两次液面之间的长度为10.5毫米,然后用纸条做出一个刻度盘,近似取单位长度为1毫米在刻度盘上画出刻度线,并在起始刻度线处标0米、第6条刻度线处标5米、第11条刻度线处标10米等不同的高度值,最后标到100米。(4)把做好的刻度盘用胶水粘到玻璃管上,并将两个0刻度线对齐。这样一个量程为100米,分度值为1米的简易高度计就制作好了,它可以用来粗略测量高度。生活处处皆物理,只要我们平时多观察、多思考、多动手,就可以制作出很好的演示实验装置。这些改进后的演示实验装置便于操作,同时也有利于我们观察得到结论,具有令人满意的效果。而且在制作装置的过程有利于激发我们的学习兴趣、提高我们的动手能力以及培养我们的创新精神,使我们在学习中得到事半功倍的效果。 图 1图2 北京林业大学工学院赵嘉宇 33

专题三气象要素随海拔高度变化(衡山)

气象要素随海拔高度变化(衡山) ——13级地理科学2班4组 一、实习任务 1.实习目的与任务概述 通过攀登衡山进行实地考察和相关数据收集,并且进行记录与拍照,使用通风干湿表和空盒气压计对于每一个选点的气压和气温进行数据记载,并对于选点的海拔、经纬度和测量时间做出简单记载。在下山回到基地之后对于所登记数据进行汇总,做出相应的图表,最后进行分析总结出其规律。 2.实习时间:2014年11月22日 3.实习路线 衡山基地——介石林——半山亭——慈爱亭——铁佛寺——湘南寺——南天门——天王殿——祝融峰 4.实习仪器及其使用注意事项: (1)实验仪器:滴管,蒸馏水,通风干湿表,空盒气压计,GPS (2)实验仪器的使用注意事项: ①通风干湿表: a.温度计的水银柱:检查通风干湿表温度计的水银柱是否 连接。 b.仪器精度:检查2支温度计的读数是否一致,其差值不 超过0.2℃。

c.测量时应选在空旷的地方,且人应远离仪器。 d.读数时,视线与水银柱刻度平行。 ②空盒气压计: a.挤压气囊时,气压不应高于106kpa。 b.测量时,应将空盒气压计水平放置。 ③ ④ 二、实习内容 11月22日上午八点,在熊老师的带领下我们开始登山,进行气象实验。 测量内容如下表:

间修正值为0。湿表编号354号,在-20℃~+32.5℃之间修正值为0。 由以上图表可分析得出以下结论: (1)根据数据测量可得,气压随着海拔的升高而减小。随着的海拔的上升,单位面积垂直上方空气柱的体积逐渐减少,也就是说气压将

随着海拔的升高逐渐减小。 (2)总体而言,气温随着海拔的升高逐渐降低。但在基地测量中,因为清晨气温尚未完全回升,在基地出现不同于其他点的低温。在介石林和半山亭的测量中,由于太阳逐渐升起气温开始回升,半山亭的温度稍高于介石林,但是高幅不大。另外,在南天门和祝融峰,因为人流量比较多,气温测量有一定误差,但是总体上来说,气温都是遵循随海拔的升高而逐渐降低的规律的。 (3)在上山过程中,相对湿度随海拔升高总体是呈下降趋势。其中,在介石林中,所测量地区位于林荫树下人迹罕至之处,太阳辐射弱,湿度有一个超出规律的变化。同理,在铁佛寺和湘南寺的测量中出现相关波动。但总体上,随时间接近正午,太阳辐射增强,气温上升,大气饱和水汽压增大,空气的相对湿度下降。 三、实习总结 今天我们在熊老师和郭老师的带领下,攀登上南岳最高峰祝融峰。我们熟悉掌握了通风干湿表和空盒气压计的使用方法,同时总结出气压和气温以及相对湿度与海拔变化之间的相关规律。一路上我们一边实习一边记载,在野外实习收获相关专业知识的同时在人生经历中也受益匪浅。这是衡山野外实习的最后一天,也是我们实习过程中最为印象深刻的一天。

大气压和海拔的换算

大气压力与海拔高度怎么转换 标准大气压强Po= Pa= cmHg= mmHg Po=1.01325×10^5 Pa=76cmHg=760mmHg 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的 反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 海拔高度(m)0 1 000 2 000 2 500 3 000 4 000 5 000相对大气压力10.8810.7740.7240.6770.5910.514相对空气密度10.9030.8130.7700.7300.6530.583

理想气体的压强公式与气压随高度变化的推导

理想气体的压强公式与气压随高度变化的推导 09港航2班杨文江0903010232 任课老师:丁万平 1、温度恒定, 2、温度随高度变化)(给出高度与确良压强的计算公式) 已知对一定质量的同种理想气体,在任一状态下的PV/T值都相等,即 PV/T=P0V0/T0 其中P0,V0,T0为标准状态下相应的状态参量。 实验指出,在一定温度和压强下,气体的体积和它的质量m或摩尔数v成正比。以V m,0表示气体在标准状态下的摩尔体积,则v mol气体在标准状态下的体积应为V0=vV m,0,代入上式,得PV=vP0V m,0T/T0。 由阿伏伽德罗定律知,在相同温度和压强下,1 mol的各种理想气体的体积都相同,因此P0V m,0/T0的值就是一个常量,以R表示,则有 R≡P0V m,0/T0=8.31(J/(mol·K)) 故有PV=vRT 引入波尔兹曼常量k,k≡R/N A =1.38×10-23J/K 则理想气体状态方程又可写为P=nkT,其中n=N/V是单位体积内气体分子的个数。 1、由上式可以看出,当温度恒定时,理想气体压强随气体分子数密度的增加而增大,成正比关系。 2、已知在高度变化不大时,温度随高度的变化规律是t=t0?0.6×△h/100,t0是某一水平面高度上的温度,△h为升高或者下降的高度。化为热力学温度为T=T0?0.6×△h/100,把此式代入P=nkT得,P=nk(T0?0.6×△h/100)=nkT0?0.6nk×△h/100。如果以标准状态下的理想气体压强为参照,则在高度为h处的压强P=P0?0.6nk×△h/100,这就是温度随高度变化时,理想气体的压强公式。

大气压的五种变化

大气压的五种变化 在不同的季节,不同的气候条件和地理位置等条件下,地球上方大气压的值有所不同。本文择取大气压的五种主要变化,做一些分析讨论,供参考。 从微观角度看,决定气体压强大小的因素主要有两点:一是气体的密度n;二是气体的热力学温度T。在地球表面随地势的升高,地球对大气层气体分子的引力逐渐减小,空气分子的密度减小;同时大气的温度也降低。所以在地球表面,随地势高度的增加,大气压的数值是逐渐减小的。如果把大气层的空气看成理想气体,我们可以推得近似反映大气压随高度而变化的公式如下: μ=p0gh/RT 由上式我们可以看出,在不考虑大气温度变化这一次要因素的影响时,大气压值随地理高度h的增加按指数规律减小,其函数图象如图所示。在2km以内,大气压值可近似认为随地理高度的增加而线性减小;在2km以外,大气压值随地理高度的增加而减小渐缓。所以过去在初中物理教材中有介绍:在海拔2千米以内,可以近似地认为每升高12米,大气压降低1毫米汞柱。 地球表面大气层里的成份,变化比较大的就是水汽。人们把含水汽比较多的空气叫“湿空气”,把含水汽较少的空气

叫“干空气”。有些人直觉地认为湿空气比干空气重,这是不正确的。干空气的平均分子量为,而水气的分子量只有,所以含有较多水汽的湿空气的密度要比干空气小。即在相同的物理条件下,干空气的压强比湿空气的压强大。 在地球表面,由赤道到两极,随地理纬度的增加,一方面由于地球的自转和极地半径的减小,地球对大气的吸引力逐渐增大,空气密度增大;另一方面由于两极地区温度较低,所以空气中的水汽较少,可近似看成干空气,所以由赤道向两极,随地理纬度增加,大气压总的变化规律是逐渐增大。 对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。最高值出现在9~10时。最低值出现在15~16时。 导致大气压日变化的原因主要有三点。一是大气的运动;二是大气温度的变化;三是大气湿度的变化。 日出以后,地面开始积累热量,同时地面将部分热量输送给大气,大气也不断地积累热量,其温度升高湿度增大。当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同时大气的湿度也达较大值,由于此二因素的影响,导致一天中此时的大气压最低。16时以后,大气温度逐渐降低,其湿度减小,向上的辐散运动减弱,大气压值开始升高;进入夜晚;大气

气压系统随高度的变化

气压系统随高度的变化 地面天气图和高空天气图上的现象是相互联系的。只有将各层次的天气图配合起来进行综合分析,才能全面认识大气运动,从而正确预报天气。为了了解各种不同层次天气图之间的联系,首先要了解气压系统的垂直结构。 由前面所学的大气静力学方程可知,气压随高度的变化与温度分布有关,温度愈高,气压随高度减少愈慢,单位气压高度差愈大。下面就根据这一原理来讨论气压系统随高度的变化。 一、温压场对称的系统 温压场对称的系统是指地面图上温度场的冷暖中心与气压场的高低中心基本重合在一起的系统。温压场对称的系统有暖高压、冷高压、暖低压和冷低压四类。 1.深厚系统 地面是高压,到高空仍保持为高压者,或地面是低压,到高空仍保持为低压者,称为深厚系统。暖高压和冷低压就是这类系统。 如图2.21(a)所示,在暖高压中,中心的温度比周围高,高压中心的气压随高度降低较四周慢,中心的单位气压高度差要比周围大。因此,随高度上升,等压面越向上凸起,高压不但维持,而且随高度有所增强。同样,由于冷低压中心的温度低,低压中心的单位气压高度差较四周小,因此,随高度上升,等压面越往下凹,低压不但维持而且随高度有所增强,如图2.21(d)所示。 实际大气中,副热带高压和高空冷涡就属于这类系统。 2.浅薄系统 地面的高压、低压随高度增加而强度减弱,甚至转变成低压、高压者,称为浅薄系统。冷高压和暖低压就是浅薄系统。 如图2.21(b)所示,在冷高压中,中心的温度比周围低,其单位气压高度差比周围小,到一定高度后,高压中心的气压变得与周围相同(等压面变平),到更高层,等压面变得下凹,成为一个低压系统;而暖低压的情况则相反,如图2.21(c)所示。

大气压力随海拔高度变化的规律

大气压力随海拔高度变化的规律 资料2008-09-10 22:14:50 阅读476 评论0 字号:大中小订阅 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100 m,气压平均降低12.7 hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减

②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 大气压与海拔高度的关系式计算的:P=760(e^-(a/7924))。 其中假定海平面的大气压是760mmHg,会受天气影响略微变动。P(单位mmHg)是海拔a米处的大气压;e是自然对数的底。 当然,结果的不确定度比较大! 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。

(整理)大气压强

新城中学八年级科目:物理编制人:审核人: 2015年4月7日课题大气压强课型新授课使用时间:4月8日 班级小组姓名 学习过程:(定向导学:教材39页至43页) 一、明确目标 (一)知识与技能 1.了解大气压的存在,知道标准大气压强的数值; 2.了解测量大气压强的方法,理解托里拆利实验原理、过程和结论; 3.知道大气压强产生的原因,知道大气压强与天气和高度有关; 4.认识生活中利用大气压强的现象,了解抽水机的工作原理。 (二)过程与方法 1.观察跟大气压强有关的现象,感知大气压强的客观存在; 2.通过实验探究,估测大气压的大小,体会科学探究的过程; 3.通过对托里拆利实验进行分析,使学生掌握推理和等效替代的方法; 4.通过观察感知人类是如何利用大气压强的。 (三)情感、态度与价值观 1.在学习中让学生亲身实践,培养实事求是的科学态度,激发其科学探究精神; 2.通过了解大气压的应用,初步认识科学技术对人类生活的影响。 二、教学重点、难点: 1.确认大气压的存在,会用相关知识解释生活现象。 2.测量大气压的方法。 三、教学方法 讲授法、实验法、探究法。 四、导入新课 1.液体的压强是由于什么原因产生的? 2.液体的压强都有哪些特点? 学生活动:由于液体受重力,并且由于液体具有流动性,所以液体朝各个方向都有压强,且同一深度向各个方向的压强都相等。同种液体中,深度越大,压强越大;同一深度处,液体密度越大,压强越大。 问题:同液体一样,地球周围覆盖着大气层,就好像海洋一样,大气层中的空气和液体一样受重力,并且具有流动性,会不会也像液体一样产生压强呢? 实验1:“笔管提水”:取一两端开口的塑料笔管(玻璃管)浸没于水中,用手指堵住其中的一端后将整个装置提起,会发现管内的水不会下落。当将手指松开后,管内的水会下落。为什么会出现这样的现象,能用所学的物理知识解释吗? 实验2:大试管装满水后将空的小试管轻轻放人大试管(约小试管长度的三分之一处),如图所示。两手拿住大小试管,迅速倒置后立即放掉小试管。可观察到什么现象?为什么会出现这样的现象? 实验三:事先取两个相同的干净的透明玻璃杯,其中一杯倒满清水(学生不一定能够发现两杯的不同)

不同的海拔高度大气压和氧分压的变化对

不同的海拔高度大气压和氧分压的变化对比 我国幅员辽阔,海拔3000米以上的高原、高山地区,约占全国总面积的六分之一。这些地区大多分布在边疆省区,具有重要的国防意义。高原地带气候多变,寒冷、风大、空气稀薄,对人体构成了一个特殊的自然环境。其中空气稀薄,大气压和氧分压降低,是高原环境对机体影响的主要因素。 在高原地区世居的少数民族,对高原环境已经适应,但一般人口稀少,对这些地区的经济建设需要地支援。我军有守卫边疆的任务,地人员进入高原地区日渐增多,因此如何保证进入高原的人员健康,我是军卫生工作的重要任务。 在海平地区,空气在每平方厘米上所形成的压力为101.3kPa(760毫米汞柱),在干燥空气中氧占20.40%,故氧分压为21.15kPa(159毫米汞柱)。空气中氧所占比例基本不受高原影响,当大气压力因海拔增高而降低时,则氧分压按比例降低。下面选择几个不同高度的大气压和氧分压的改变列表如下(表3-2)。 初抵3000米以上高原地区,由于大气压中氧分降低,肺泡气和动脉血氧分压也相应的降低,毛细血管血液与细胞线粒体间氧分压梯度差缩小,从而引起缺氧。如果逐渐登高,有一个锻炼适应过程,在低氧分压环境中,机体可发生一系列代偿适应性变化,如通气加强,肺泡膜的弥散能力提高;循环功能加强,输送氧的能力增加;红细胞和血红蛋白含量增加,红细胞中2,3-二磷酸甘油酸增多,氧离曲线右移,通过这些代偿作用,以便使组织可利用氧达到或接近正常水平。机体具有一定的适应能力,可以较长期居住高原地区。一般地说,长期居住可适应的最大高度为5000米。但有人适应能力较弱,在5000米以下一定高度就失去了适应能力,而出现高原适应不全症。 在高原地区除了大气压降低对机体的主要作用,还有气候的影响,如寒冷、大风、雨雪以及紫外线照射等。这些因素降低机体适应能力,往往是高原适应不全症的诱发和加重因素。因此在相同高度的不同地区,由于气候不同,因而引起高原反应的发病率也不一样。 高度 大气压 kPa 氧分压kPa 英 尺 米 0 0 101.31 (760.0mmHg) 21.15(159.0mmHg) 10,000 3,048 69.51 (522.6mmHg) 14.55(109.4mmHg) 17, 000 5,182 52.59(395.4mmHg) 11.01(82.8mmHg) 20, 000 6,097 46.44(349.2mmHg) 9.72(73.1mmHg) 23, 000 7,010 40.88(307.4mmHg) 8.57(64.4mmHg) 26, 000 7,925 35.88(269.8mmHg) 7.51(56.5mmHg) 28, 000 8,534 32.82(246.8mmHg) 6.88(51.7mmHg) 33, 000 10,058 26.12(196.4mmHg) 5.47(41.7mmHg 一、急性高原适应不全症

海拔高度与大气压关系的回归计算

海拔高度与大气压关系的回归计算 发表时间:2014-12-19T10:31:30.547Z 来源:《价值工程》2014年第8月中旬供稿作者:王丽莉 [导读] 在一些特殊工作中,需要根据海拔高度计算大气压的数值。 Regression Calculation of the Relationship between Altitude and Atmospheric Pressure王丽莉WANG Li-li(兰州城市建设学校,兰州730046)(City Construction School of Lanzhou,Lanzhou 730046,China) 摘要院在一些特殊工作中,需要根据海拔高度计算大气压的数值。本文根据全国主要城市的海拔高度与大气压数值,回归计算出了比较准确的海拔高度与大气压数值的实际关系,可供参考使用。 Abstract: In some special work, it is necessary to calculate the atmospheric pressure according to the altitude. This article maderegression calculation and got the acurate relationship between the altitude and the atmospheric pressure, which has referential significance. 关键词院海拔高度;大气压;关系;回归计算Key words: altitude;atmospheric pressure;relationship;regression calculation中图分类号院TQ036 文献标识码院A 文章编号院1006-4311(2014)23-0324-02 在一些特殊工作中,需要根据海拔高度计算大气压的数值。本文根据全国主要城市的海拔高度与大气压数值,回归计算出了比较准确的海拔高度与大气压数值的实际关系,可供参考使用。 例如,使用全站仪在某个海拔高度的地区进行测量工作时,许多国产仪器需要输入该地区的大气压数值,由仪器的计算系统准确地进行大气压值改变所引起的距离测量改正值,以保证得到准确的测量成果。 在百度文库提供的“全国各地主要城市海拔高及大气压参考数据”表中,共有203 个城市的海拔高及大气压实际数据。 将海拔与气压数据在CAD 上按二维坐标展点,分布形成一条曲线。在CAD 图中,北京、香港、吐鲁番、北海、恩施、甘孜、索县7 个城市的数据明显偏离曲线,将这203 组数据在EXCEL 电子表中排序,按照数据处理原则,这7 组观测值应该是带有粗差。所以,剔除这7组数据,用其余196 组数据进行了回归计算。经过多种试算,海拔高度H(m)与大气压P(kPa)的关系最为符合下边的曲线形式:

液压与气压总结

1.液压冲击(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。) 11.气穴现象;气蚀(在液压系统中,若某点处的压力低于液压油液所在温度下的空气分离压时,原先溶解在液体中的空气就分离出来,使液体中迅速出现大量气泡,这种现象叫做气穴现象。当气泡随着液流进入高压时,在高压作用下迅速破裂或急剧缩小,又凝结成液体,原来气泡所占据的空间形成了局部真空,周围液体质点以极高速度填补这一空间,质点间相互碰撞而产生局部高压,形成压力冲击。如果这个局部液压冲击作用在零件的金属表面上,使金属表面产生腐蚀。这种因空穴产生的腐蚀称为气蚀。) 16.困油现象(液压泵工作时,在吸、压油腔之间形成一个闭死容积,该容积的大小随着传动轴的旋转发生变化,导致压力冲击和气蚀的现象称为困油现象。) 17.差动连接(单活塞杆液压缸的左、右两腔同时通压力油的连接方式称为差动连接。) 液压传动中常用的液压泵分为哪些类型? 答:1)按液压泵输出的流量能否调节分类有定量泵和变量泵。定量泵:液压泵输出流量不能调节,即单位时间内输出的油液体积是一定的。变量泵:液压泵输出流量可以调节,即根据系统的需要,泵输出不同的流量。 2)按液压泵的结构型式不同分类有齿轮泵(外啮合式、内啮合式)、叶片泵(单作用式、双作用式)、柱塞泵(轴向式、径向式)螺杆泵。 .齿轮泵的径向力不平衡是怎样产生的?会带来什么后果?消除径向力不平衡的措施有哪些? 答:齿轮泵产生径向力不平衡的原因有三个方面:一是液体压力产生的径向力。二是齿轮传递力矩时产生的径向力。三是困油现象产生的径向力,致使齿轮泵径向力不平衡现象加剧。 齿轮泵由于径向力不平衡,把齿轮压向一侧,使齿轮轴受到弯曲作用,影响轴承寿命,同时还会使吸油腔的齿轮径向间隙变小,从而使齿轮与泵体内产生摩擦或卡死,影响泵的正常工作。 消除径向力不平衡的措施:1)缩小压油口的直径,使高压仅作用在一个齿到两个齿的范围,这样压力油作用在齿轮上的面积缩小了,因此径向力也相应减小。有些齿轮泵,采用开压力平衡槽的办法来解决径向力不平衡的问题。如此有关零件上开出四个接通齿间压力平衡槽,并使其中两个与压油腔相通,另两个与吸油腔相通。这种办法可使作用在齿轮上的径向力大体上获得平衡,但会使泵的高低压区更加接近,增加泄漏和降低容积效率。 什么是困油现象?外啮合齿轮泵、双作用叶片泵和轴向柱塞泵存在困油现象吗?它们是如何消除困油现象的影响的? 答:液压泵的密闭工作容积在吸满油之后向压油腔转移的过程中,形成了一个闭死容积。如果这个闭死容积的大小发生变化,在闭死容积由大变小时,其中的油液受到挤压,压力急剧升高,使轴承受到周期性的压力冲击,而且导致油液发热;在闭死容积由小变大时,又因无油液补充产生真空,引起气蚀和噪声。这种因闭死容积大小发生变化导致压力冲击和气蚀的现象称为困油现象。 齿轮泵存在困油现象。为消除困油现象,常在泵的前后盖板或浮动轴套(浮动侧板)上开卸荷槽,使闭死容积限制为最小,容积由大变小时与压油腔相通,容积由小变大时与吸油腔相通。 在双作用叶片泵中不会出现困油现象。但由于定子上的圆弧曲线及其中心角都不能做得很准确,因此仍可能出现轻微的困油现象。为克服困油现象的危害,常将配油盘的压油窗口前端开一个三角形截面的三角槽,同时用以减少油腔中的压力突变,降低输出压力的脉动和噪声。此槽称为减振槽。 在轴向柱塞泵中存在困油现象。使柱塞底部容积实现预压缩(预膨胀),待压力升高(降低)接近或达到压油腔(吸油腔)压力时再与压油腔(吸油腔)连通,这样一来减缓了压力突变,减小了振动、降低了噪声。柱塞缸有何特点? 答:1)柱塞端面是承受油压的工作面,动力是通过柱塞本身传递的。 2)柱塞缸只能在压力油作用下作单方向运动,为了得到双向运动,柱塞缸应成对使用,或依靠自重(垂直放置)或其它外力实现。 3)由于缸筒内壁和柱塞不直接接触,有一定的间隙,因此缸筒内壁不用加工或只做粗加工,只需保证导向

一、气压随高度的变化

一、气压随高度的变化 一个地方的气压值经常有变化,变化的根本原因是其上空大气柱中空气质量的增多或减少。大气柱质量的增减又往往是大气柱厚度和密度改变的反映。当气柱增厚、密度增大时,则空气质量增多,气压就升高。反之,气压则减小。因而,任何地方的气压值总是随着海拔高度的增高而递减。如图4·1所示,甲气柱从地面到1000m和从1000m到 2000m,虽然都是减少同样高度的气柱,但是低层空气密度大于高层,因而低层气压降低的数值大于高层。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。

(一)静力学方程 假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。见图4·2,在大气柱中截取面积为1cm2,厚度为△Z的薄气柱。设高度Z1处的气压为P1,高度Z2 处的气压为P2,空气密度为ρ,重力加速度为g。在静力平衡条件下,Z1面上的气压P1和Z2面上的气压P2间的气压差应等于这两个高度面间的薄气柱重量,即 P2-P1=-△P=-ρg(Z2-Z1)=-ρg△Z 式中负号表示随高度增高,气压降低。若△Z趋于无限小,则上式可写成 -dP=ρgdZ (4.1) 上式是气象上应用的大气静力学方程。方程说明,气压随高度递减的快慢取决于空气密度(ρ)和重力加速度(g)的变化。重力加速度(g)随高度的变化量一般很小,因而气压随高度递减的快慢主要决定于空气的密度。在密度大的气层里,气压随高递减得快,反之则递减得慢。实践证明,静力学方程虽是静止大气的理论方程,但除在有强烈对流运动的局部地区外,其误差仅有1%,因而得到广泛应用。将(4·1)式变换

八年级上册科学第二章知识点含答案

第一节大气层 1.大气主要集中在地表以上千米左右的高度内,与地球的半径相比,显得很薄。 2.大气的重要性:①保护地球,避免的碰撞。②人类不可或缺的资源(氧气,二氧化碳)③臭氧层防止的伤害④能成云致雨 3.大气层温度的变化范围约在-84至2500摄氏度 4.大气的温度在垂直方向上是有规律的变化,因此可以把大气层分为五层, 即。 5.气温随高度上升而下降的是、。 6.是大气的底层,云、雨、雪、雷电等天气现象都发生在该层。 7.大气层两极厚度约为千米,赤道约到千米 8.对流层集中了地球约的大气质量和的水汽固体杂质9.对流层最显著的特点, 10.对流层的成因:气温高的地方,空气,气温低的地方空气,从而形成空气的 第二节气温 1.内近地面的气温,湿度,气压等要素的综合状况,称为天气.天气是有许多要素组成的,其中主要的是气温、气压、湿度、降水、风。 2.气温是指空气的温度,即当地空气的,是构成天气的要素。 3.我国常用的气温的度量单位是摄氏度。 4.一天中最高气温,通常出现在左右,一天中最低温度出现在 5.温度计通常放在一个白色的里。原因1:百叶箱里气温比箱外。2:百叶箱内的 温度波动,所以更能反映真实的气温。 6.一般人体最感舒适的气温约摄氏度 第三节大气的压强 1.大气对处于其中的物体产生的叫做大气压强,简称大气压 2.最先证明大气压存在:实验 3.大气压的测量:气压计、气压计 4.标准大气压的数值接近即760毫米汞柱高。所以1毫米汞柱约为帕 5.利用大气压工作的生活用品有:、、真空压缩保存袋、吸盘挂钩、拔火罐、离心 式水泵等 6.大气压随海拔的增加而。在同一高度不同区域的大气压也不一定相同。气压高的区域称 高压区,气压低的区域称区。高压区天气,中心气压从往流动。低压区天 气,中心气压从往流动。 7.气压晴高雨低,冬高夏低。 8.人体对气压的变化,有一个逐步的过程。 9.大气压会直接影响人体血液的能力,大气压越高,溶解氧的能力越 10.高原反应的原因:、 11.液体的沸点随气压减小而,随着气压升高而。高压锅的原理 是。 12.在气体或液体流动的情况下,气体或液体流速越,压强越,气体流速越, 压强越。 第四节风和降水 1.风是空气的运动 2.风形成原因:在水平高度上,如果一个地方和另一个地方的气压高低就会形成风。 风是从气压区流向气压区的。 3.风速是指单位时间内空气流动的距离,常用度量单位有:,千米/时等。常用和风 速仪来测量风向和。 4.湿度表示空气中的多少。 5.湿度的表示方法:一般用表示。相对湿度表示空气中水汽的丰富程度,常用百分比表示。 6.温度越,空气中所含的水汽就越。

大气压力按指数律随海拔高度增加而降低

①大气压力按指数律随海拔高度增加而降低。在晴空条件下,无雪盖的高山白天太阳直接辐射强度和夜间有效辐射强度随高度增加而增大。因坡向不同,阳坡和阴坡得到的太阳辐射不同,并因此影响气温和气流的分布。 ②气温随海拔高度增加而降低。一般气温垂直递减率在一年中以夏季最大,冬季最小。山脉走向和坡向对气温的影响主要表现在使山脉两侧的气温产生差异,并导致不同的气候现象。阳坡气温高,变化大,阴坡气温低,变化小。山顶和山坡的气温日较差和年较差相对较小,而且有秋温高于春温的现象,山谷和山间盆地的气温日较差和年较差相对较大,而且有春温高于秋温的现象。 高山草地 ③降水量和降水日数随山地海拔高度增加而增加。在一定高度以上的山地,由于气流中水汽含量减少,降水量又随高度增加而减少。降水量达到最大值的高度称为最大降水高度。坡向对降雨的影响表现为迎风坡雨量多于背风坡。特别是高大山脉两侧,雨量的巨大差异造成植被景观的很大变化。例如,北美西海岸科迪勒拉山系中南部处于温带西风带,迎风的西侧为森林景观,而背风的东侧为荒漠或半荒漠景观。山地地形也影响降雨量的日变化。一般山脉顶部以日雨为多,而山谷盆地则以夜雨为主。 ④风速随山地海拔升高而增大。山顶、山脊以及峡谷风口处风速大,盆地、谷底和背风处风速小。高山上风速一般夜间大,白天小,午后最小,而山麓、山谷则相反。山地还能产生一些局地环流,如山谷风、布拉风、焚风、坡风、冰川风等。 ⑤在湿度(水汽压和相对湿度)方面,水气压随海拔高度增加而降低。在多数情况下,山地上部因气温低、云雾多,相对湿度高于下部,但冬季高山区也有相反情况,山顶冬季云雾较少而相对湿度小。山谷和盆地相对湿度日变化大,夜高而昼低,午后最低。山顶相对湿度日变化一般很小。

大气压 海拔高度

自然环境中,大气压和氧分压受到各种因素的影响,如温度、湿度、风速和海拔等方面的改变,都将导致大气压和氧分压发生相应的变化。其中以海拔的影响最为显著,它与大气压及氧分压是反比关系。海拔每升高100米,大气压就下降5毫米汞柱(0 67千帕),氧分压亦随之下降1毫米汞柱左右(0.14千帕)。我区平均海拔高度达4,000米以上,享有世界屋脊之称。高海拔导致了低大气压、低氧分压的形成,这也是青藏高原为"世界屋脊"空气稀薄、氧气缺乏的根本原因所在。当然,氧气在大气中的含量比例并没有变,仍为21%。 在海拔3000米以内每升高十米大气压减小(100pa ) 冬天大气压比夏天大气压(高) 气温低空气密度更高,因此冬天温度低气压高。 阴雨天大气压比晴天(低) 阴雨天因为气压低大气才承受不住雨滴重量落到地面上。 不同的海拔高度大气压和氧分压的变化对比 我国幅员辽阔,海拔3000米以上的高原、高山地区,约占全国总面积的六分之一。这些地区大多分布在边疆省区,具有重要的国防意义。高原地带气候多变,寒冷、风大、空气稀薄,对人体构成了一个特殊的自然环境。其中空气稀薄,大气压和氧分压降低,是高原环境对机体影响的主要因素。 在高原地区世居的少数民族,对高原环境已经适应,但一般人口稀少,对这些地区的经济建设需要内地支援。我军有守卫边疆的任务,内地人员进入高原地区日渐增多,因此如何保证进入高原的人员健康,我是军卫生工作的重要任务。 在海平地区,空气在每平方厘米上所形成的压力为101.3kPa(760毫米汞柱),在干燥空气中氧占20.40%,故氧分压为21.15kPa(159毫米汞柱)。空气中氧所占比例基本不受高原影响,当大气压力因海拔增高而降低时,则氧分压按比例降低。下面选择几个不同高度的大气压和氧分压的改变列表如下(表3-2)。 初抵3000米以上高原地区,由于大气压中氧分降低,肺泡气和动脉血氧分压也相应的降低,毛细血管血液与细胞线粒体间氧分压梯度差缩小,从而引起缺氧。如果逐渐登高,有一个锻炼适应过程,在低氧分压环境中,机体可发生一系列代偿适应性变化,如通气加强,肺泡膜的弥散能力提高;循环功能加强,输送氧的能力增加;红细胞和血红蛋白含量增加,红细胞中2,3-二磷酸甘油酸增多,氧离曲线右移,通过这些代偿作用,以便使组织可利用氧达到或接近正常水平。机体具有一定的适应能力,可以较长期居住高原地区。一般地说,长期居住可适应的最大高度为5000米。但有人适应能力较弱,在5000米以下一定高度就失去了适应能力,而出现高原适应不全症。 在高原地区除了大气压降低对机体的主要作用,还有气候的影响,如寒冷、大风、雨雪以及紫外线照射等。这些因素降低机体适应能力,往往是高原适应不全症的诱发和加重因素。因此在相同高度的不同地区,由于气候不同,因而引起

气压与高度之间对应数值

这里所说的标准大气指人为规定的、特性随高度平均分布的大气。我国在建立自己的标准大气之前,使用1976年美国标准大气,并以其30 km以下部分作为国家标准。 海平面温度℃,气压 P= hPa,大气密度:1.225kg/m3, 地面至11km对流层的气温垂直递减率:0.65℃/100m,标准海平面加速度9.80665m/s2 11-20km平海面,温度不变, 气温为–56.5℃气压价格P=, 海拔11~20公里的气温变化率:0.0℃/公里, 海拔20—32公里的气温变化率:+公里 下表列出不同高度处标准大气的气温、气压值。表中“gpm”为海拔米,其负号代表海拔以下。 气压(hPa)(gpm)气温℃气压hPa(gpm)气温℃气压hPa(gpm) # 气温(℃)-4004800 10000 500010200 ~ -200 520010400 [ 10600 2005400 : 4005600 / 10800 600580011000 : 800600011500 620012000 1000 { 12500 1200 — 6400 13000 14006600 ' 1600680013500 ^ 1800700014000 720014500 %

2000 740015000 2200 * 15500 24007600 、 26007800 》 16000 2800800017000 ' 3000820018000 840019000 3200 ~ 20000 3400 ? 8600 22000 36008800 ! 3800900024000 》 4000920026000 940028000 【 4200 4400960030000 4600980032000 标准等面(hPa): 1000,850,700,500,400,300,250,200,150,100,70,50,30,20,10 标准大气压力:相当于温度为0℃,标准重力加速度为、水银密度为×104kgm-3的条件下,高度为760mm的汞柱对其底面单位面积(1cm2)上垂直作用的力,即1标准大气压 = 101325Pa = = 760mmHg 这一气象学上的定义,已在工程学上得到广泛应用。

相关文档